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The cubic susceptibility tensor is derived for a gaseous medium consisting of atoms with a 
hyperfine level structure. This tensor can describe all the nonlinear phenomena involving four- 
wave mixing and self-interaction of optical waves. It is shown that each nonlinear phenomenon 
corresponds to terms in this tensor that give rise to single, double, or triple resonances at the 
frequencies of incident optical waves as well as at difference and sum frequencies of these waves. 
The tensor is used to investigate the characteristic features due to the hyperfine splitting of the 
atomic levels in Doppler-free two-photon absorption spectroscopy and also in Raman light 
scattering. The relationships obtained are suggested as the basis of methods which can be used to 
determine the decay constants of electron-nuclear multipole moments of atoms and to identify 
the transitions forbidden in respect of the electron angular momentum and the total momentum. 

Hundreds of experimental and theoretical investiga- 
tions have been made of the nonlinear phenomena of four- 
wave mixing and self-interaction of optical waves in gases 
and condensed media (many references can be found in the 
books listed as Refs. 1-4). The interest in these phenomena 
is due to their general physical importance and extensive 
practical applications. The greatest attention has been paid 
to the Raman light scattering (RLS), coherent anti-Stokes 
Raman scattering (CARS), phase conjugation, self-diffrac- 
tion, and Doppler-free two-photon absorption spectroscopy. 
Studies of these nonlinear phenomena in atomic gases, rath- 
er than in other media, have been particularly popular be- 
cause the experimental results can be explained theoretically 
in a convincing manner by adopting a quantum-mechanical 
approach. 

The fullest theoretical investigation of the degenerate 
four-wave mixing under steady-state conditions in a gas of 
atoms with the zero nuclear spin in the presence of level 
degeneracy and thermal motion was that given in Ref. 5, 
whereas the treatments allowing for elastic depolarizing 
collisions were provided in Refs. 6-8. In the case of arbitrary 
frequencies of the incident cw optical waves the cubic sus- 
ceptibility tensor for the four-wave mixing in a gas of atoms 
with zero nuclear spin in the presence of other depolarizing 
collisions was calculated in Ref. 9 and was used to investi- 
gate RLS, CARS, and Doppler-free two-photon absorption 
spectroscopy. 

However, experimental studies of the nonlinear phe- 
nomena of four-wave mixing and self-interaction of optical 
waves under cw conditions are usually carried out on atoms 
with a nonzero nuclear spin and the description of the ex- 
perimental results is usually made employing a model of a 
two-level atom or a quantum-mechanical approach which 
ignores the hyperfine structure of the atomic levels (see, for 
example, Refs. 1-4). Such a description of nonlinear phe- 
nomena ignores their specific features associated with the 
hyperfine splitting of the atomic levels when the nuclear spin 
is present. 

In view of this gap, the present paper reports a calcula- 
tion of the cubic susceptibility tensor of gas atoms with a 
nonzero nuclear spin and the use of this tensor in describing 
all the nonlinear phenomena of four-wave mixing and self- 

interaction of optical waves. Calculations are made below on 
the basis of a quantum-mechanical equation for a density 
matrix and the Maxwell equations allowing for an arbitrary 
nuclear spin, as well as for the level degeneracy, thermal 
motion, elastic depolarizing collisions, and linear absorption 
of incident optical waves of arbitrary polarization. 

The cubic susceptibility tensor found below applies 
both in the absence of resonances and in the presence of any 
number of resonances of hyperfine sublevels. The explicit 
form of this tensor can be obtained for each specific nonlin- 
ear effect by retaining in the general expression those terms 
representing resonances and corresponding to a given non- 
linear effect. By way of example, the cubic susceptibility ten- 
sors are given below for the Raman scattering with a single 
Raman or two-photon resonance, as well as for a double 
resonance corresponding to the Raman scattering of atoms 
in excited states. These tensors describe different types of the 
Raman light scattering, as well as different variants of two- 
photon absorption, CARS, and Stokes scattering used in 
Doppler-free two-photon absorption spectroscopy. This 
spectroscopy is considered in a search for methods that can 
be used to determine the decay constants of electron-nuclear 
multipole moments of atoms and to identify the forbidden 
transitions between hyperfine sublevels. 

In view of its uniqueness the method of Doppler-free 
two-photon absorption spectroscopy is superior to other 
spectroscopic techniques in determination of the decay con- 
stants predicted by the model of elastic depolarizing colli- 
sions. However, in the identification of the transitions for- 
bidden in respect of the electron angular momentum and the 
total momentum, it is more convenient to adopt some variety 
of the RLS. This is due to the fact that in the absence of 
degeneracy in respect of the frequencies of the incident opti- 
cal waves the hyperfine structure of the atomic levels in- 
fluences the polarization properties of the RLS more strong- 
ly than in the two-photon absorption spectroscopy utilizing 
incident optical waves with identical frequencies. Away 
from a resonance with hyperfine sublevels of the upper level 
of a forbidden transition it is found that these hyperfine sub- 
levels become locked together and behave as a single upper 
level, and transitions from this level to any hyperfine suble- 
vel of the lower level of a given transition are determined by 
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the selection rules governing the electron angular momen- 
tum, which makes it possible to identify the transitions for- 
bidden only in respect of this momentum. Then, the transi- 
tions forbidden in respect of the total momentum can be 
found by scanning the frequency of one of the optical pump 
waves near a resonance with one of the hyperfine sublevels 
and investigating the RLS polarization. 

If a nonlinear effect is due to a resonance at zero fre- 
quency and also due to two other resonances within the 
width of a one-photon absorption line, the polarization of 
the new waves which are then formed also depends strongly 
on the hyperfine structure of the atomic levels even if the 
frequencies of the incident waves are degenerate. This is true 
also of self-diffraction, phase conjugation, and self-interac- 
tion of optical waves. General properties of all the nonlinear 
phenomena of four-wave mixing and self-interaction of opti- 
cal waves in a gas of atoms with a nonzero nuclear spin are a 
major change in the polarization properties and in densities 
of the newly formed optical waves, which appears away from 
a resonance with the hyperfine sublevels, and a gradual 
transformation to the corresponding nonlinear phenomena 
for atoms with zero nuclear spin, which occurs when the 
deviations from all the resonances with the hyperfine sublev- 
els of the resonant levels become sufficiently large. 

1. PRINCIPAL EQUATIONS AND NOTATION 

We shall consider a gas containing atoms with a non- 
zero nuclear spin. The hyperfine interaction splits an energy 
level of an atom into hyperfine levels with energies" 

where E is the energy of an atom without allowance for the 
nuclear spin; AhF is the energy of the hyperfine interaction; 
A and B are the constants of the magnetic and quadrupole 
hyperfine splitting of the level; F, J,  and I are the quantum 
numbers representing the total momentum F = J + I, the 
electron angular momentum J, and the nuclear spin I. 
Therefore, the state of an atom is characterized not only by 
EF, but also by the quantum numbers J,  I, F, and by the 
projection MF of the vector F along the quantization axis. 

The interaction of gas atoms with an electric field E can 
be represented, based on the usual model of elastic depolariz- 
ing  collision^,^^ using the density matrix equation: 

where H is the Hamiltonian of the investigated atom; v the 
velocity of this atom; d is the dipole moment operator; r p  is 
the collision integral. The integral assumes its simplest form 
if we expand the density matrix, written in the FMF repre- 
sentation, as a series in terms of the 3j symbols: 

where pF' (FfF; ) is the electron-nuclear multipole mo- 
ment of rank x ,  whereas the indices f and g assume indepen- 
dently infinite series of values corresponding to all the atom- 
ic levels with the energy Ef (Eg ). Substituting Eq. (2 )  into 
Eq. ( 1 ) and assuming that E = 0, in order to represent more 
clearly the collision-integral contribution, we obtain 

Ff # Fg' for f = g, 

mfg = (E, - E g )  ti-l, 

= ygNgf (v) (2Fg + 1) (2 J g  + (21 + I)-' ~ F ~ F ; ~ o ~ S O ~ ~  

x E ( 2 ~ ' + 1 )  (2wn+l) 
xVx" 

f (v) = ( n " ~ ) - ~  exp (-v2/u2), 

where the terms in Eqs. (3)  and (5)  containing OJ.'(FfF; ), 
Aj.'(FfFi ), rF'(F,F;,F;FY) and f ( v )  are due to the col- 
lision integral. Here, Bf.'(FfF;) is the electron-nuclear 
decay constant representing the rate of relaxation of the rel- 
evant multipole moment of an atom, whereas the real quanti- 
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ty A):'(FfFi ) allows for the shift of the hyperfine sublevels 
by depolarizing collisions. In particular, A)-) (FfFL ) de- 
scribes the shift of a spectral line of the JfFf - J,F, transi- 
tion. The quantities yjf' and A):' have a similar physical 
meaning for the electron subsystem without allowance for 
the interaction with the nuclear spin, when the electron sub- 
system is described in the J M  representation and when we 
can use the expansion of Eq. (2)  with the substitutions 
Ff-Jf(FL-J,) and MFf-Mf(MFL-M,), and the elec- 

tron multipole moment pF' (JfJ, ) i f  an atom satisfies the 
equation 

which replaces both Eqs. (3)  and (5) .  Here, N, is the 
steady-state density of atoms at a level E, in the absence of 
an external field; f ( v )  is the Maxwellian distribution; u is the 
most probable velocity; fiy, is the width of the level E, , due 
to radiative decay and inelastic collisions; T):' and A):' al- 
low for the contributions of elastic depolarizing collisions 
(see, for example, Ref. 12, where a description is given of the 
usual model of depolarizing collisions using the notation 
B;;'(F,F;) = 8F) (FgF ; ) ,  I?;;) = T r '  and y:,") = y;") 
with identical lower indices). In the case of some types of 
interatomic interaction the quantities r):' and A):' are de- 
fined theoretically in Ref. 13, and references to other calcu- 
lations of these quantities can be found in Refs. 11 and 12. 

In the case of the JfFf-J,F, transitions with small 
electron angular momenta Jf = J, = 1/2, Jf = 1/2 (3/2) 
andJ, =3/2(1/2),andalsoJf =O( l ) andJ ,  = 1 (O),the 
relationship (4)  can be reduced, because of the properties of 
the 9j symbols and the electron decay constants y):', to 
8):)(FfFL) = y);' and A):'(FfFL) = A;-' for any possible 
values of x ,  Ff, and F,. Moreover, if Jf = 0 and J, = J or 
J, = 0 are arbitrary and Jf = J i s  also arbitrary, we find that 
8):)(FfFL ) = y)-' and A):' (FfFL ) = A);'. If there are no 
elastic depolarizing collisions, then the principal equations 
(3) and (5 )  should be modified by the substitutions 

2. CUBIC SUSCEPTIBILITY TENSOR OF A GAS 

Let us assume that an atomic gas is subjected to an arbi- 
trary number no of cw plane optical waves of frequencies a,, 
wave vectors k, , complex amplitudes a,, where n = 1,2 ,..., 
no. The intensities of these incident waves are assumed to be 
sufficiently low to allow us to use perturbation theory. The 
four-photon interaction of such optical waves with atoms in 
a gas creates new waves, so that the combined electric field is 

E (I, f ) =  a,, exp[i(k.r-ant) ] + c.c., (7)  

where the terms with the indices n = 1,2, ..., no represent the 
incident waves, and the other terms with n = no + 1 ,  no + 2, 
... describe new waves and nonlinear corrections to the inci- 
dent waves representing their self-interaction. The complex 
amplitude a, is now a slow function of the coordinates com- 
pared with exp (~k,  r )  . 

Each new wave forms, in combination with the corre- 
sponding three incident waves, a four-wave mixing set which 
is described by the vector 

representing the electric polarization of the gas in the ap- 
proximation which is cubic in terms of the field of Eq. (7).  It 
covers also the cases of the four-wave mixing with double 
participation of one of the incident waves and the wave self- 
interaction processes. The linear PL and nonlinear PNL 
terms of the vector P can be calculated by solving Eq. ( 1 ) in 
combination with Eqs. (3)  and (5) ,  applying perturbation 
theory, which yields results in their general form suitable for 
the application to all the cases of four-wave mixing and self- 
interaction of optical waves: 

P (r, t) =PL(r, t) +PNL (r, t ), 

PL (r, t )  = ZY (mn. kn) an exp[i (knr-ant) ] + c.c.,, 
n 

x exp [ i ( (kn+km+kp) r- (o,+o,+o,) t) ] 
+ 3~ijkl (On+~m-Op; On,  Om, -op)anjamkap1* 

xexp[i( (kn+km-k,)r- ( O ~ + O ~ - W , ) ~ ) ] )  + c.c., (9) 
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where the first argument w in the tensor of Eq. ( 10) is equal 
to the sum of three other arguments w = w, + w, + R, 
(this applies also to k = k, + k, + k, ). The repeated vec- 
tor indices i, j, k, and I always imply summation. They as- 
sume the values x ,  y, and z, representing the projections a,, , 
amk ,  and a,, of the vectors a,, a,, and a, along Cartesian 
axes. The definitions of the 6j symbol and of the reduced 
dipole moment dfg of the Jf -+ J, atomic transition are taken 
from Ref. 14. 

The four-wave mixing and self-interaction of optical 
waves will be described by the cubic susceptibility tensor 
introduced with the aid of the familiar relationship" 

x (r, tf)Ek(r,  tN)El (r, t"')dtl dtNdt"', (11) 

which for an isotropic gas remains symmetric under the 
transposition of any pair of indices from the tripletj, k, and I, 
or under the same transposition oft ', t ", and t "'. Substituting 
the electric field of Eq. ( 7 )  into Eq. ( 11 ), and adopting 

= X < j k l  ( 0 n + O m + C O p ;  On, Om, UP)! (12) 

we obtain an expression which is apparently similar to Eq. 
(9) .  A comparison of these equations shows that Eq. ( 10) 
now represents the cubic susceptibility tensor ( 12) of an 
atomic gas in the presence of a hyperfine level structure, 
which is suitable for tackling all the problems of the four- 
wave mixing and self-interaction of optical waves. The spa- 
tial dispersion of this tensor and of the linear electric suscep- 
tibility of Eq. (8)  is due to the Doppler effect, so that when 
we use the transposition symmetry of the tensor ( l o ) ,  we 
must-in addition to the frequencies-transpose also the 
corresponding wave vectors. In this connection it should be 
stressed that the tensor (10) can be written in a compact 
symbolic form reflecting its transposition symmetry: 

xi jk l  (a; On, Om, ~p)='/gP{~/z [Qi (0, On, O m )  

h 

where the operator Pmeans that the initial expression in the 
braces must be supplemented by terms obtained as a result of 
two cyclic transpositions of the arguments a , ,  w,, and w, 
(and also k, , k, , and k, ) accompanied by a simultaneous 
identical transposition of the indices j, k, and I. The quanti- 
ties Q, (w,w,,a, ) with ?t = 0,1,2 assume the forms 
Q, (a,@, ,up ) and Q, (w,w, ,a, ) after, respectively, the 
first and second cyclic transpositions of the arguments w, , 
a,, and w,. 

The linear electric susceptibility of Eq. (8)  and the cu- 
bic susceptibility tensor of Eq. (10) are valid both in the 
absence of a resonance and in the presence of any possible 
number of resonances of the hyperfine atomic sublevels. 
However, the contribution of a resonance at zero frequency 
in the case of atoms with a hyperfine level structure is al- 
lowed for correctly in the tensor ( 10) only in the absence of 
elastic depolarizing collisions when Eq. ( 6 )  is obeyed, which 
is due to the mathematical difficulties encountered in solving 
Eq. (5 )  in the presence of the field described by Eq. ( 7 ) .  In 
the case of atoms with zero nuclear spin, Eqs. (8)  and ( 10) 
obtained for I = 0 are identical with those reported in Ref. 9. 
Moreover, if in Q, (w,w, ,a, ) , IIFi* (w - kv) and . - 
W $ g ( ~ n  - k , ~ )  we make the substitutions wFFg +wfg, 
Bf.)(FfFg) + yf:' and A).'(FfF, ) +A>.) for any value of I 
and then sum over the hyperfine levels, we find that 
Qx (w,w,,w,) assumes the form calculated in Ref. 9 for 
atoms with zero nuclear spin. Consequently, far from reson- 
ances with hyperfine sublevels occurring simultaneously at 
all the frequencies w, ,urn ,up and w, f w, , the tensor ( 10) is 
identical with the cubic susceptibility tensor of a gaseous 
medium consisting of atoms with zero nuclear spin. 

A gas containing two or more species of atoms can be 
described if the principal equations (8)  and (10) are modi- 
fied by the substitutions N/, -+N>;), f ( v )  -+ f (" ( v )  and 
I-I (*', and if in addition to summation over the levels 
Ef (E, ) and over the hyperfine sublevels, we sum over the 
index A that allows for all the varieties of the gas atoms. 

By way of example, we shall apply the general expres- 
sion (10) to the RLS problems in which two pump pulses 
with off-resonance frequencies w ,  and w, as well as an off- 
resonance probe pulse of frequency w, are used. The differ- 
ence between the frequencies of the pump pulses satisfies the 
Raman resonance condition w, - w, =; w,, . Retaining in Eq. 
( 10) the terms with a Raman resonance, we obtain the cubic 
susceptibility tensor for the RLS by atoms with a hyperfine 
level structure: 

where +Qz ( 0 7  On, 0,) 16ij6k1 
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where the indices " + " and " - " of all these quantities rep- 
resent the anti-Stokes and Stokes waves, respectively, and 
the tensor ( 13) does not have the transposition symmetry of 
the original expression ( l o ) ,  since the off-resonance terms 
are omitted. 

Equations ( 1 3 )  and ( 1 4 )  allow us to use the familiar 
methods of amplitude-polarizaton spectroscopy' in the 
presence of a hyperfine level structure. However, we must 
bear in mind the characteristic features of the RLS due to the 
hyperfine splitting of the levels. One of them is manifested 
when (AFc I ( I AFb I far from a Raman resonance with hyper- 
fine sublevels of the upper level Ec , in which case the follow- 
ing inequalities are satisfied in the homogeneous broadening 
case when B:,"'(F,) B ( k ,  - k , )u :  

whereas in the inhomogeneous broadening case 8 :,"' (Fb ) 
< ( k ,  - k , )u ,  we find that 

where 8 2,"' (Fb ) and x;,"' (Fb ) are the results of arithmetic 
averaging of 8 S,"' (FcFb ) and A:,"' (FcFb ) over Fc . When 
these inequalitites are obeyed, we can readily carry out the 
summation over Fc in Eq. ( 14) using the expression 

The result is the conclusion that far from a resonance 
with hyperfine levels of the upper level E, we can expect 
these hyperfine sublevels to lock together and behave as a 
single level, and transitions from this level to any possible 
lower sublevel EFb are restricted only by the selection rule 
applicable to the electron angular momentum IJb - Jc I 
<lt<Jb + Jc ,  while the spectral line of such a transition is 
described by a new denominator in Eq. ( 14),  which is 

Far from a Raman resonance with the hyperfine sublev- 
els of the upper Ec and lower Eb levels we can modify Eq. 
( 14) by the substitutions wFFb - a,,, 8 2,"' (FcFb ) - y:,"' and 
A:,"' (FcFb ) - A:,"', and we can sum over Fc and Fb . This 
means that the locking together of the hyperfine sublevels 
occurs in the upper Ec and lower Eb levels, so that the quan- 
tities described by Eqs. ( 13) and ( 14) reduce to those calcu- 
lated earlier9 for atoms with zero nuclear spin. 

If the pump-wave frequencies satisfy a two-photon res- 
onance w ,  + w ,  =acb, the resonance terms of the cubic sus- 
ceptibility tensor ( 10) become 

where 
- 

~ , = o ~ * ( o , + o ~ ) ,  k,=k3*(kl+k,), 

and the quantities XI*' with s = 1 ,  2, and 3 are obtained 
fromxj * ' by the substitutions w , -+E, , k + -E, , 
w2 - - w,, and k ,  - - k,, and the Stokes wave frequency in 
the case when w ,  + w, > w ,  is 15- 1 = o, + w, - w,. These 
comments about locking together of the hyperfine levels ap- 
ply also to a two-photon resonance. 

3. FORMATION OF NEW WAVES 

Propagation of optical waves of the kind described by 
Eq. ( 7 )  in a gas can be described using the Maxwell equa- 
tions 

1 a2E 4n d2P 
rot rot E + -- = - - - div ( E f 4 n P )  =O, 

cZ at2 c2 atP ' 
where the required field E consists, in accordance with Eq. 
( 7 ) ,  of two parts, which-for the sake of convenience-are 
written in a different notation: 

E (r,  t )  =Eo(r,  t )+ENL(r ,  t ) ,  

where the summation over f replaces the summation over 
n = no + 1 ,  no + 2, ... in Eq. ( 7 ) ,  and the index f assumes 
different values, when the indices n, m, and p run indepen- 
dently through all possible values from the set 1 ,  2, ..., no. 

The first part En (r,t) includes incident waves with a 
given frequency w ,  , a given polarization, and a given direc- 
tion of the wave vector k ,  . They propagate in a gas linearly 
with the dispersion law w ; e r ( w n , k n )  = k ; c 2  and the ab- 
sorption coefficient a, = W;E" (a,, ,k, ) /2k,c2,  where 
E'(w,  ,k,  ) and E" ( w ,  ,kn ) are, respectively, the real and 
imaginary parts of the permittivity 

E (an,  k , )  =1+4nx. (on, k , ) = ~ ' ( o , ,  k,)  +ie"(on, k n ) .  
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The second part ENL(r , t )  contains nonlinear correc- 
tions to the incident waves, which describe the self-interac- 
tion of these waves and includes also new waves which form 
because of the four-photon interaction of the incident waves 
with the gas atoms. The frequencies Clf and f i f  of these 
waves assume different values, depending on w ,  , w , ,  and 
wp ,_and the wave vectors sf ( i f )  and the complex amplitudes 
bf ( b f )  are found by solving the Maxwell equations using 
perturbation theory. In solving the equations we shall use 
the approximation of slowly varying amplitudes bf ( b f  ), ac- 
cording to which the second derivatives with respect to the 
coordinates can be ignored. Moreover, we shall assume that 
the angle of convergence of the incident waves is of the order 
of a milliradian or differs little from r,  so that the terms 
containing sfPNL and ?,-PNL can be dropped. Under these 
conditions, it follows from the Maxwell equations that 

Xan,a,,a,, exp [i(k,+km+kp-s,) r] , ( 1 6 )  

where 

QfZ&' ( Q f r  s f )  =sf2c2, c t f = Q f z ~ " ( Q t .  s f )  /2sic2. 

The equation for the amplitude bf is obtained from Eq. 
( 1 6 )  by the substitutions 

whereas in the study of the self-interaction of the waves we 
must make the substitutions of Eq. ( 1 7 )  and multiply the 
right-hand side of Eq. ( 1 6 )  by the factor 1/2. 

We have to distinguish here the case when the same 
modes are found at the exit and at the entry to the gas from 
the case when new waves are formed at the exit. In the latter 
case the right-hand side of Eq. ( 16) should be supplemented 
by a similar term in which the values of Clf and sf are charac- 
terized by a different set of indices n, m, andp, whereas in the 
former case Eq. ( 16) is not affected. 

The projection of the amplitude bf along the ith Carte- 
sian axis at the point r  = sfLf /s f  at the exit from the gas can 
be written as follows: 

where 

i2~cS2,~ {exp [ -  (q,+iA,) L , ]  -exp ( - a f L j ) )  
G ( Q t ,  s f )  = 

stcZ (at-9,- iAf)  

a ,  ( 0 )  is the amplitude of the incident wave at the boundary 
point r = 0 in the entry plane of the gas, and the optical path 
Lf is the modulus of the vector Lf = s fLf / s f .  Unit complex 
polarization vectors 1 ,  , 1 ,  , and 1, of the incident waves are 
not modified inside the gas and their projections along the 
Cartesian axes are ln j ,  I,, , and I,,. The factor G(Clf , s f )  
shows that the generation of new waves is optimal along the 

direction corresponding to the phase matching: 
sf = k ,  + k ,  + k , .  

The difference between the directions of propagation of 
the new waves is usually employed to separate them spatial- 
ly. Sometimes this is achieved by adding a suitable impurity 
gas, which alters greatly the refractive index of the selected 
wave, so that f l E a ( f l f , s f )  = s?c2 and sf = k ,  + k ,  + kp  are 
satisfied, resulting in the amplification and suppression of 
other  wave^.^.^ The intensity Iy' corresponding to the pro- 
jection of an electric field of this wave along the ith Cartesian 
axis is 

The projection bfi of the amplitude bf is obtained from 
Eq. ( 1 8 )  by replacing Eq. ( 17) subject to the condition that 
the term a p k p / k p  in qf remains unaltered. 

4. DOPPLER-FREE HYPERFINE SPECTROSCOPY 

In Doppler-free coherent two-photon absorption spec- 
troscopy15~16~1~4 use is made of three incident waves ( 7 )  with 
identical frequencies w ,  = w ,  = w,  = w .  The pump waves 
then propagate in opposite directions k ,  + k ,  = 0 and they 
satisfy the condition 2w =: w,, for a two-photon resonance; 
the wave vector k ,  of a probe wave makes a small angle, of 
the order of a fraction of a milliradian, with k,.  We shall 
assume specifically that the first, second, and third waves 
enter the gas at the boundary points r  = 0 ,  r  = r, , and r  = r,. 
Using Eqs. ( 15),  ( 17),  and ( 18) we can readily determine 
the electric field ERLs ( r , t )  of a Stokes wave at a boundary 
point r  = sL / s  at the exit from the gas: 

ERLS (r ,  t )  =b exp [ i  ( sr -a t )  ] + c.c., ( 2 0 )  

where 

GN,'(a,  s )  =2no" [l-exp ( iAL)  ]iscZA, 

A= (s+kS)s /s ,  an( rn)  =an(r,,)ln. n=2, 3, (22) 

where a ,  ( r ,  ) is the amplitude of the incident wave at the 
entry to the gas; L is the optical path of the Stokes wave of 
Eq. ( 2 0 )  in the gas. In writing down Eq. ( 2 2 ) ,  the linear 
absorption of off-resonance optical waves is omitted. The 
terms containing B, and B, in Eq. ( 2  1 ) describe the isotropic 
and anisotropic scattering processes, respectively. 

In the optimal direction ( s  = - k , )  the Stokes wave of 
Eq. ( 2 0 )  is reversed relative to the probe wave for specially 
selected linearly polarized incident waves 1 ,  = 1, = 1 ,  or 
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1, = 1, and 1, = 1, and 1,1, = 0 ,  in full agreement with the 
results reported in Refs. 2  and 4  and obtained by spectrosco- 
py within the width of a one-photon absorption line without 
allowance for the hyperfine structure of the levels. In the 
case of the ( J ,  = O)Fc -+ (Jb  = O)Fb and 
( J ,  = 1 / 2 ) F c - ( J ,  = 1/2)Fb Or J , (F ,  = O)-+Jb(Fb = 0 )  
and J, (F,  = 1/2)  - J, ( J ,  = 1/2)  transitions this phase 
conjugation of a probe wave occurs for any elliptic polariza- 
tion of the incident light waves, as in the case of atoms with- 
out the nuclear spin." 

In the case of linearly polarized incident waves with 
arbitrary polarization planes, we have 

where 1, and 1, are the unit vectors along the Cartesian axes 
x and y, and the z axis is directed along k,. The angles $, and 
$, are measured from the polarization plane of a probe pulse 
in the plane of polarization, respectively, in the first and 
second pump pulses in the clockwise direction if we view the 
system along the wave vector k,. 

In contrast to Eq. ( 14) ,  where the fine structure of the 
levels is masked by the Doppler broadening, the denomina- 
tors in B, and B, do not contain the Doppler shift. Therefore 
the amplitudes in Eqs. ( 2  1 ) and ( 2 4 )  allow us to study relax- 
ation and the hyperfine structure of the levels irrespective of 
the nature of broadening of the forbidden transition and this 
can be done by scanning the frequency 2w near a two-photon 
resonance and investigating the intensity of the Stokes wave 
of Eq. ( 2 0 )  as a function of detuning from this resonance. 

We shall assume that the separations between the hy- 
perfine components of the levels E, and E, are sufficiently 
large: 

Then, the contribution to the amplitude of ( 2 4 )  comes only 
from two hyperfine sublevels EFb = E, +fibFb and 
EFc = E, + fiAFc, which satisfy the condition for the appear- 
ance of a two-photon resonance 2w -- wFFb and the selection 
rule IF, - F, I <x<Fb + F,. In this case the intensity of Eq. 
( 19), corresponding to the projection of the electric field of 
Eq. ( 2 0 )  along the y axis, is proportional to (B,I2, which 
makes it possible to determine 6 ::' (F,  Fb ) . Moreover, the 
measured position of the spectral line allows us to calculate 
A::' (FcFb ) when wFFb is known. If in Eq. ( 2 4 )  we assume 
that $, = $, = cos - ' ( 3  - ), then the intensity of Eq. 
( 1 9 )  corresponding to the projection of the electric field 
( 2 0 )  along the x axis is proportional to IB,I2, which gives 
6 $' (F,  Fb ) and also allows us to find A::' (F,  F, ) at a given 
frequency wFFb or the difference A::' (F,  Fb ) - A::' (F,  F, ) 
when wFA is not known. In addition, the ratio of these inten- 
sities allows us to calculate 

if J,,  Jc,  F,, and Fc are known. 
In the case of the forbidden J, F, - J, F, transitions with 

small electron angular momenta Jb = J, = 1/2, J,  = 1/2 

( 3 / 2 ) ,  Jc = 3/2  ( 1 / 2 ) ,  and also J, = J ( 0 )  and J, = J ( 0 )  
where J = 0  or 2, each of the required relaxation constants 
6 1,"' (FcFb ) and A:,"' (FcFb ) has only one value y:;' and A::' 
or y:;' and A f;' for all possible values of x,  F,, and Fb . This 
makes it possible to use the experimentally determined posi- 
tions of the two spectral lines under the conditions of ( 2 5 )  
and calculate AFb - AFc for the appropriate values of F, and 
F,, and to determine in the case of atoms with the nuclear 
spin I = 1/2 the difference A,  - A ,  between the magnetic 
hyperfine splitting constants of the levels E, and E, . We can 
determine experimentally A,-A:;' and A,= - A$' or 
AFb - A::' or AFc - A::' separately if we investigate all the 
transitions between the hyperfine sublevels of the upper and 
lower levels. 

In the case of the transitions with other electron angular 
momenta the quantities 8 :,"'(F,F, ) and A!,"'(FcFb ) assume 
a range of values. Variation of the frequency 2w shows that 
the two-photon resonance 2w z w F A  is satisfied by hyper- 
fine sublevels with different values of Fc and Fb . This allows 
us to determine 6 :,"'(FcFb ) with all possible values of F, 
and Fb satisfying the selection rule 1 F, - F, 1 < x  ( F ,  + Fb 
when x = 0  or 2. However, we must bear in mind that in the 
case of the JbFb +J,Fc transitions with J ,  = J, or F, = F, 
we determine 6 :,"' (FcFb ) for x = 0  or 2, whereas in the case 
J ,  - J ,  = + 1, + 2 ,  or Fb - F c  = + 1 ,  + 2  only 
6 ::' (FcFb ) is determined. In the case of the [ J ,  = l ( 0 )  ] F, 
- [ J , = O ( l ) ] F ,  and J b [ F b = l ( 0 ) ] - J c [ F c = O ( l ) ]  
transitions the Stokes wave ( 2 0 )  does not form. 

We can identify the forbidden transitions J, Fb -+ J, F, 
in the case ( 2 5 )  by using the fact that for Jb - J, 
= + 1 ,  2  and any possible values of Fb and F,, and also 

for F, - F, = + 1 ,  + 2  and any values of Jb and J,,  we have 
B A * ' = 0 .  Therefore, only the anisotropic scattering of light 
appears and in the case of linearly polarized waves the Stokes 
wave of Eq. ( 2 0 )  is linearly polarized and it obeys 

tg $ R L S = ~  sin / [3  cos ( 9 , + 9 , )  +cos 1, 

( 2 6 )  

where $,,, is the angle between the plane of polarization of 
the probe pulse and the Stokes wave of Eq. ( 2 0 ) .  In contrast, 
if J, - J, = 0  or F, - F, = 0 ,  isotropic and anisotropic 
scattering proceed simultaneously. In the case of the linearly 
polarized quantities the Stokes wave of Eq. ( 2 0 )  is elliptical- 
ly polarized. Exceptions are the transitions J, F, -+ J, F, 
characterized by Jb = 0 -  J, = 0  and J ,  = 1/2-+ J, = 1/2, 
and also by Fb = O-+ F, = 0  and Fb = 1/2-+ F, = 1/2, if the 
scattering is isotropic and the Raman scattering polarization 
is identical with the polarization of a probe wave which may 
be linear or elliptic. 

If the separations between the hyperfine components of 
the upper level E, are small I A,< I < I AFb 1, it is interesting to 
consider the Stokes wave of Eq. ( 2 0 )  far from a two-photon 
resonance with the hyperfine components of the upper level 
E, : 

>> ( I A, ,+A:' (F,Fb) -A,!;' ( F a )  1 .  10:;' (FcFh) -0:;) ('h) I ). 

where 8 :,"' (F,  ) and K:,"' (Fb ) are the arithmetic averages of 
6 2,"' ( Fc Fb ) and A:,"' (F ,  F, ), when the averaging is carried 
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out with respect to Fc . In this case we can sum over Fc in Eq. 
(23) and then the quantity given by Eq. (23) contains selec- 
tion rules only for the electron angular momentum I Jb - Jc I 
<x<Ib + Jc,  and the denominator of Eq. (23) becomes 

- 
2 ( i - 6 ) c b + ~ F b  -A::) (F*)  +i06,"' ( F b ) .  (27) 

This allows us to determine the constants 8 :,"'(Fb ) and - 
A:,"'(Fb ), and also to identify the transitions in accordance 
with the electron angular momentum by the methods de- 
scribed above using Eqs. (20)-(24), (26), and (27). 

5. CHARACTERISTICS OF THE RAMAN LIGHT SCATTERING 
IN THE PRESENCE OF HYPERFINE SUBLEVELS 

When two pump pulses with off-resonance frequencies 
w, and w, (w, - w2 zwCb ) and an off-resonance probe pulse 
of frequency w, propagate in a medium, the result is forma- 
tion of anti-Stokes E + (r,t) and Stokes E - (r,t) waves: 

E, ( r ,  t )  = b ,  e s p  [ i ( s , r - o , t )  ] + C.C. (28) 

The amplitudes of these waves at the exit from the gas 
are given by the following expressions obtained from Eqs. 
(13), (14), (17), and (18): 

where L * is the linear size of the gas in the direction of the 
vectors., and the terms with BA*',BI*', and B i * '  de- 
scribe the isotropic, antisymmetric, and anisotropic scatter- 
ing processes, respectively. 

In the case of linearly polarized incident waves these 
amplitudes are different: 

b+=Grn(( i+,  s + ) a i  ( 0 ) a ? ' ( 0 ) a 3 ( 0 ) F + ,  

b-=GyR((i-,  S-)a ,*  ( 0 ) a 2  ( 0 ) a 3  (0)F-',  (31) 

x [ 3  cos $ 1  cos $z-COS (11;1-$2) I1 
+i/21y [B i t* )  sin B2'*' sin ( $ 1 + $ 2 )  1 ,  

where the angles between the wave vectors k,, k,, and k, of 
the incident waves and thez Cartesian axis are of the order of 
a fraction of a milliradian. 

If the frequencies of the pump pulses satisfy the con- 
dition for a two-photon resonance o, + o2zwCb,  then we 
have to make in Eqs. (28)-(32) the substitutions w, 

- 
- O * ,  k *  -+k, ,w2 -+ -w2, k2 -+ -k2 ,a2(0)  -a:(O) 
(a?@) -a2(0) 1, l2 -1?(1;-l2). 

The relaxation constants of the electron-nuclear multi- 
pole moments of an atom in the cases of the Raman and two- 
photon resonance conditions can be determined as described 
above, by varying the frequency w, or w, and by investigat- 
ing the intensity ( 19) of the scattered waves after allowing 
for their polarization characteristics. However, in the case of 
an inhomogeneous broadening of the Jb Fb -+ Jc Fc forbidden 
transition the fine structure of the levels is usually masked by 
the Doppler broadening, which makes it difficult to study 
relaxation. Therefore, we shall consider only the method for 
identification of the forbidden transitions, which is valid ir- 
respective of the nature of broadening of these transitions. 

The polarization characteristics of the Stokes and anti- 
Stokes waves are given by Eqs. (29)-(32) where the coeffi- 
cients B k *  ' with x = 0,1,2 contain 6j symbols which allow 
for the selection rules governing the electron IJb - Jc I 
<x(Jb + Jc and total IFb - Fc ', <x<Fb + Fc momenta of 
the Jb Fb - J, Fc forbidden transition. These inequalities 
should be satisfied independently. We can therefore formu- 
late the following method for the identification of the transi- 
tions forbidden in respect of the electron and total momenta. 

The forbidden transitions can be identified on the basis 
of the electron angular momentum if we consider the Raman 
scattering of light far from a Raman or two-photon reso- 
nance with hyperfine sublevels of both levels Ec and Eb in 
the case of Eq. (25) or only the upper level Ec if 

I AFC / g I AFb I, which allows us to sum over Fc in Eq. ( 14). As 
a result, Eq. ( 14) contains the selection rule which applies 
only to the electron angular momentum 
IJb - Jc 1 <?t<J, + J, of the investigated transitions 
JbFb - JcFc with all possible values of Fb and Fc . Therefore, 
identification of the forbidden transitions Jb - Jc is carried 
out following the same procedure as for atoms with zero 
nuclear spin9 

After the transition Jb - Jc forbidden in respect of the 
electron angular momentum is identified by the above (or 
some other) method, we can identify the JbFb - JcFc transi- 
tion using the total angular momentum by investigating the 
Raman scattering of light near a Raman or a two-photon 
resonance involving hyperfine levels when the inequalities 
IJb - Jc l<x<Jb  + Jc and IFb - Fcl<x<Fb + Fc are satis- 
fied simultaneously for x = 0, 1, and 2. 

We shall assume that the forbidden transition Jb -JC, 
included in JbFb -+ JcFc, is known and is of the Jb - Jc = 0 
type. Then, i f Jb  =Jc =0,  wefindthat B i * '  = B i k ' = O  
and it follows from Eqs. (29) and (30) that the scattering is 
isotropic. If Jb = J, = 1/2, we find that B * ' = 0, so that 
the Fb - Fc = 0, + 1 transitions are possible. In the case of 
the Fb - Fc = + 1 transitions, since B A * ' = 0, the scatter- 
ing is antisymmetric, whereas for Fb - Fc = 0 it consists of 
an isotropic and an antisymmetric component. If Jb = Jc > 1, 
the Fb - Fc = 0, + 1, + 2 transitions are possible, which 
makes it necessary to consider each of them separately. 

In the case of the Fb - Fc = & 2 transitions we have 
B A * ' = B " = 0 and the polarization of the scattered 
waves of Eq. (28) in the case described by Eq. (3 1 ) is linear 
for any angles $, and $,, whereas the angle $,,, between the 
vector 1, and the electric field of the Raman scattering is 
given by Eq. (26). It follows that if $, = I),, the plane of 
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polarization of the waves of Eq. (28) lies within an obtuse 
angle formed by the planes of polarization of a probe pulse 
and of the pump pulses. If $, = - $,, it coincides with the 
polarization of a probe pulse, whereas for I / ,  #O and @, = 0 

= 0 and $,#O) it lies within an acute angle. 
I fFb -Fc  = f 1 a n d F b + F c > l ,  wefindthatBAk' 

= 0, so that the polarization of the waves is elliptic if I / ,  # q4, 
and linear if $, = $, = $, where 

t g h = 3  sin 2$/2(3 cosZ $ - I ) .  

The exceptions are the transitions Fb = 1 - Fc = 0 and 
Fb =0-Fc = 1 for which we have B;* '=B:* '=O so 
that for real values of 1, the polarization of the waves is, 
according to Eqs. (29) and (30), linear and orthogonal to 1, 
irrespective of the polarization of the pump waves if 
[111?] #O. 

Finally, if Fb - Fc = 0 the polarization of the waves of 
Eq. (28) in the case defined by Eq. (3 1 ) is elliptic for all 
angles $, and @,, whereas for Fb = O+ Fc = 0 we obtain 
B I * ' = B : * ' = 0, so that-according to Eqs. (29) and 
(30)-the polarization is identical with the polarization of a 
probe wave, which may be linear or elliptic. It should also be 
noted that if Fb = Fc = 1/2, the axes of the polarization el- 
lipse of the waves of Eq. (28) depend in the case (31) on 
@, - $, in such a way that if $, - rCI, = 0, the polarization 
ellipse becomes elongated forming a segment of the x axis 
and if @, - @, = ~ / 2 ,  it forms a segment of they axis. These 
polarization relationships allow us to identify the 
Jb Fb + Jc F, transitions when Jb = Jc . 

In the other case, when Jb - Jc = + 1, we have to sub- 
stitute B A *  ' = 0 in Eqs. (29)-(32) so that the JbFb + JcFc 
transitions become possible and they involve a change in the 
total angular momentum amounting to Fb - Fc 
= 0, + 1, f 2. If Jb = 0 (1)  and Jc = 1 (O), then 

B A * ' = B 4 * ' = 0 and we have the transitions character- 
ized by Fb - Fc = 0, f 1, for which the scattering is anti- 
symmetric. If Jb + Jc > 1, then B : * ' $0 and Eq. (26) is 
valid for Fb - Fc = f 2 and becomes invalid for Fb - Fc 
= 0, f 1, if $, #$,. This circumstance allows us to distin- 
guish experimentally the transitions characterized by 
Fb - Fc = 0, * 1 from those characterized by Fb - Fc 
= f 2. Then, for Fb = Fc = 1/2 and for Fb = 0 ( 1 ) and Fc 
= 1 (0) ,  we have B A * ' = B 1 * ' = 0, which is responsible 

for the antisymmetric scattering. 
Finally, for Jb - Jc = f 2 we find that only B :*' 

differs from zero in Eqs. (29)-(32) and that BA* ' 
= B I * ' = 0, so that the scattering is entirely anisotropic 
and Eq. (26) is valid for all possible Fb - Fc = 0, f 1, f 2 
transitions with the exception of Fb = Fc = 0 and Fb = Fc 
= 1/2, and those characterized by Fb = 0 ( 1 ) and 
F, = 1 (0). 

It follows from these relationships that the method for 
identification of forbidden transitions using Raman scatter- 
ing of light provides more opportunities than the Doppler- 
free spectroscopic method, which is due to the occurrence in 
the amplitudes (29)-(3 1 ) of the coefficient B I * ' in addi- 
tion to the coefficients B A * ' and B : * '. 
6. DISCUSSION 

When cw plane optical waves are incident on an atomic 
gas, the cubic susceptibility tensor of Eq. ( 10) describes, in 

the absence of resonances, all the resultant nonlinear phe- 
nomena of four-wave mixing and self-interaction of waves, 
which are represented on equal footing in the electric polar- 
ization vector of Eq. (9)  when the intensities of the resultant 
optical waves are of the same order of magnitude. However, 
in the case of single, double, or triple resonances at the fre- 
quencies of the incident optical waves or in the case of reson- 
ances corresponding to the differences or sums of these fre- 
quencies, certain terms in the cubic susceptibility tensor of 
Eq. (10) become the dominant ones and they describe the 
relevant specific nonlinear effect. The other terms in Eq. 
( 10) create a background against which the main nonlinear 
effect takes place and they participate in interference effects. 
This makes it possible to draw a number of general conclu- 
sions. 

When the Raman light scattering involves excited 
states belonging to adjacent J,F, - JcFc and J,F, - JbFb 
transitions, which are in resonance with the frequencies of 
the pump waves w, zw, and w2zwb, (a, - w2zwcb ) and 
an off-resonance probe pulse of frequency w, is also applied, 
the tensor of Eq. (10) should still have terms with double 
resonances, which leads to Eqs. ( 13 ) and ( 14), which in- 
stead of B :* ' contain 

Consequently, after the substitution of B :* ' - Uk* ' Eqs. 
(28)-(32) describe the Raman scattering of light by excited 
states and the method described above for the identification 
of the JbFb - JcFc forbidden transitions can be used if there 
are double Raman scattering resonances at frequencies 
w1 z a,, and w, - w, zwcb and also at w,z w,, and 
w1 - w2zwcb. 

In the familiar CARS spectroscopic method use is made 
of two pump waves of frequencies w, and w, (0, - w, z wcb ) 
and then the first pump wave frequency w, acts as a probe 
pulse.1v1s Therefore, in the CARS case the cubic susceptibil- 
ity tensor of Eq. ( 13) should be modified by the substitution 
w, - w,. Consequently, the scattering at the anti-Stokes 
(0, = 20, - w2) and Stokes (w - = w,) frequencies is 
described by Eqs. (28)-(32), where the index substitution 
3 -, 1 is made for all the physical quantities and it is assumed 
that $, = 0 in Eq. (32). 
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Equation (5 )  is simplified by omitting the term that 
allows for the arrival of atoms at the lower level due to spon- 
taneous radiation emitted by the upper levels. Therefore, the 
cubic susceptibility tensor of Eq. ( 10) is valid in the case of 
those nonlinear effects for which this physical process makes 
no contribution. Examples are the Doppler-free two-photon 
absorption spectroscopy discussed above, as well as the RLS 
and CARS methods and several variants of the process of 
third harmonic generation. There are, however, some non- 
linear effects due to a resonance at zero frequency, in addi- 
tion to resonances at nonzero frequencies. They involve self- 
diffraction, phase conjugation, and self-interaction of 
optical waves which appear when one, two, or more optical 
waves which are in resonance with one transition frequency 
wba traverse a gas. In this case the arrival of atoms at the 
lower level because of spontaneous decay at the upper level 
may be a significant effect. However, in the case of a suffi- 
ciently dense gas, the probability 

of spontaneous emission of a photon hba by a single atom is 
low compared with ya and yb , so that the arrival of atoms at 
the lower level as a result of spontaneous emission by the 
upper level can be ignored. Then, the cubic susceptibility 
tensor for self-diffraction, phase conjugation, and self-intei- 
action of optical waves under the conditions described in (6)  
can be obtained from the tensor ( 10) if we retain the terms 
with the triple resonance and then two resonances occur at 
frequencies corresponding to the set w, z w b a ,  w, z w b a ,  
and wp z m b a ,  whereas the third resonance occurs at zero 
frequency. The frequencies a , ,  w, ,  and wp may then coin- 
cide or have different values within the limits of the width of 

a one-photon absorption light, as is true in the approximate 
degenerate four-wave mixing process. '9.2093 
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