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We use the Whitham averaging method to obtain a set of equations for the amplitude, phase, and 
velocity of an almost periodic wave which is a solution of the Korteweg-de Vries equation with an 
arbitrary linear dissipative term. We find the structure of the solution near the leading front of the 
wave. We study in detail the case, which corresponds to a plasma wave, of damping proportional 
to I k I .  We construct a stationary solution for that case. 

1. INTRODUCTION 

Whitham1 developed an efficient method for describing 
nonlinear waves in dispersive media. The idea of his method 
consists in first constructing a rigorous solution of the corre- 
sponding equation. Afterwards the arbitrary constants oc- 
curring in that solution are assumed to be slowly varying 
functions of the coordinates and the time. For those func- 
tions approximate equations are derived. In Refs. 2 and 3 the 
Whitham method was generalized to the case of weak dissi- 
pation and was used to describe the evolution of nearly peri- 
odic solutions of the Korteweg-de Vries-Burgers equation: 

Equation ( 1 ) usually describes correctly weak nonlin- 
earity and dispersion. However, in many cases of practical 
importance the damping is not described by the "Burgers" 
right-hand side of ( 1 ) even in the long-wavelength limit. In 
media with dispersion the weak dissipation is, in general, 
nonlocal. In the present paper we consider an equation of the 
form 

du/dt+u(du/dx)+d3u/dx3=-v j~(x-x')u(x1)dx' (2)  

with a real integral kernel L and a small coefficient v. [When 
writing down (2)  we assumed the medium to be uniform.] 

In fact the kernel L is given by its Fourier transform 
L(k):  

behavior of L for low k. If L ( k  = 0)  #O the motion at any 
scale is damped after a finite time. Such a situation occurs, 
for instance, for the motion of the ionized component in a 
partially ionized plasma when the ion density is small as 
compared to the neutral particle density. We shall assume 
that, as is the case for ( 1 ) and (4), 

2. AVERAGED EQUATIONS 

We recall briefly of some properties of the periodic solu- 
tions of the Korteweg-de Vries equation 

i.e., Eq. (2)  without a right-hand side. 
For functions u depending on x and t in the combina- 

tion x - Ut Eq. (6)  reduces to an ordinary differential equa- 
tion which has the first integral: 

which after multiplication with u, and integration takes the 
form 

~2=-72A+12Bu+Uu~-u~/3=~/~(6a-u) (u-6p) (u-6y), 

where A,  B, U, a ,  /3, and yare constants and 

L (k) = L ( r )  exp (-ikx) dx, (3  A=-aBy, B=.- (afi+ay+Py), U=2(a+p+y), a > / P > y .  

which determines in the linear approximation the damping 
of a wave with wave vector k: Instead of a, fl, and y we shall use their combinations 

y--Imo=vL (k). r,  : 
ri=3(fi+y), r3=3(a+y), r3=3(a+p), rs>/rz>/ri. 

Hence it follows that YL (k)  > 0 and L (k)  is an even function 
of k. Equation ( 1 ) corresponds to L (k )  = k '. For the im- 
portantcase of ion-acoustic waves in a rarefield plasma with 
different temperatures ( Te % r. ) when the dissipation is de- The periodic solution of Eq. (6) has the form 

termined by the Landau damping by electrons we have u (x, t) = (2a/s2)dn2 (y, s) 4-U- (2a/3s2) (2-sZ), (9) 

L(k)=lk(.  (4)  where dn( y,  s )  is a Jacobi function of modulus s, - . .  -- - 

[Here Y = (~/M)(.rrrnT~/8) ' /~,  where z is the ion charge y = (a/6s2) ( x  - Ut), and the amplitude a, the phase ve- 
locity U, and the modulus s can be expressed in terms of the 

and M and m are the ion and electron masses, respectively. ] r, as follows: 
The same k-dependence of the damping of sound occurs in 
dielectrics at low temperatures (see Ref. 4, 5 73). 

The nature of the equations depends significantly on the a=r2-rir sZ= (rz-r,)/(r3-r,), U='13 (ri+rz+rJ). 
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The role of the adiabatic invariant for Eq. (7)  is played by 
the function 

The wavelength R and the average values over a period of the 
oscillations can be expressed in terms of derivatives of W 
(K 1/R is the wave number): 

We also note a relation between the derivatives of W: 

The Whitham method consists in averaging over the 
period of the waves of the three relations expressing the con- 
servation laws for the initial equation. One of these relations 
is the initial equation (2) itself. However, if we average (2) ,  
the average of the right-hand side vanishes by virtue of (5)  
since the left-hand side of (5) is also such an average. (The 
"correction" appearing in the next approximation is small, 
since Y is small. We therefore obtain as a result exactly the 
equation obtained in Ref. 1 for the Korteweg-de Vries equa- 
tion, i.e., the first Eq. (14) from Ref. 2: 

au~at+~i, (au' la~) =o. (12) 

To obtain the second equation we must multiply Eq. 
(2)  by u and average. After simple calculations we find 

where we have introduced the notation 

We note that the quantity Z has the meaning of the dissipa- 
tive function of the system. 

Finally, we can choose as the last equation the "conser- 
vation law for the number of waves"' which is, of course, 
satisfied also when there is damping present: 

Now expressing the average values in terms of Wusing 
( 10) and ( 11) we are finally led to a set of equations which 
differ from the set ( 17) of Ref. 2 only by the substitution of 
W by Z: 

[The quantity Z is determined by Eq. (14), 
D / D ~  = a /a t  + u(a/ax) .]  

For many applications we must change to the "Rie- 
mann variables" r, . It is clear that the equations for the r, 
differ from the corresponding Whitham equations only in 
the presence of right-hand sides: 

According to what we have said, we can obtain the expres- 
sions for thep, from Eqs. ( 19) of Ref. 2 by the same substi- 
tution of W by 2: 

32 32 
pi = - 

2 ( K - E )  

Here K = K(s)  and E = B(s) are complete elliptical inte- 
grals; expressions for the group velocities v, are given in Ref. 

2 2, si2 = 1 - s . 
Equations ( 16) to ( 18) solve the problem we have 

posed. 
We note that the averaged equations ( 16) and ( 17) can 

in principle be applied also for the description of the dynam- 
ics of growing waves in unstable media when vL(k) > 0. 
However, in the present paper we shall not consider this 
case. 

3. CALCULATION OF THE DlSSlPATlVE FUNCTION Z 

For the actual calculation of the quantity Z we must 
change in Eq. (14) to Fourier components. First of all we 
expand the periodic solution (9)  of the Korteweg-de Vries 
equation in a Fourier series. This solution is a periodic func- 
tion of y of period R = l /x  = 2a/k1. The wave vector k, of 
the basic period is equal to 

The function (9)  is an even real function of y and we 
can expand it in a Fourier series of the form 

(5  is the average value of u over a period). The problem is 
reduced to expanding the function 
sn2(y) = [ 1 - dn2(y) ]/s2. Introducing a new variable 
@ = k ,  y we have: 

sn2(Q/ki)  =ao +x a. cos ( n o ) .  

1 
a. = - 5 sn2(Q/k,) erp ( inQ)d9,  

-n 

The calculations of the a, coefficients are similar to 
those carried out for the expansions in Fourier series of the 
function sn(y) (see Ref. 5, 5 22.6); we note that Eq. 
(8.146.26) for the series (21) in Ref. 6 is incorrect. For the 
calculation of the a, we must consider an integral of the form 
(22) along a contour in the complex plane of the cP variable 
formed by a parallelogram with vertices ( - a ,  7, 2ir, 
- 2 a  + 2 i ~ ) .  Here and in what follows 

The integrals over the lateral sides of the parallelogram can- 
cel one another because of the periodicity of the integrand. 
The integral over the upper side is equal to the required inte- 
gral over the lower side, multiplied by [ - exp( - 2 n ~ ) I .  
On the other hand, the integral over the contour can be ex- 
pressed in terms of the residue in the second-order pole at 
@ = i~ lying inside the contour. After some simple calcula- 
tions we get 
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function W(s2) for the Burgers case ( 1 ) are shown in Fig. 1. 
When s2+0 both functions behave similarly: 

FIG. 1 .  The dissipative function. 

a,=-n ( n / ~ K ) ~ / [ s h  ( n z )  I ,  
a,= (K-E) /s2K.  

Comparing this with (20) we find 

A,=n ( n / K )  ' / [ s h  ( n z )  1, ii=y+2aE(s)/K(s)s2. (25) 

We can now evaluate the function Z. We substitute the series 
(20) into ( 14) and use (3)  and (5 )  and also the fact that 
L( k )  is an even function of its argument. As a result we get 
an expression for Z which is very convenient for numerical 
calculations: 

m 

Z=-4 ( a / 6 ~ ~ ) ' ~ ~ K  ( s )  An2L (nk , )  . (26) 
n-1 

4. STATIONARY SHOCK WAVE 

Stationary solutions of Eqs. (16) which describe a 
shock wave in media with dispersion and weak damping 
were found in Refs. 2 and 3. (This kind of solution was first 
considered in Ref. 7.) The dissipation was considered there 
to be a "Burgers" one. The method developed here enables 
us to solve this problem for any form of weak dissipation. 

We first of a11 note that the general properties of the 
solution in an arbitrary case are close to the properties of the 
solution obtained in Refs. 2 and 3 for the averaged equation 
( 1 ). Indeed, the stationary solution of Eqs. ( 16) depends on 
x - Ut with a constant U. Since the first two equations ( 16) 
did not change their form, the quantity B also turns out to be 
constant. For a single discontinuity we have, as b e f ~ r e , ~  

where the amplitude at the leading front is a = 4 U = $. Be- 
cause of this the way the amplitude a of the wave, the wave- 
number x, the average value ii, and the "dispersion" 
S = 2 - ii2 depend on the parameter s2 is described as be- 
fore by Eq. (27) from Ref. 2. (See also Fig. l a  from Ref. 2.) 

The coordinate-dependence of the remaining param- 
eter A on the other hand is given by the equation 

dW 
-= 
dx ~ z ,  (28) 

which requires numerical integration. We note that in the 
Burgers case Z = Wand (28) has a simple analytical solu- 
tion [Eqs. (24) and (28) from Ref. 21. 

The function Z(s2) for the case (4)  and the analogous 

whereas when s2+ 1 they behave significantly differently: 
Z(s2) has as sZ--+ 1 a singularity in its derivative which is 
connected with the nonanalyticity of the function L ( k )  as 
k-0. 

We study the behavior of Z(s2) as s2 -+ 1. For the case 
(4)  considered here Eq. (26) takes the form 

m 

n5 n3 z ( s Z )  = - 
16K4(1-8'-s4) ~ s ~ ' [ ~ ~ K ( s ' ) / K  ( s )  ] ' 

Using the Poisson formula we can transform the sum (29) : 

F ( n )  =-'/,F (0) + J F ( x ) d x + 2 ' Z  F (x)cos (Znlx)  dz ,  

where in our case 

F ( n )  =n3/sh2 ( a n ) ,  a=n2K ( s f )  / K  ( s )  =n2/ln2 [ 161 ( I -s2)  1. 

Since the parameter a + O  as s2-+ 1 we introduce instead of x 
the variable w = ax. We then have from (29) to (3  1 ) 

Since as a -+0 the function cos(2~lw/a)  oscillates rapidly, 
the main contribution to the integrals under the summation 
sign comes from small w. Therefore 

a2 = J w cos ( 2 n ~ w / a )  dw = - - 
4n2Z2 ' 

0 

(To give a meaning to the integral we must represent the 
cosine as a sum of two exponents and carry out in each term 
the appropriate rotation of the contour in the complex 
plane. ) 

Summing now the series (32) we finally get as s2 -+ 1 

It is clear that the derivative of the function Z(s2) becomes 
infinite as s2 -+ 1. 

In the Burgers case [Eq. ( 1 ) ] there occur the quantities 
n4 and w4 in the sum (26) and correspondingly in the inte- 
gral (27). Performing the same calculations we find as s2 - 1 
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FIG. 2. The distribution of averages in a stationary shock front. 

In that case the singularity turns out to be weaker and the 
derivative remains finite. One checks easily that this is a 
manifestation of a general statement: the derivative of the 
function Z ( s 2 )  remains finite if L ( k )  a k  2n for small k and 
becomes infinite when L ( k )  a k  '" + ' . 

We now use the dissipative function found here for the 
case (4) .  The result of integrating Eq. (28) which deter- 
mines the change of the parameter s2 in the shock wave as a 
function of Y ( X  - x0 ) is shown in Fig. 2. We also show there 
the behavior of other average quantities. In Fig. 3 we show 

FIG. 3. Oscillatory structure of a stationary shock wave 
for v = 0.05. a: for the case (6) ;  b: for the case (1 ) .  
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the structure of the shock wave. The oscillations at the lead- 
ing front have the shape of solitons of height 3, which corre- 
sponds to the already mentioned equation a = 4. This is a 
general result which is independent under condition (5)  of 
the actual form ofthe dissipative term. The solitons are suffi- 
ciently sharply pronounced for small values of Y< 10 -4 .  The 
distance between the first and the second soliton is 
A, =: (3/21/2)( ln(~-  I )  + 4). When we go away from the 
leading front the oscillations diminish in amplitude and be- 
come sinusoidal in character. Their amplitude then de- 
creases exponentially: 

a=Co exp [-v (x -x0) /2 ' " ] ,  C,-1. (36) 

It is clear that the argument of the exponential asymptotical- 
ly differs by a factor 21'2 from the Burgers case. This leads 
(for the same Y )  to a faster damping of the oscillations. The 
wavelength, however, remains the same A, = 21/271. 

The problem of the establishment of the stationary solu- 
tion constructed here is of interest. If the shock wave is 
formed as the result of the decay of an initial jump in the 
density (see Ref. 8),  the reaching of the stationary picture 
starts from the leading edge where the dissipation is particu- 
larly important. With increasing time the region of the sta- 
tionary solution propagates ever further backwards along 
the oscillating region, but sufficiently close to the trailing 
edge there is always a nonstationary region where the dissi- 
pation is unimportant. 

5. BEHAVIOR OF THE SOLUTION NEAR THE LEADING FRONT 

An important feature of Eqs. ( 17) for the quantities r, 
is the presence in their solutions of singular points-the 
leading front and trailing edge,' which bound the oscillation 
region. At the trailing front the amplitude of the oscillations 
becomes zero. In that point the conservation law (9)  for the 
number of waves is violated; it is a source for new waves (see 
Refs. 2 and 10). Near the trailing edge, though, the dissipa- 
tion is unimportant. Its structure is described therefore by 
the formulae obtained in Ref. 8. 

On the leading front s2- 1 and the waves split up into 
separate solitons. The structure of the leading front depends 
on the damping. The way s becomes unity for Eq. ( 1 ) was 

elucidated in Ref. 2. We determine this behavior for the gen- 
eral Eq. (2).  

First of all we note, by somewhat generalizing the deri- 
vation of Eq. (35) of Ref. 2, that the behavior of s near the 
leading-front point x = x +  ( t )  is given by the formula 
(sI2 = 1 - s2)  

s" [ln (16/s1 ' )  +'/,I =- (12 /a2)  [ (dr+/dt)  -vp3+ ] (x-x+) , 

The quantity p,+ can in turn be expressed in terms of the 
quantity Z + = Z(s2 = 1) at the leading front. Using (18) 
we have 

Using Eq. (34) for Z(s2 - 1 ) we get finally: 

In the case ( 1 ), however, when L ( k )  = k  we can easily 
obtain Eq. (34) of Ref. 3. 

In conclusion we note that the asymptotic expression 
(37) is necessary as the natural boundary condition for the 
numerical integration of the Whitham equations (see Refs. 3 
and 9) .  

The authors are grateful to M. Ptitsyn for performing 
the numerical calculations. 
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