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A transient solution of the Petschek problem of relativistic reconnection of magnetic lines of force 
is obtained by specifying: a )  the initial parameters of a thin layer; b) the electric field along a 
reconnection line, considered as a function of time. It is shown that in the course of the 
reconnection process a current layer splits into slow shock waves which accelerate a plasma to the 
relativisitic Alfven velocity, compress it and heat it strongly, whereas the magnetic field intensity 
falls steeply. This transforms the magnetic energy into the kinetic and internal energies of the 
plasma, which is a particularly effective process in the case of a strong magnetic field and a cold 
plasma. The result is propagation, on either side from a reconnection line, of accelerated 
relativistic plasma bunches (known as field reversal-FR-regions) bounded by traveling slow 
shock waves. The FR regions following the path along a current layer transform the whole of the 
magnetic field in a force tube which is being reconnected and they accelerate all the plasma inside 
the tube. Different reconnection regimes are possible: quasisteady, similar to the variant 
considered by Petschek; pulsed, when the FR regions become detached from a reconnection line 
and move along a current layer as independent objects, etc. The FR regions transport, along a 
current layer, the magnetic flux being reconnected, as well as the electric field, mass, momentum, 
and energy. It is therefore possible to regard reconnection as a transport process typical of a 
highly conducting magnetized medium containing current layers. The process of reconnection 
may ensure a strong interaction between regions with different magnetic fluxes. The 
astrophysical applications of the relativistic reconnection process are considered, particularly in 
the case of solar bursts and flares. 

The theory of reconnection has arisen from the hypoth- 
esis of Giovanellil about the magnetic nature of solar flares. 
The list of phenomena associated with an explosive-like 
transformation of the magnetic energy is now much longer: 
it includes magnetospheric ~ u b s t o r r n s ~ ~ ~  and the processes in 
the magnet~pause,~ in cometary tails,5 at the fronts of flare 
f l uxe~ ,~  in thermonuclear devices,' in laboratory appara- 
t ~ s , ~ , ~  etc. There are grounds for assuming that the process 
of reconnection is also of importance in astrophysi~s'~ and 
this requires generalization of the theory to the relativistic 
case. In fact, the Alfven velocity near current layers on the 
Sun can reach thousands of kilometers per ~ e c o n d , ~ ~ ' ~  which 
is only two orders of magnitude less than the velocity of 
light. Therefore, in the case of astrophysical objects with 
much stronger magnetic fields one should obviously allow 
for the strongly relativistic effects. We shall generalize the 
Petschek reconnection model11312 to relativistic magnetohy- 
drodynamics. Alternative reconnection mechanisms, such 
as tearing instability, will not be considered. 

2. PETSCHEK APPROACH 

Syrovatskir demonstrated13 that inhomogeneous mo- 
tion in a magnetized plasma creates electric-current layers 
which evolve giving rise to an unstable state. This is mani- 
fested by the fact that in a small part of a current layer, 
known as the diffusion region, we can expect a critical value 
of a plasma parameter (such as the current velocity) fol- 
lowed by the development of wave turbulence and accompa- 
nied by a steep fall of the plasma conductivity. 

In the Petschek approach' ' the subsequent evolution of 
the process is dominated by magnetohydrodynamic 
(MHD) waves (see also Refs. 12 and 14). In the diffusion 
region there is a normal component of the magnetic field B, 
(i.e., the lines of force become "reconnected"), which re- 
sults in the loss of stability of this part of the current layer 
where B, +O. An arbitrary discontinuity appears and it be- 
gins to decay into a system of MHD waves, including slow 
shock waves (Fig. 1). 

The reason for this decay is the normal component of 
the magnetic field which is created by dissipation. Decay of 
the discontinuity also occurs locally in the diffusion region. 
The newly formed shock waves travel in a plasma in accor- 
dance with their own propagation laws. Slow shock waves 
appear at different moments in time and eventually form a 
single front bounding a field reversal (FR) region15 contain- 
ing an accelerated and heated plasma and the magnetic field 
being reconnected. Part of the space outside the FR regions 
will be called the inflow region,15 from which the plasma 
enters (flows into) the FR region. In the diffusion region, 
where the conductivity falls, it is found that (in addition to 
B, ) an electric field E * is also generated; from the point 
where it appears, the fieldE * is transferred to a current layer 
by a surface MHD wave and it performs work there on the 
currents in the layer and this work is then dissipated in the 
acceleration and heating of a plasma. The result is an almost 
the same release of energy as in the case when an anomalous 
resistance appears instantaneously in the whole current lay- 
er. The electric field is generated in one place (diffusion re- 
gion), acts elsewhere and, moreover, MHD waves ensure 
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that E * acts in turn on all the currents in the layer. Physical- 
ly this appears as the passage of a shock wave along a current 
layer and work is done by the electric field in the front of this 
wave. The contribution of the ohmic dissipation proper to 
the total energy is negligible, because it is approximately 
equal to the ratio of the size of the diffusion region to the 
whole length of the current layer. True, in the diffusion re- 
gion near a neutral line a relatively small fraction of particles 
is accelerated to exceptionally high energies.16," 

The process of magnetic field-line reconnection occurs 
in two stages. First, the magnetic lines of force are closed in 
the diffusion region. This alters the structure of the magnetic 
field, so that uncompensated forces appear and in the second 
stage of relaxation the system goes over to a new equilibrium 
position. It should be stressed that relaxation of Maxwellian 
stresses depends weakly on details of the process of closing 
the tubes of force in the diffusion region,14 which provides 
an opportunity for investigating these stages separately. If 
the interest lies solely in the large-scale structure of fields 
and streams, which is the primary need in applications, the 
diffusion region can be ignored completely and it can be re- 
placed by a boundary condition at the reconnection line. 
This boundary condition can be conveniently specified in the 
form of the electric field E * ( x O )  regarded as a function of 
time, but eventually it is necessary to calculate the profile of 
the traveling shock waves and the MHD parameters 
throughout the whole space. Since outside the diffusion re- 
gion, in what is known as the convection zone, the dissipa- 
tion is no longer that important, we can use ideal magneto- 
hydrodynamics with an infinite conductivity and this 
simplifies greatly the solution of the problem. 

3. SYSTEM OF EQUATIONS FOR RELATIVISTIC 
MAGNETOHYDRODYNAMICS AND RELATIONSHIPS AT 
DISCONTINUITIES 

The equations of ideal relativistic magnetohydrodyna- 
mics are as  follow^:'^^'^ 

- x FIG. 1. Transient Petschek reconnection process: a)  initial 
state; b) growth phase; c )  expansion phase. The FR regions 
where an accelerated and heated plasma is concentrated are 
shown shaded. The dash-dot curves are separatrix lines of force, 
which are boundaries of a reconnecting magnetic force tube. The 
scale along the z axis is increased for clarity. 

wherep is the plasma density; ua is the four-velocity and h " 
is the four-vector of the magnetic field, which are orthogonal 
to one another; uaha = 0; Tap  is the total tensor of the ener- 
gy-momentum of a plasma and of the magnetic field: 

where is the metric tensor of the Minkowski space with 
the signature ( 1, - 1, - 1, - 1 ); w is the specific self-en- 
thalpy, given by w = (p + E, )/p; p is the gasdynamic pres- 
sure in the plasma; 6, is the internal self-energy per unit 
volume; h = - huh " is the square of the magnetic field 
intensity. 

A shock wave represents a hypersurface in the four- 
dimensional space and the values of ua and h ", as well as the 
thermodynamic parameters, have a discontinuity on this 
surface. If nu is a unit vector along the normal to the shock- 
wave hypersurface, then the relationships on the shock wave 
front b e ~ o m e ' ~ - ~ ~  

where {...I denotes the difference between the quantities on 
both sides of such a discontinuity. 

The following series of scalar relationships for a shock 
wave follows from Eqs. (5)-(7) : 
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{H) = {h2~n2-h,2) =0, (10) 

where 

Fast shock waves correspond to wj2/p + H >  0, slow shock 
waves to wj2/p + H <  0, and Alfven discontinuities to 
wj2/p + H = 0. 

4. FORMULATION OFTHE PROBLEM 

As pointed out already, we shall ignore the diffusion 
region, the effect of which can be replaced by a boundary 
condition on a reconnection line. This condition can be the 
electric field E * (xO) regarded as a function of time. 

Initially there is an electric-current layer near the plane 
x' = x ,  x2 = y, and the parameters of a plasma as well as a 
magnetic field are specified in the vicinity of this layer: they 
include the plasma density p,, the pressurep,, and the mag- 
netic fieId h a  = (0, + B,, 0, 0) directed along the x axis 
in the upper half-space, but directed oppositely in the lower 
half-space. 

An ideal plasma can be regarded as a polytropic gas 
whose specific enthalpy and pressure are related to the den- 
sity by 

where y > 1 is the polytropic exponent. 
We shall reduce the equations to the dimensionless 

form relative to the initial values of the density p,, magnetic 
field B,, magnetic pressure p, = B :/8n-, velocity of light in 
vacuum c, time To for a characteristic change in the electric 
field on a reconnection line, and distance traversed by light 
in the time To, i.e., cT,. Then, the dimensionless enthalpy 
per unit volume @@ (the tilde means that the quantity is 
dimensionless) is described by 

where 

The initial values of the dimensionless quantities can be re- 
written as follows: 

I ,  n u = ( o ,  &I, 0, o), p=p=8np0lB0~. (17) 

We shall consider only the weak reconnection case 
when the electric field along a reconnection line is much less 
than the Alfven field: E * 4 EA = vA B,/c (vA is the Alfven 
wave velocity). The parameter E = E */EA 4 1 is small and 
the expansion is in its terms. We shall show below that in the 
weak reconnection case the FR region is strongly elongated 
along the field and compressed in the orthogonal direction, 
i.e., it represents a boundary layer. 

The initial data on the current layer described by Eq. 
( 17) and the boundary condition on the reconnection line (y 
axis), i.e., the field E * (xO), are used to find the solution of 
the relativistic MHD equations ( 1 )-( 3 ) which satisfy the 
relationships (5)-(7) for shock waves whose shape is to be 
determined. 

5. ESTIMATES OF VARIOUS QUANTITIES IN A FIELD 
REVERSAL REGION 

We shall begin by estimating the order of magnitude of 
the various quantities in an FR region. In the weak recon- 
nection case we have E * -8, SO that in the inflow region we 
can estimate the rate of convection to a reconnection line 
v, -E. The velocity component normal to a discontinuity is 
then also of the same order of magnitude: u, -E; it follows 
from Eq. ( 10) that the normal component of the magnetic 
field is h, -E .  Therefore, the vertex angle of the discontinui- 
ties forming one FR region is of the order of E, i.e., it follows 
that x - 1 and Z- E ,  i.e., the FR region is indeed elongated 
along the field and compressed in the orthogonal direction. 
A similar analysis based on the conservation laws gives the 
following estimates: 

i.e., the quantities tangential to the current layer are of the 
order of unity, whereas the quantities normal to this layer 
are of the order of E. This allows us to find initially the tan- 
gential components of the velocity and magnetic field, and 
then the normal components. 

It follows that the FR region is a boundary layer. A 
well-known property of boundary layers is the constancy of 
the total pressure in the transverse (z) direction. The proof 
is exactly the same as in the theory of a viscous Prandtl lay- 
er'' and we need simply estimate the order of the quantities 
in the equation of motion along the z coordinate. In the weak 
reconnection approximation we can readily see that the fol- 
lowing expression is also valid: 

Clearly, in the course of the whole reconnection process the 
total pressure remains constant (in the zeroth approxima- 
tion). 

We shall now make the following comment. When a 
nonlinear problem with a small parameter is solved, the fol- 
lowing situation is usually encountered. In the zeroth ap- 
proximation the problem still remains nonlinear, but 
simpler, whereas in higher approximations the problem be- 
comes linear. The main difficulty is to solve the nonlinear 
problem in the zeroth approximation. 

In the reconnection problem this nonlinear zeroth-ap- 
proximation problem is the Riemann problem of decay of an 
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arbitrary discontinuity or, more exactly, of a relatively sim- 
ple variant of this problem. In fact, the problem for p andp, 
and for the tangential components of the velocity and mag- 
netic field in the approximation of the zeroth order in E is 
self-similar and can be reduced to the Riemann problem. 
The full Riemann problem is very complex (see Ref. 22), but 
in the present case some important simplifications are possi- 
ble. First, the problem is formulated only for the tangential 
components ua and h ". Second, there are no fast shock 
waves in the decay process, because the total pressure re- 
mains constant [see Eq. ( 18) ]. Thirdly and finally, it is nat- 
ural to assume that in the symmetric case under discussion 
here the decay process can be regarded as involving two slow 
switching-off shock waves, as in the original Petschek solu- 
tion." We shall assume that this is true and show that we 
can then satisfy all the necessary conditions. The uniqueness 
of the solution of the Riemann problem then guarantees the 
uniqueness of the solution of the magnetic reconnection 
problem. We shall consider only the dimensionless quanti- 
ties, so that we shall omit the tilde and identify the quantities 
in the FR region by a bar above them. 

6. SOLUTION IN A FIELD REVERSAL REGION 

a. Determination of the pressure. In the case of a slow 
switching-off shock wave, which for the sake of brevity we 
shall call the Petschek wave, the tangential component of the 
magnetic field vanishes (is "switched off '), so that in an FR 
region the gas pressurep should balance out the total exter- 
nal pressure [Eq. ( 18) 1 : 

In the weak reconnection approximation the condition ( 18) 
is in agreement with the relationships (12) and ( 13) satis- 
fied in a shock wave. 

b. Determination of the plasma density. In the case of a 
Petschek shock wave in front of a discontinuity we have 
~ j * / ~  + H = 0, exactly as in the case of an Alfven discontin- 
uity, whereas beyond the discontinuity we obtain 
h + H z  h - i; 2, zO, so that the condition ( 11 ) is satisfied 
due to different factors. It follows from the condition 
wj2/p + H = 0, subject to Eq. (8) ,  that 

which gives 

The sign is deduced from the following considerations. We 
first select the direction of the outward normal to the FR 
region. In the first quadrant the line of force of the magnetic 
field emerges from the FR region (Fig. lb)  and, therefore, 
we have h, >O so that the plasma flux flows into the FR 
region and we have u, < 0; the sign in Eq. (21) is negative. 
The signs for the other variants are found in a similar man- 
ner. 

It follows from Eqs. (8)  and (9) that 

Equation ( lo),  in view of the smallness of the field h and of 
the normal component of the velocity u, in the FR region, 
leads to u; - h f, = h f,; then, using Eq. (20), we obtain 

Substituting in Eq. ( 16) describing the specific enthalpy, the 
values ofp andp on opposite sides of the discontinuity taken 
from Eqs. ( 17) and ( 19), and combining the results with Eq. 
(23), we obtain 

In the inflow region the quantity Q can be calculated from 
Eq. (16) assumingthatp = 1 a n d h Z  = 1: 

Substituting Eq. (25) into Eq. (24), we obtain the plasma 
density in the FR region: 

We can easily see that p > 1, i.e., that the plasma becomes 
denser, as expected for an evolution shock wave. 

c. Determination of the plasma velocity. It follows from 
Eq. (6)  that the invariant vector h, ua - u, h Ois tangent to a 
shock wave. We shall use u, = uata and h, = h to denote 
the projections of the four-velocity and the four-vector of the 
magnetic field along the tangential direction fa, which gives 

Writing down this relationship on both sides of the discon- 
tinuity and bearing in mind that in the inflow region the 
quantities u, and h, are of the order of E, whereas h, - 1, and 
in the FR region both ii, and h, are of the order of E, we 
obtain 

Equations (28 ) , (2 1 ) , and (23 ) allow us to determine the 
tangential velocity in the FR region: 

In the weak reconnection approximation all the scales 
of the quantities along the x axis are considerably greater 
than the scales along the z axis, as pointed out already, and 
we can assume that the tangential velocity of the plasma 
determines its motion in the FR region along the x axis and 
we have ii, = Ti, = ii'. 

The expression for the x component of the four-velocity 
Ex = Ti' in terms of the three-dimensional x component of 
the velocity Ex is 

which then gives : 

The time component 2 of the four-velocity is found from 

Gathering together the results (29), (30), and (32), we ob- 
tain the components of the four-velocity: 
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d. Determination of the z components of the velocity and 
magneticfield. We can find the velocity component 2 using 
the equation of continuity, which gives dii3/dz = 0, because 
- - 
u0 and u1 are constant. Since ii3 = 0 at z = 0 (symmetry 

condition), it follows that ii3 = 0 throughout the FR region. 
We can determine the field by applying the induction 

equation (2). Writing down the nonzero components of this 
equation and bearing in mind that the four-velocity is con- 
stant in the FR region [see Eq. (33) ], we obtain a homoge- 
neous equation in terms of the first-order partial derivatives: 

the general solution of which can be written in terms of an 
arbitrary function F(xO, x )  : 

We can find the function F(xO, x )  employing the 
expression for the magnetic-field four-vector h "in terms of 
the three-dimensional magnetic-field vector B and the three- 
dimensional velocity v, whose spatial components can be 
represented as  follow^:'^ 

The second term in Eq. (36) vanishes, because Ij, = 0, so 
that we have 

In the derivation of the above equation we used the relation- 
ships E,, = v,B,, and v, = Sil/iiO. Therefore, the function 
F(xO, X)  is proportional to the electric field and it can be 
found from the boundary condition on a reconnection line: 
F(XO) = E * ( ~ ~ ) / i i l .  

Finally, the four-vector of the magnetic field is 

e. Determination of the shock waveprofile. The profile of 
a Petschek shock wave can be found in the form of the func- 

tionz = &f(xO, x) .  The normal to the shock-wave hypersur- 
face can be expressed in terms of derivatives of the function f 
as follows: 

We shall replace u, and h, in Eq. ( 10) with ii, and &, and 
then, using Eqs. (8) and (23), we obtain 

The sign of a Petschek wave is selected in the first quadrant. 
Using Eqs. (33), (38), and (39), we find from the condition 
(40) that f can be described by the following equation: 

the general solution of which can be represented in the form 

The function g describes the effect of motion of a reconnec- 
tion line. If the line is immobile, then at x = 0 the function in 
question is f = 0 and, consequently, we have g=O. In this 
case the profile of a Petschek wave is given by the function 

1 
f ( x 0 , x ) = - x E '  

ii'p 

The velocity of a wave along a current layer (parallel to the x 
axis) is then 

We thus found the pressure ( 19), the density (26), the 
velocity (33), and the magnetic field (38) in the FR region, 
as well as the profile of a Petschek shock wave (43). 

We assumed so far that the electric field E * is indepen- 
dent ofy and that the length of a reconnection line is infinite. 
However, the above solution is valid (as is easily demon- 
strated) in the more general case. The field E * may depend 
on y, which occurs in the solution only as a parameter. It is 
natural to assume that at the ends of a reconnection line we 
have E * = 0, so that the shock wave is a surface stretched on 
the reconnection line, on the magnetic-field force lines pass- 
ing through the ends of this line and through the leading 
edge of the perturbation (Fig. 2 ) .  It follows that the solution 
is quite informative: by specifying the actual dependence 
E * (xO, y) ,  we can study the various reconnection regimes. 
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nection-line length. 
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f. Inpow region. Perturbations of MHD parameters in r = xo - (iio/iil)x and integration by parts. Similarly, the 
the inflow region are small and proportional to E, since the momentum of the FR region is 
FR region is a thin boundary layer of thickness - E  and the S' 

components of the velocity and magnetic field normal to N = J  ~ ~ ~ d x d ~ d z = - {  q(-* U )  B ( r ) d r .  
shock waves are also of the order of E. Therefore, perturba- P E  " 

(47) 
PR 

tions in the inflow region can be found from a linearized 
system of relativistic MHD equations. The boundary condi- 
tions follow from Eq. (8)  for u, and from Eq. (21 ) for h, . 
On the whole, calculations of perturbations in the inflow 
region are completely similar to those in the problem of mo- 
tion of a thin profile (in our case an FR region) in a magne- 
tized plasma. Using the Fourier method or the Green func- 
tion technique, we can find the solution of this linear 
hyperbolic problem. However, this is of little help in prac- 
tice, because the solutions are so cumbersome that nothing 
obvious can be deduced from them. Even in the nonrelativis- 
tic case we can obtain clear results only in the limit either of 
an incompressible plasma or a cold plasma,14 whereas in the 
relativistic case even these simple variants are not obtained. 
We shall therefore consider the above solution in an FR re- 
gion on the assumption that in an inflow region the solution 
is similar to that obtained for the nonrelativistic case. 

7. RECONNECTION PHASES 

Reconnection characteristics. The most important char- 
acteristic of the reconnection process is the magnetic flux 
@(xo) which is reconnected. We can calculate it using the 
theorem on circulation of the electric field. Let us assume 
that a contour passes through a reconnection line I and then 
surrounds an FR region. We then find that E # 0 only on the 
reconnection line and the circulation theorem gives 

We are allowing here for the fact that the electric field may 
depend on y. 

We shall now calculate the energy inside the FR region: 

Equation (46) is derived after substitution of the variable 

- -. 

The expressions (45)-(47) are valid as long as the FR re- 
gion moves along a current layer. We can see that the recon- 
nected magnetic flux, energy, and momentum in the FR re- 
gion are governed entirely by the behavior of the electric 
field on the reconnection line. 

Acceleration. Irrespective of the behavior of the electric 
field on a reconnection line a plasma is accelerated by the 
Petschek shock waves which impart exactly the Alfven ve- 
locity cBo /(4rpo c2 + 4 r r p o  + B 2 ,  'I2 calculated using the 
unperturbed parameters of the current layer, and the plasma 
is then compressed and heated [Eqs. ( 19) and (26) 1 .  On the 
other hand, the magnetic field is greatly weakened in the FR 
region, i.e., the magnetic field energy is converted into the 
plasma energy. The reconnection weakness does not imply 
that the acceleration is weak but simply that the volume of 
the FR region with an accelerated and heated plasma is 
small. 

The reconnection process is particularly effective in a 
strong magnetic field and a low-density plasma (p 41, 
p( 1). In this case the plasma is accelerated to relativistic 
velocities 

is strongly compressed to 

and is heated: 

It is clear from Eqs. (49) and (50) that and Too- co for 
the case when 9 -* 0 and p- 0 and these quantities are limit- 
ed mainly only by the condition of validity of the equation of 
state described by Eqs. ( 14) and ( 15). On the other hand, 
the transverse size of the FR region is zFR - (p  + r p ) / T  - 0 
and zFR becomes much smaller than the transverse size of a 
reconnection force tube: zFR (@/BoIx (I, is the length of a 
reconnection orX line). This means that the relativistic plas- 
ma is concentrated in a small region. 

a 

FIG. 3. Behavior of the electric field on a reconnection line (a) and 
the corresponding profile of Petschek shock waves during the 
growth (b) and expansion ( c )  phases. 

f o  t l  t 2  tJ 
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Growth phase. The solution obtained by us is largely 
governed by the behavior of the electric field on a reconnec- 
tion line. Specifying E *(xO) in this or another manner, we 
can model different reconnection regimes (Fig. 3). Let us 
assume initially that the electric field in the diffusion region 
is switched on gradually [i.e., E(0)  = 01 and that after a 
time we have E(xO) > 0. In this case the leading edge of a 
Petschek shock wave travels along a current layer at the Alf- 
ven velocity (44), whereas the trailing edge is immobile 
(Fig. 3b). 

During this reconnection phase the flux rises, the lead- 
ing edge of the FR region moves still further and further 
along the current layer, and all large plasmas are accelerated 
by the Petschek shock waves, the dimensions of the FR re- 
gion and its volume increase rapidly with time, and the pro- 
cess is clearly explosive. 

Expansion phase. We shall now assume that beginning 
from a certain moment x: the process of reconnection stops 
in the diffusion region E * (xt ) = 0. It then follows from Eq. 
(43) that the FR region becomes detached from the recon- 
nection line, its rear edge travels at the Alfven velocity 
x = (iiO/iil) (xO - x: ), and it can begin to move along the 
current layer as an independent object. Behind the expand- 
ing FR regions a new current layer is reestablished (Fig. lb),  
and the intensity of the magnetic field in this layer is some- 
what less than before reconnection. The magnetic energy 
deficit and the reconnected magnetic flux, which no longer 
changes during the expansion phase, are carried away by the 
FR regions. 

It is clear from Eq. (43) that during the motion of an 
FR region along a current layer its transverse size rises lin- 
early with x, i.e., with the distance to the former reconnec- 
tion line (Fig. 3c). Therefore, the volume of the FR region 
and the energy enclosed in it increase with time. Physically 
this is due to the fact that the conversion of the magnetic 
energy continues for the Petschek waves even after the diffu- 
sion region has disappeared. The FR region converts com- 
pletely the reconnected force tube and traps all the plasma 
located inside it. 

The above solution remains valid up to times of the or- 
der of 1 / ~  when the x and z dimensions of the FR region 
become comparable and the weak reconnection approxima- 
tion ceases to be valid. 

Limiting case. The above solution considered in the 
nonrelativistic limit ,u % 1 reduces to the solution obtained in 
Refs. 12 and 14 for a transient reconnection process, which 
during the growth phase in the vicinity of the X line reduces 
to the Petschek solution." 

Electric currents. Alfven criticized strongly the recon- 
nection idea and suggested an interpretation of the plasma 
phenomena in terms of electric  current^.'^ In fact, this ap- 
proach should reveal new important features of the recon- 
nection process which are not detectable by other points of 
view. 

The electric current decreases in the vicinity of a recon- 
nection line, but the total current in the current layer affect- 
ed by a perturbation does not change. The rate of energy 
evolution is not due to the ohmic attenuation of the current, 
but entirely to the change in the geometry of the current: the 
current now contracts in the direction away from the recon- 
nection line. A perturbation of the current is usually caused 
by a surface Alfven wave, as in the nonrelativistic case dis- 

cussed in Ref. 14. Therefore, the elementary act of reconnec- 
tion displaces partly the electric current from the diffusion 
region to the edges of the thin layer, in other words, recon- 
nection gradually destroys the current layer. 

8. SOME APPLICATIONS 

Transport processes. It  is shown above that the FR re- 
gions transport (along a current layer) the electric field, re- 
connected magnetic flux, perturbations of the electric cur- 
rent, mass, momentum, and energy. Hence, we can assume 
that reconnection is a transport process typical of a highly 
conducting medium with current layers. Reconnection can 
result in an effective exchange of mass, momentum, and en- 
ergy between regions carrying different magnetic fluxes, 
which should be also of importance in space research. 

Laboratory experiment. It is interesting to note that a 
plasma can be accelerated to relativistic velocities without 
satisfying any exotic conditions, so that the relativistic re- 
connection process may occur in principle in a modern labo- 
ratory. Generation of a low-pressure plasma characterized 
by Bo/c(4n;o) 'I2 - 1 is not a very difficult task. We shall 
point out that in the case of a hydrogen plasma with the 
concentration n = 1013 cm - in a magnetic field of intensity 
B = 200 kG this parameter is Bo/c(4rp) 1'2z0.5. Recon- 
nection should then accelerate the plasma only to half the 
velocity of light. The main difficulty is to create thin current 
layers separating the regions with magnetic fields so strong 
that the carriers should also move at the velocities close to 
that of light. The properties of such relativistic current lay- 
ers have been investigated insufficiently and the topic re- 
quires further study. 

Bursts and flares. A typical consequence of field-line 
reconnection can be a burst or a flare. Depending on the 
actual situation, there can be an extremely wide range of 
situations, but we shall consider the specific case of recon- 
nection in a streamer structure, which is quite typical of the 
solar atmospherelo (Fig. 4).  At the initial moment in time a 
current layer stores a magnetic energy (Fig. 4a). In the 
course of reconnection this energy is transformed into the 
energy of an accelerated and heated plasma contained in two 
FR regions. One of them travels to the surface of a star and, 
falling along a surface parallel to the magnetic lines of force, 
it creates a radiation burst in the visible, x-ray, and possibly 
even y-ray range, depending on the parameters of the cur- 
rent layer (Figs. 4b and 4c). The second FR region travels 
along the current layer along a direction away from a star: it 
requires energy, and, therefore, it represents a burst of heat- 
ed plasma into the surrounding space. 

The parameters of the radiation emitted during the 
growth phase can, in principle, be used to determine the 
most important characteristics of the reconnection process. 
In the diffusion region near the X line the particles are accel- 
erated to exceptionally high energie~, '~~" as pointed out al- 
ready. Therefore, the projection of a reconnection line on the 
surface of a star should be brighter than the rest of the emit- 
ted radiation. Since during the growth phase (Fig. 4b) the 
reconnected flux rises, the projection A ' ofthe X lineA moves 
in the direction from the projection C ' in the current layer C. 
The area emitting such radiation is A 'C' and it is obviously 
proportional to the reconnected magnetic flux @(xO), 
whereas the velocity of a bright edge A ' is proportional to the 
electric field E * (xO) along the reconnection line. As shown 
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FIG. 4. Formation of flares and bursts due to the reconnection process: a )  
initial state; b) pulsed phase; c )  formation of a burst. Shading identifies 
the regions with an accelerated and heated plasma. 

above [see Eqs. (45)-(47) 1, E * (xO) and @(xO) essentially 
determine the whole reconnection process. Therefore, a 
study of the kinetics of the emission of such radiation and of 
the magnetic field intensity in this region does indeed allow 
us to reconstruct the principal characteristics of the recon- 
nection process. 

The above scheme clearly accounts for the main fea- 
tures of such phenomena as a solar flare24 or the magneto- 
spheric storm.I4 We can expect the above scheme to be use- 
ful also in the case of astrophysical objects with relativistic 
current layers. 

9. CONCLUSIONS 

In astrophysical applications the process of reconnec- 
tion should obviously occur quite frequently. In the presence 
of a highly conducting medium any inhomogeneous motion 
of a plasma stretches and deforms the magnetic force tubes 
and, consequently, transforms the kinetic energy into the 
magnetic field energy. The reflection was particularly strong 
in the vicinity of special (particularly neutral) magnetic 
field lines, where current layers should form.I3 Gradually a 
considerable proportion of the energy of the initially inho- 
mogeneous motion is transferred to the magnetic field. Dur- 
ing the next stage of the reconnection process the magnetic 
energy is in turn converted into the kinetic and thermal ener- 
gy of a plasma; transformation of one type of energy to an- 
other may be repeated many times. Therefore, under given 
boundary and initial conditions a plasma may travel only 
with the aid of the magnetic field involving the reconnection 
process. It should be mentioned that in almost all the mod- 
ern theories (for example, in the models of the magneto- 
spheres of a pulsarZ5 or a black hole26 ) the reconnection 
process is not used at all. This is because the theories are 
static and the motion of a plasma is simple: it travels only 

along the magnetic lines of force. An allowance for the re- 
connection process makes it possible to consider more com- 
plex motion of a plasma and to develop dynamic models of 
magnetospheres, as has been done in the physics of the ter- 
restrial magnetosphere.2s3914 

Two topics are the most important in specific applica- 
tions of the mechanism described above. First of all, how a 
current layer is formed and is stored. Although there are 
many ideas on this topi~,7,8,10913,14,24,26 nevertheless in each 
case there may be some special features and all theoretical 
cases have not yet been fully understood. Secondly, we have 
to consider how the parameters of a plasma in a growing 
current layer develop and which plasma instability (discon- 
tinuity, current, overheating, e t ~ . ' ~ ~ ' ~ " ~  ) is responsible for 
the fall of the conductivity in the diffusion region. Unfortu- 
nately, this has not yet been investigated sufficiently thor- 
oughly. Therefore, in applications it is preferable to use se- 
miphenomenological models and replace poorly known 
theoretical predictions with experimental data. For exam- 
ple, measurements of the radiation emitted by a flare (or of 
some other parameter associated with a flare) make it possi- 
ble to find with a good time resolution the electric field E * 
and, therefore, to determine the whole reconnection process. 

The authors are grateful to M. I. Pudovkin, M. F. Heyn, 
and R. P. Rinbik for valuable discussions. 
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