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An investigation was made of the quantum statistics of an optical field established as a result of 
the interaction in an optical resonator of a system of atoms with a bichromatic laser field 
representing two modes with frequencies located symmetrically relative to the atomic transition 
frequency. A quantum electrodynamic theory is developed for resonant fluorescence and 
intermode correlation in a bichromatic field allowing for multiphoton processors, effects of 
vacuum fluctuations of radiation, and relaxation. The nonlinear absorption coefficient of a mode 
interacting with such an atomic medium and the intensity of light at the exit from a resonator are 
found to differ significantly from the corresponding results in the case of a monochromatic field. 
Calculations are also reported of the rms variance of the quadrature amplitudes and correlation 
functions of the intensities in the two cases of single- and two-mode excitation in the resonator. In 
particular, it is shown that a mode at the central frequency of a luminescence line is excited in a 
squeezed state with suppressed quantum fluctuations of the quadrature amplitude and it results in 
an interference between the intensities which exhibits nonclassical photon superbunching. 

1. INTRODUCTION 

The properties of quantum states of light and the var- 
ious methods of obtaining these states are a subject of major 
topical interest. It is now known that various nonlinear opti- 
cal phenomena in nonlinear crystals and atomic media can 
be used to generate squeezed states of light with quantum 
fluctuations of one of the quadrature amplitudes below the 
level of fluctuations corresponding to a vacuum or coherent 
state. Generation of squeezed light was first achieved in the 
course of nondegenerate four-wave mixing in a beam of sodi- 
um atoms.' This process generated two-mode squeezed light 
with a relatively large spectral width (for theoretical results 
see Refs. 2 and 3). The strongest degree of squeezing of the 
quadrature amplitude was achieved in parametric oscilla- 
t i ~ n . ~  In the majority of both theoretical and experimental 
investigations it is customary to consider generation of non- 
classical light with. the aid of monochromatic cw optical 
fields. Few investigations have been made of the squeezed 
states of optical 

One of the aims of the present study was to consider the 
statistical properties of nonclassical light generated on inter- 
action, in an optical resonator, between a system of atoms 
and a nonmonochromatic two-mode strong field. The re- 
sults demonstrate another possibility of generation of an op- 
tical field in a single-mode squeezed state. 

We shall consider a bichromatic field with two compo- 
nents and zero phase shift between their amplitudes and with 
frequencies w, ,  = w, - S and a,, = w, + S which are de- 
tuned symmetrically by S from a resonance with the frequen- 
cy of the atomic transition w,. A matrix element of a transi- 
tion between the states of a two-level atom subjected to a 
bichromatic field, described in a classical manner, is then 

The dynamics of an atom in a bichromatic field had 
been investigated The resonant fluorescence 
spectrum was calculated in Ref. 10. This spectrum has a fine 
structure with peaks at frequencies w, = w, + qS, where 

q = 0, f 1, + 2, ..., provided the detuning from the reso- 
nance is much greater than the spontaneous width y of an 
excited atomic level. 

We shall show that when a system of atoms interacts 
with a bichromatic field in an optical resonator, the mode at 
the frequency w, of the central fluorescence line is excited in 
a squeezed state. The physical mechanism responsible for 
this effect is as follows. The excitation of the mode with the 
frequency w, in such a resonator is the result of a nonlinear 
process of two-photon emission from an atom in the bichro- 
matic field. In the lowest order in respect of the interaction 
of an atom with this field and with the field of its own radi- 
ation, the atom can be represented by diagrams describing a 
four-photon process with the energy conservation law 
w , ,  + wZL = 2w0 (Fig. 1 ). A strong pair correlation is es- 
tablished between the photons of frequencies w, and this 
suppresses quantum fluctuations of the quadrature ampli- 
tudes of the mode w,. This intermode correlation is mani- 
fested also in another nonclassical optical effect considered 
below, photon superbunching in the interference between 
the intensities. 

Single-mode squeezed light may be generated in the fol- 
lowing experiment. A beam of identical atoms interacts in a 
circular optical resonator with two bichromatic field modes 
of frequencies w, ,  and w,, . A mode of frequency w, and a 
momentum k is excited spontaneously in the resonator. In 
the circular resonator all these modes propagate in the same 
direction and we have k , ,  + k,, = 2k. One can envisage 
another experiment in which a bichromatic field is a stand- 
ing wave propagating at an angle (specifically 6) to atoms 
moving at a velocity v, whereas the mode a, is excited in the 
resonator at right-angles to a plane formed by the directions 
of the motion of atoms and of the propagation of the field. In 
this case the detuning from a resonance is governed by the 
Doppler shift so that the two frequencies of the bichromatic 
field are 
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FIG. 1. Graphical illustration of the process of absorption of two laser 
photons of frequencies o, - Sand w, + 6, accompanied by the emission 
of two photons of frequency o,. This process results in photon bunching. 
An atom is transferred from the ground atomic state Iq, ) to an excited 
state Iq, ) by a three-photon process in a time ofthe order of 6 ',followed 
by the emission of a second photon. Consequently, if the time resolution is 
AtS6 - ', recording of photon coincidences shows that the o, photons are 
emitted in pairs. 

We shall also investigate quantum electrodynamic ef- 
fects in a resonator when a resonant fluorescence is genera- 
ted by a bichromatic field. The expressions obtained below 
for the nonlinear absorption coefficient and for the intensity 
of light at the exit from the resonator differ considerably 
from the corresponding familiar results applicable in the 
case of a monochromatic field."-l3 

We shall consider these topics by the density matrix 
method using the representation of quasienergy states of a 
system consisting of an atom and a bichromatic field. Selec- 
tion of quasienergy states as the basis wave functions of an 
atom in a bichromatic fieldI4 simplifies greatly the calcula- 
tion procedure and still makes it possible to include most 
fully the effects which are nonlinear in the field. A detailed 
description of the application of this method to a quantum 
theory of parametric fluorescence and four-wave mixing can 
be found in earlier papers of the present author and a col- 
league. 15-" 

The paper is organized as follows. In Sec. 2 we shall give 
the main kinetic (transport) equations describing the dy- 
namics of modes in a resonator. In Sec. 3 we shall calculate 
the coefficients in these kinetic equations and describe their 
properties. In Sec. 4 we shall consider the intensity of the 
optical field of resonant fluorescence in a bichromatic field 
at the exit from the resonator. Sections 5 and 6 will be devot- 
ed to nonclassical optical effects: the squeezing of the quad- 
rature amplitude and the interference of the intensities of an 
optical field in the case of single-and two-mode generation 
configurations. 

2. PRINCIPAL EQUATIONS DESCRIBING THE DYNAMICS OF 
MODES IN A RESONATOR 

In this section we shall deal with the underlying as- 
sumptions made in considering the interaction of a system of 
atoms with a laser field and with the modes of the field gener- 
ated in an optical resonator. The modes with the frequencies 
wi in the resonator are described by the creation a+ and 
annihilation a, operators. The laser field is described classi- 
cally and not specified any further. 

The Hamiltonian of the interaction of an atom per- 
turbed by a laser field with the modes of the radiation field in 
the resonator is 

where d( t )  is the dipole moment operator in the representa- 
tion of quasienergy states, u is the resonator volume, and e(i) 
is the polarization vector. 

The coupling between the fields inside and outside the 
resonator is described by the Hamiltonian 

where b are the creation operators for a field photon out- 
side the resonator, satisfying the condition [ bOk ,bWk, ] 

= S(w, - w,, ); q, (w, ) are the coupling constants. 
In the Markov approximation the positive-frequency 

part of the operator representing the electric field intensity 
outside the resonator is 

where EA + ' is the operator of the free radiation field; x is a 
coordinate; S is the cross-section area of the resonator; pi is 
the phase shift due to the propagation of the field across the 
resonator; the quantity 

is the width of the absorption line of the mode wi in the 
resonator such that q, (mi  ) = I q, (a, ) 1 exp ( - ip, ) . The re- 
sult represented by Eq. (4)  is obtained in the standard man- 
ner by solving the Heisenberg equations of motion for the 
operator (see, for example, Ref. 18 ) . 

The dynamics of a radiation field mode inside the reso- 
nator is described by kinetic equations representing the aver- 
age number of photons in a mode and by an anomalous cor- 
relation function, all of which are deduced using an equation 
for the density matrixp ( t )  of the radiation field modes. For a 
medium whose volume is u and the density of atoms is N, the 
relevant equation is 

(omj) '"{[en (1) e,, (i) [a,. aip]e-'("lfWj" 
dt f i  ,, 

+ens (j)em (i) [sip. aj+] ei("l-wfll I Anm(mi, t)  
+[en (j)e,,,' (i) [ a i + ~ ,  aj] e'("l-"f't+e,' (j) em' (i) [aj+, ai+p] 

ei(or+ol)t ]Anm(-ai, t ) ) +  [sip, ai'l ri + 

The coefficients in this equation are 

and 

(8)  
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is the Heisenberg operator of the dipole moment D(t) ,  
which in the representation of quasienergy states is ex- 
pressed in terms of operators using a scattering matrix S( t )  
(Ref. 19). The averaging in Eq. (7)  is carried out over the 
ground quasienergy state and over the vacuum radiation 
field. Equation (6)  is derived in the approximation which 
allows for terms of the second and lower orders in respect of 
the interactions (2)  and (3)  in the coefficients ri and 
A,, (w,, t), by a method described in Refs. 15 and 16. 

We shall now give the kinetic equations for the occu- 
pancy numbers of the modes ni ( t )  = Tr(a'a,p(t) ), where 
i = 1 or 2, and for the anomalous correlation function 
g( t )  = Tr(a,a,p(t)) in the case when only two modes of 
frequencies w, and w, are excited in the resonator. Calcula- 
tions carried out allowing for time evolution of the density 
matrix of (6) give 

anllat=2 (Re  a , -I ' , )nl+2 Re ( p i 8 g ( t )  ) + p l ,  (9)  

The coefficients in these equations can be expressed in terms 
of the averages of the product of the dipole-moment opera- 
tors of Eq. (7)  and are as follows: 

2nNai ens (i)e, , ,  ( i )  ((xnm (mi ,  t )  )), a,  = - 
li 

4 n N a i  
p i  = - 

li 
Re {en (i)em* ( i )  (Anm ( - a s ,  t )  I ) ) ,  

where 

Xnm (mi, t)=A,m8(-mi, t )  -Anm(a i ,  t ) .  

The double angular brackets in Eqs. ( 11 )-( 14) denote aver- 
aging over a time interval which makes these expressions 
time-independent. One should therefore bear in mind that 
the coefficients described by (7)  are expressed in our ap- 
proach via the matrix elements of transitions between qua- 
sienergy states of an atom in a bichromatic field [see Eq. 
( 17) ] and contain, in the case of large time intervals, oscilla- 
tory exponential functions of type exp [i(w,, + o,, ) t  1, and 
exp [i(w,, - w,, ) t  ] with frequencies of the possible spon- 
taneous transitions. Therefore, we can easily see that the co- 
efficients of Eqs. (12) and (14) differ from zero in those 
cases when the frequencies of two modes in a resonator are 
related by w, + w, = w,, + w,, or w, + w, = w,, - w,,. 
However, the coefficients ai and pi are governed by time- 
independent contributions to Eq. (7)  and, consequently, 
they are independent of the condition of phase matching of 
the modes. 

Equations (9)  and ( 10) describe also the degenerate 
case when w, = w, and only one mode is excited in the reso- 

nator [see Eq. ( 3  1 ) 1. It should also be mentioned that the 
structure of Eqs. (9)  and ( 10) resembles equations obtained 
in Refs. 15-17 and 20 for the four-wave mixing case, but 
differ from the latter in respect of the coefficients. We shall 
derive these equations in a more general form with coeffi- 
cients which are valid in the case of an arbitrary laser field. 

3. COEFFICIENTS OF KINETIC EQUATIONSAND THEIR 
RELATIONSHIPTO MULTIPHOTON PROCESSES IN A 
BICHROMATIC FIELD 

We shall calculate the coefficients in Eqs. ( 1 I)-( 14) 
for two cases: single-mode excitation in a resonator with an 
eigenfrequency wi; two-mode excitation with frequencies w ,  
and w, coupled by the phase-matching condition w, + o, 
= w, + w,, = 2w0 + q6, where q = q,  + q,. We shall do 

this using linearly independent wave functions of a two-level 
atom in a bichromatic field with amplitudes varying har- 
monically with time. In the resonant approximation, subject 
to the conditions S < a,, and 1 V 1 4 w,, where Vis the matrix 
element of a transition between the atomic states (p, ) and 
la2 ), these wave functions are as follows: 

where 

c l z ( t )  =c2,  ( t )  =-i sin a t ) ,  

= 21 V I/S is the intensity parameter, and the energy of the 
ground atomic level is assumed to be zero. 

The coefficients of Eq. (7) are calculated using the fluc- 
tuation-regression theorem. The calculation method is de- 
scribed in Ref. 21 and it is applied to a bichromatic field in 
Ref. 10. The essence of the method is as follows. A two-time 
average of the dipole moment operators (8)  is expressed in 
terms of matrix elements 

d i j ( t )  =<mi 1 dl mj)=d!;' ( t )  +a::' ( t )  (16) 

of dipole transitions between the states described by Eq. 
( 15) and in terms of elements of the atomic density matrix 
considered in the representaton of quasienergy states 
uU ( 1 )  = S + ( t )  I@,). (aj IS( t ) ;  this average is thus de- 
scribed by 

This expression contains 

the difference between the steady-state populations of qua- 
sienergy states /@, ) and /@, ), where J, (6) is a Bessel func- 
tion, whereas the quantities 

determine respectively the decay of the diagonal and off- 
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diagonal components of the density matrix (au) .  It should 
be noted that a purely spontaneous decay of atomic states is 
considered and no allowance is made for atomic collisions, 
but the decay constants y, and y, allow for the effects of the 
bichromatic field intensity. In the absence of this field we 
have y, = 2 y2 . 

The matrix elements (16) of the dipole transitions 
between the quasienergy states of Eq. ( 15) are 

tion and absorption effects cancel each other and in the vi- 
cinity of w, zw,  + qS the polarizability vanishes. In the 
spectral range mi zw,  the situation is quite different. The 
matrix elements of the transitions (20) for q = 0 and, conse- 
quently, the probabilities of elementary processes of absorp- 
tion or emission of photons of frequency w,, are not equal. 
The absorption probability exceeds the probability of emis- 
sion for the same intensity parameters This results in the 
absorption of a mode of frequency wi zw,  followed by its re- 
emission in the investigated atomic medium. It should be 
noted that Re ai < 0 applies throughout the full range of the 
intensity parameter 6. 

It is necessary to stress also that the results described by 
Eq. (21) differ considerably from the corresponding results 
in the case of a monochromatic resonant field. In the latter 
case, as shown theoretically in Ref. 22 and experimentally in 
Ref. 1 1, in addition to the absorption of a weak field by a two- 
level atom in the presence of a resonant field, there is also 
amplification of the weak field at a frequency which is sym- 
metric relative to the frequency of the resonant field. This 
effect is also manifested in resonant fluorescence inside an 
optical r e~ona to r . ' ~ , ' ~  

Using Eqs. (17)-(20) we can calculate the function 
A(w,, t), and, consequently, the coefficients given by Eqs. 
( 1 1 )-( 14). We must bear in mind that the function b. Rate of one-photon spontaneous emission 
A (  - mi, t)  cannot beobtained from A(wi, t )  by the substi- Equations (7 1, ( 13 1, ( 17420) lead to the following 
tution wi + - mi, because the resonance approximation is expression for the coefficient pi: 
used in the calculations. This function is equal to the com- 
plex conjugate of A(wi, t)  subject to an additional substitu- 
tion A + - A. We shall give only the final results. 

a. Nonlinear absorption coefficient 

We obtain the following expression for the coefficient 
ai : 

This quantity represents the polarizability of an atomic me- 
dium in the presence of a bichromatic field when the radi- 
ation field mode has the frequency mi. An analysis of Eq. (9)  
demonstrates that in the case of short time intervals the real 
part describes the absorption of the mode in the region of 
wi z o o .  Near other spectral lines wi zw,  + qS, where q#0, 
of a two-level atom in a bichromatic field there is no mode 
absorption followed by re-emission in the atomic medium. 
Some comments are due about this result. 

The quantity Re ai defined by Eqs. (7)  and ( 11 ) gener- 
ally describes both amplification and absorption of a mode 
whose frequency is mi. In the adopted approach this quantity 
is determined by the matrix elements of the dipole transi- 
tions between quasienergy states, which also determine the 
probabilities of elementary processes. In a bichromatic field 
for time intervals in the range t< y - ' the probabilities of 
spontaneous emission or absorption of a photon of frequency 
w, + qS, q#O, by one atom as a result of a specific transition 
between quasienergy states are the same irrespective of 
whether it is emission or absorption [see Refs. 8-10 and the 
system of equations (20) 1. Therefore, the mode amplifica- 

When the above quantity is multiplied by l/Nu, it de- 
scribes the steady-state rate of emission of photons of fre- 
quency wi in the course of resonant fluorescence in a bichro- 
matic field. In accordance with our formulation of the 
problem, the contribution of the elastic forward scattering is 
omitted from the above result, but apart from that stipula- 
tion, Eq. (22) is identical with the expression derived in Ref. 
10 by a different method. We can show that A2< 1, and both 
the first and second terms in Eq. (22) are positive through- 
out all the investigated range of {. 

c. Rate of spontaneous emission of a photon pair 

In calculation of the coefficients p ,  and p, representing 
the coupling between the modes and the coefficient A,,, 
which governs the anomalous correlation function in the 
case of short time intervals g( t )  z t/Z 7, + . . ., we have to 
specify the conditions of the intermode frequency matching. 
We shall consider the situation when w, + w2 = 2w, + qS, 
and q is an integer or zero. In this case the process of time 
averaging in Eqs. (12) and ( 14) leaves only the nonvanish- 
ing contributions to the function A(@,, t)  which contain an 
exponential function of the exp[i(2w, + qS)t ] type. The 
result is 
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4. INFLUENCE OF A RESONATOR ON THE FLUORESCENCE 
OBSERVED IN THE BICHROMATIC FIELD 

The above equation describes spontaneous emission of a pair 
of photons whose resonance frequencies are in the range 
a, zoo + q,6  and w, zoo + ( q  - q, IS or w, zw,  
+ (q - q, )S and w, zw, + q, 6. It should be pointed out 

that the pole contributions to Eq. (23) at frequencies 
w, + q, S and an odd value of qi (with the factor 1 - cosq, a 
in the numerator) are due to diagonal transitions I @ ,  ) - I a, ), I a, ) - I a, ) between quasienergy states of Eq. 
( 15), whereas the pole contributions at frequencies 
w, + 2q, 6 are due to off-diagonal transitions I a, ) s I a, ). 

We shall give the result for the case when the eigenfre- 
quencies of the two resonator modes are linked by 
w, + w, = h,: 

It follows from the calculations that when the modes 
are phase-matched w, + w, = 2w0, the coefficients p, and 
,u2 representing the coupling between the modes vanish 
throughout the frequency range ( a , ,  w, ). This situation is 
specific to the optical-field configuration considered by us 
and is related to the mutual compensation, discussed above, 
of the mode amplification and absorption effects in a medi- 
um of two-level atoms in a bichromatic field. 

It should be pointed out that Eq. ( 17) is derived in the 
approximation of nonoverlapping spectral lines when the 
condition S) y is satisfied and the broadening of each spec- 
tral line, which is of the order of y, is small compared with 
the separation S from the next line, so that the spectrum has 
a fine structure. Consequently, the results obtained in the 
present section are valid only in this approximation. 

We shall investigate the intensity of light at the exit 
from the resonator in the case when one mode of frequency 
wi is excited in the resonator. It follows from Eq. (4)  that in 
the case of vacuum generation of radiation this intensity is 

The resonator gives rise to steady-state values of the number 
of photons in the mode. Using the steady-state solution of 
Eq. (91, 

n,=P1/2 (I?,-Re a,) ,  (26) 

and allowing for p, = p, = 0, we find that the intensity at 
the exit is 

This expression describes the dependence of the intensity on 
the eigenfrequency wi and the width Ti of the absorption line 
in the resonator, on the intensity parameter 6, and on a quan- 
tity 0 = 4 m 0  N I de1 ,/fiy, which is the absorption coefficient 
of the mode at the frequency of an atomic transition in the 
absence of a pump field. The nonlinear absorption coeffi- 
cient is negative, so that Eq. (27) is valid also in the case of 
resonators with arbitrarily small values of T,. 

If the eigenfrequency of the resonator is equal to the 
frequency of the atomic transition, wi = w,, then using Eqs. 
(21) and (22) we find that the intensity I, of the central 
resonant fluorescence peak is 

where r is the width of the absorption line of the w, mode in 
the resonator. 

One further feature of the nonlinear absorption coeffi- 
cient in the case of a bichromatic field should be noted. If 
wi = w,, it follows from Eq. (21 ) that 

For certain values of the intensity parameter equal to the 
roots of J, (5) = 0 we find that Eq. (29) vanishes. We can 
easily see that this effect can be attributed to vanishing of the 
difference A (6) between the steady-state populations of 
quasienergy states for the same values of the parameter 6 
because of the interference between different multiphoton 
transitions under the action of a bichromatic field (the low- 
est values in the sequence of roots are { = 2.3, 5.5, 8.7, 11.7, 
... ). The dependence of the ratio Re a,/u on the parameter < 
is plotted in Fig. 2. 

This feature of the nonlinear absorption coefficient is 
manifested by the intensity of light at the resonator exit. It 
follows from the general expression (27) that in the region of 
w, = w, the maximum intensity corresponds to those values 
of the intensity parameter for which the atomic medium is 
transparent: Re a, = 0. Figure 3 shows the dependence of 
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mode field in a resonator and we shall use Eq. ( 10) for the 
correlation function (a?). Using p,  = p, = 0, we obtain 

FIG. 2. Dependence of the ratio Re a,/u of the nonlinear absorption 
coefficient to the conventional absorption coefficient on the parameter 6. 

the dimensionless ratio I, (4&, r/cS) - ' on the param- 
eter g calculated for two values of the ratio r/a using Eq. 
(28). We can easily see that a reduction in the ratio r/a 
increases considerably the intensity. 

The absorption coefficient a is proportional to the num- 
ber density of atoms. At low densities the intensity I, is low 
and it increases with N as (1 + const/N) - '. If ( 4  1, the 
intensity tends to zero and in the range 6) 1 the intensity is 
independent of the resonator width, as can easily be demon- 
strated. 

We shall give also the expression for the intensity of 
light in the case when the eigenfrequency of the resonator is 
close to the atomic transition frequency but not identical 
with the latter: 

When the resonator eigenfrequency lies in a different 
spectral range, particularly when it coincides with the side- 
lines wi = w, + 98, where q # 0, it follows from Eq. (2  1 ) 
that there is no absorption and the intensity of Eq. (27) is 
proportional to the rate of photon emission in the form of 
resonant fluorescence when a bichromatic field is acting in 
the absence of a resonator. 

5. SUPPRESSION OF QUANTUM FLUCTUATIONS OF 
QUADRATURE AMPLITUDES 

a. Single-mode case 

Nonclassical optical effects in the emission spectrum 
are usually due to an anomalous correlation function. We 
shall begin by considering the case of excitation of a single- 

The coefficient 

4n N 
h(mc)= 7 @,e, (i) em (i) ((e-2i@ftA,m' (A@*, t )  (32) 

differs from zero only when wi = w, and it follows from Eq. 
(24) that this coefficient is given by 

The quantity A, describes the process of emission of a pair of 
photons with the same frequency w,.  

It follows that a steady-state solution of Eq. (3 1 ) exists 
only at a resonator frequency equal to w, and is given by 

Finally, we obtain the following expression for the anoma- 
lous correlation function: 

We know that the minimum value of the rms variance of 
the quadrature amplitude 

of a single-mode radiation field inside a resonator corre- 
sponds to a specific phase p and is given by 

Using Eqs. (26) and ( 35 for the average number of photons 
and the anomalous correlation function, we find that the 
variance V, = Vi 1 ,  = ,o of the quadrature amplitude of the 
mode w, is 

This result describes the level of rms quantum fluctuations 
of a single-mode field and it is below the level in vacuum: 
Vo < 1. The level of the fluctuations is equal to the level of 
vacuum fluctuations ( V, = 1 ) in both limiting cases of weak 
and strong fields when C4 1 and and also for those val- 

FIG. 3. Dependence, on the parameter <, of the normal- 
ized light intensity I, (4?rfw,T/cS) - ' of the mode o, at 
the resonator exit, calculated for two values of the ratio 
r/u: a) 0.01; b) 0.1. 
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ues of the intensity parameter which satisfy the condition 
Jo = 0. 

Figure 4 shows the dependences, based on Eq. (38), of 
the variance on the intensity parameter calculated numeri- 
cally for two values of the ratio r / u .  We can easily see that 
the squeezing effect is significant in a good resonator when 
T&u. If r / u  = 0.01, the minimum variance is V, = 0.68 
and it corresponds to the intensity parameter g = 1.8. The 
intensity of single-mode light at the resonator exit is then 
I,, = 4 h 0  r/cS. In the regions where the intensity rises the 
variance tends to unity. In particular, if 4 = 2.1, we have 
I, ( 4 h 0  T/cS) - ' = 4.2, and the variance is V, = 0.74. 

In the case of other frequencies wi = w, + q6 and for 
side lines in the spectrum of resonant fluorescence in a bi- 
chromatic field the steady-state value of the anomalous cor- 
relation function (ai2) vanishes and single-mode squeezed 
states are not obtained. 

b. Two-mode case 

We shall now consider generation of a two-mode optical 
field subject to the frequency matching condition 
w, + w, = 2wo, a, #w, # w, in a squeezed state. The re- 

as demonstrated in Ref. 23, has a time-invariant rms vari- 
ance of quantum fluctuations. The minimum variance for a 
given phase 8 is 

Using the solutions (39) and the relationship (40), we find 
that R = 1, i.e., the level of rms fluctuations of a two-mode 
field is identical with the level of the vacuum state. 

6. INTENSITY INTERFERENCE EFFECT 

The nonclassical nature of single-mode light of frequen- 
cy w, at the resonator exit is manifested also in another opti- 
cal phenomenon, intensity interference described by a sec- 
ond-order correlation function. For identical times the 
normalized correlation function is 

In the vacuum case the field of the mode wi in the resonator 
obeys the Gaussian statistics, so that the quantity (43) can 
be factorized and, if we use Eqs. (4)  and (25), it becomes 

sonances of the radiation frequency then occur at 
If the resonator eigenfrequency is w,, we can use Eqs. w, z w, + q6 and w, z w, - 96, where q is an arbitrary even 

or odd value. In the same spectral range there is no absor~- (26) and (35) to obtain the following result: 
- 

tion of modes in the atomic medium so that the steady-state g'2'=2 + 1-Jo"(E) 
solutions of Eqs. (9)  and ( 10) are [ 4-Io2(E) [5-Io(25)1 [3+10(2E)]-' 

It is recognized here that p, = p2 = 0 and r, = r, , and the 
quantities Dl  and A ,, are taken from Eqs. (22) and (24). 

Comparison of Eqs. (22) and (24) also easily shows 
that in the regions of frequencies w, and w, which are not 
too close to the frequency of an atomic transition, and on the 
assumption that the polarizations of two modes coincide, we 
have 

If the operator representing the intensity of a two-mode 
field of Eq. (4) is described by 

E(+)=Eo(+)+ (8nh~~I '~ l cS )  "A (t)e-'"ot, 
(41 

A (t) =2-"[a, (t) eiet+a2 (t) e-'"1 , 

and if we bear in mind that I w, - w2 1 4 w,, where 
E = wo - w1 = w2 - a,, we find that the quadrature ampli- 
tude 

A, (t) =A (t)e-"+A+(t)eie, 

which does not include a dependence on the absorption 
width of the resonator. 

In weak fields or in the case of a large detuning from a 
resonance, 44 1, we can use an expansion in Bessel func- 
tions. Including terms up to the order of g L, this expansion 
yields 

which describes the nonclassical phenomenon of photon su- 
perbunching: g'*' ) 2. 

In the range 4) 1, the correlation function is g"' = 3. 
The dependence of the normalized correlation function on 
the intensity parameter is plotted in Fig. 5. We can easily see 
that g'")3 throughout the investigated range of the intensi- 
ty parameter and the equality sign corresponds to those val- 
ues of 4 for which we have J, (4) = 0. 

At other frequencies wi # w, the anomalous correlation 
function vanishes and, consequently, we have g"' = 2 and 
the resonator field then obeys the statistics of single-mode 
chaotic light. 

FIG. 4. Dependence, on the parameter {, of the rms vari- 
ance of quantum fluctuations of the quadrature amplitude 
of a mode in a resonator, calculated for two values of the 
ratio r/u: a)  0.01; b) 0.1. 
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FIG. 5. Dependence, on the parameter 6, of the normalized correlation 
function of the intensity of light of the mode o, at the resonator exit. 

We shall give the result for the two-mode field discussed 
earlier in Sec. 5b. The normalized correlation function of Eq. 
(43) for this case has the following factorized form: 

Using the solutions of Eq. (39) and the relationship (40), we 
find that g'*' = 3 throughout the investigated range of the 
parameters. 

7. CONCLUSIONS 

These calculations confirm, as stated in the Introduc- 
tion, that the process of resonant fluorescence in a bichroma- 
tic field inside a resonator results in the emission of light in a 
squeezed state. The experimental procedure suggested above 
should result, in contrast to the familiar nondegenerate four- 
wave mixing,'-3 in the generation of single-mode squeezed 
light at the frequency of an atomic transition, but two-mode 
squeezed states are not obtained. The degree of squeezing 
depends on the ratio r/u and on the intensity parameter 
g =  21VI/S [Eq. (38)l .  In thecaseofamodeinasqueezed 
state the second-order normalized correlation function de- 
scribing the interference of intensities of light beams is inde- 
pendent of the width of the absorption line of the resonator 
and for low values of the intensity parameter c it gives rise to 
the quantum effect of photon superbunching: g"' > 2. 

In the author's opinion another important result of the 
present study relates to the amplification or absorption of 
modes of the radiation field in an atomic medium in the pres- 
ence of a bichromatic laser field. It is shown that in contrast 
to a monochromatic laser field, there is no mode amplifica- 
tion in the presence of a bichromatic field. The mode is ab- 
sorbed after its re-emission in an atomic medium only in the 
region of the atomic transition frequency and for certain spe- 
cific values of the intensity parameter (6 = 2.3, 5.5, 8.7, 
etc. ) the nonlinear absorption coefficient vanishes, i.e., the 
medium is transparent. The minimum variance of the quad- 
rature amplitude of single-mode compressed light inside the 
resonator is Vo = 0.68 when T/u = 0.01. The sqeezing ef- 

fect decreases in the region of the parameter 6  where the light 
intensity rises and the atomic medium is transparent. 

One should also mention that the majority of the results 
obtained in the present study can be readily generalized to 
the case of a bichromatic laser field with a nonzero relative 
phase between the amplitudes. Calculations carried out for 
this case showed that the result given by Eqs. (21), (22), 
(27), (38 ), and (45) and representing, respectively, the 
nonlinear absorption coefficient, the rate of resonant flu- 
orescence, the intensity of light at the exit from the resona- 
tor, and the rms variance and the normalized correlation 
function are not affected by such a generalization. If we al- 
low for the phase 1C, between the two component amplitudes 
of a bichromatic field, we find that the coefficients A,, [Eqs. 
(23) and (24) 1 and A, [Eq. (33) 1 are multiplied by the 
phase factor exp(i$) and this in particular is manifested in 
the result for a phase-dependent variance of the fluctuations 
of the quadrature amplitude [Eq. (36) 1. 
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