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The possibility of a conversion of a coherent pump field into squeezed light in the course of hyper- 
Raman scattering is discussed. As a result of the nonlinear interaction with the medium, the pump 
field undergoes a pronounced squeezing. The extent of this squeezing is considerably greater than 
that of the corresponding squeezing in other nonlinear processes involving a two-photon 
absorption of a pump. Results are derived in a quantum theory of hyper-Raman scattering 
through an exact solution of the equation for the density matrix of two modes: the pump and the 
Stokes radiation. 

1. INTRODUCTION 2. BASIC EQUATIONS OFTHE SYSTEM 

Squeezed light has been produced successfully in a 
number of nonlinear optical processes (Refs. 1-4; see also 
Ref. 5) .  However, the extent of squeezing which can be ob- 
served is only slight, and many aspects of nonclassical light 
are exhibited in a weak field, disappearing in the case of in- 
tense generation. These circumstances make it necessary to 
seek new ways to generate intense, greatly squeezed light. Of 
particular interest in this connection are hyper-Raman scat- 
tering (HRS) and the four-wave mixing (FWM) which it 
induces (Fig. 1 ) . 

We recall that Stokes radiation is generated in HRS in a 
two-photon-absorbing medium. This Stokes radiation acts 
in turn along with the pump to generate, by FWM, a third 
wave at the frequency of the transition 3 -+ 1. One reason why 
these processes have attracted interest is that the parametric 
coupling of the Stokes radiation with the third wave should 
lead to a squeezing of quantum fluctuations in both modes 
(or in the composite mode which they form). A second rea- 
son for the interest is that the pump field itself is squeezed, 
because of a nonlinear (two-photon) interaction with the 
medium. With different squeezing mechanisms, it becomes 
possible to study either effect in a setting in which it is com- 
pletely independent of the other effect, with the pump field 
being interpreted at the classical level in the former case and 
at the quantum-mechanical level in the latter. 

In this paper we are reporting a study of squeezing ef- 
fects in a coherent pump field; corresponding calculations 
for the Stokes and parametric waves were carried out in Ref. 
6. From the standpoint of the problem posed above, the re- 
sults of the theory which we have derived are fairly convinc- 
ing: The extent of the squeezing of the pump field in the 
course of HRS can be more than 80% of the maximum value 
permitted by quantum mechanics. We recall that we are 
talking not about a generation of squeezed light, in which 
case the light would usually be of low intensity, but about a 
conversion of an intense coherent pump field into squeezed 
light. 

Field squeezing in the course of a nonlinear interaction 
of the field with a medium was discussed in Refs. 7-10 in the 
cases of harmonic generation7x8 and two-photon absorption 
of coherent A comparison of the results of those 
previous studies with our own results shows that among the 
various processes which involve a two-photon absorption of 
a pump the greatest squeezing of a laser-light field would be 
expected in the case of HRS. 

We consider the propagation of several pulses through a 
medium of four-level atoms (Fig. 1 ): a pump pulse at a fre- 
quency w , ;  Stokes radiation, which is generated at the fre- 
quency w, in the course of hyper-Raman scattering; and a 
parametric wave, generated at a frequency 
w ,  = 2w1 - w ,  = a,, through four-wave mixing. Since we 
are dealing with a forward propagation of pulses, for which 
the correspondence t++z/c holds, we will analyze the evolu- 
tion of the pulses as a function of t .  The fields of all three 
waves are expressed in terms of annihilation (creation) op- 
erators a ( a  + ), b ( b  + ), and c (c+  ) as follows: 

2nfioi '" 
E i )  a exp ( ik ,z- io , t ) ,  

where V is the quantization volume. 
The effective interaction Hamiltonian is then 

where ,uii is the dipole matrix element of the atomic transi- 
tion i-j, Ak = 2k, - k ,  - k,  , o::' is an element of the den- 

FIG. 1. Scheme of the interaction in hyper-Raman scattering. 
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sity matrix of atom i corresponding to the 1 - 3 transition 
current, A = w,, - 2w1 is the two-photon detuning, and 
A,, = w,, - w, . We are assuming that all the intermediate 
states n over which the summation is carried out in the 
expression for G are far from a one-photon resonance with 
the pump field. 

We describe the time evolution of the fields by means of 
an equation for the density matrix p of three modes. This 
equation is constructed in the standard way," through the 
use of Hamiltonian ( 2 )  and under the assumption that the 
atoms are always in ground state 1: 

The first term in (3)  describes the HRS, i.e., the absorption 
of two pump photons and the emission of one photon in the 
Stokes mode. The quantity 

3Y=g(2o.-o,) I ~~~j N(r)hr  
v 

is related to the gain for the Stokes radiation. This relation- 
ship follows directly from the equation for the average num- 
ber (n, ), of photons in mode b, which is found with the help 
of Eq. (3),  in which the amplitude of the pump field is as- 
sumed to be a c-number and given. We can then write 

where a, = 2 Z n ,  is the gain for the Stokes radiation, and 
n, is the initial number of photons in the pump mode. 

The second term in (3)  corresponds to the absorption 
of a c-mode photon with an absorption coefficient 

a.=2g (o,) 1 f 1 2 J  N (r)dar. 
Y 

The last term corresponds to a parametric interaction be- 
tween the fields, with a coupling constant 

P=-g (o.) ~ f .  N ( r )  d3r.  
V 

Here g(w, ) is the shape of the atomic transition line at the 
frequency w, = w,, . It can effectively be replaced by T - ', 
the inverse width of the 3- 1 transition. Here N ( r )  is the 
number density of atoms in the medium. In deriving (3)  we 
used the phase-matching condition Ak = 0. 

We turn now to squeezing effects in the pump field. 

3. TIME EVOLUTION OFTHE SQUEEZING IN THE PUMP FIELD 

Let us demonstrate how a squeezing of quantum fluctu- 
ations occurs in a coherent pump field during hyper-Raman 
scattering. The effect evidently becomes significant and ob- 
servable in the case of stimulated HRS, in which the number 
of photons absorbed from the pump field and thus the num- 
ber of Stokes photons are not small. According to Ref. 12, 
this situation corresponds to the case a, )a,, in which we 
can ignore the effect of c-mode generation on the HRS. Re- 
taining on the right side of Eq. ( 3 ) ,  only the first term, which 
corresponds to HRS, we then find an equation which de- 
scribes the evolution of the density matrix for the pump 
mode and for the Stokes-radiation mode: 

It is convenient to solve this equation for the matrix 
elements pEn, which are determined from the expression 

where the subscripts and superscripts in p',k, refer to the a 
and b modes, respectively. For them, we find the following 
equation from (4): 

The initial state of the pump field is assumed to be a 
coherent state: lz) = 11~1, exp(i0)). The Stokes field is as- 
sumed to be in the vacuum state. The boundary conditions 
on ( 5 ) are then 

1 
pmnrk ((0 = ( Z * ) ~ Z "  exp (- IZ I ') 6 ~ 0 6 h o .  

(mlnl)'" ( 6 )  
h 

The expectation value of any pump-field operator 0 is 
calculated in accordance with 

so we will need only the matrix elements pz, below. Equa- 
tion (5)  can be solved for these elements exactly by means of 
Laplace transforms. This solution is found in the Appendix; 
it is givenjy a fairly complex expression. If we introduce the 
operator Q, however, we can rewrite this solution in the com- 
pact form 

x e x p ( - ~ z / z ) ~ z  
exp [ -Lmnr (q)  TI 

1 

9+l + - [n+2 (r-q) ] [n+2 (r-q) -11, T=2Xt9 
2 

(7)  
A 

where the effect of Q reduces to the following: If, for k # q, k, 
q = 0, I,,., r, none ofthe factors L (k )  - L (q) in (7)  vanish- 
es, thenQ= 1, whereL(q)=LL,(q). Fo rL(q , )  = L(q,);  
q1 #q2; q l ,  q 2 ~ [ 0 ,  r l ,  however, we have 
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If the number of vanishing factors in the dznominator in (7)  
is greater than one, i.e., if it is I>  1, then Q acts I times as a 
formal differentiation operator, by analogy with (8) .  

We will calculate the following parameters for the 
pump field: 

1 ) The average number of photons in a mode, 

<na(t))=(n+(t)o(t))=C npnnrr(t). (9)  
"8' 

2) The squeezing parameter 

If this parameter is a negative, the meaning is that the 
field component (a  + a + ) is squeezed. The value S, = - $ 
corresponds to the maximum squeezing. 

3)  The second-order correlation function (G-factor) 

The only way to find exact solutions for these quantities is to 
go through a numerical calculation of the sums in (9)-( 11 ). 
We present the results of such a calculation below. However, 
so that we can see how these parameters evolve in time, we 
will derive solutions for them in the limits of small and large 
T; these solutions exist in analytic form. 

a )  Solution for small T. 
Using (7),  we can verify that an expansion ofp;, in T 

begins with Tr, i.e., that 

This point can be demonstrated more easily by directly 
integrating Eq. (5)  at small T. As a result we find 

T 

and we can assume that at T 9  1 we have pEn ( T) zpEn  (0). 
Since B,p:, is the probability that the number of pho- 

tons in the Stokes mode is r, according to ( 12) this probabili- 
ty also increases as T r  during the first few moments after the 
interaction is turned on. 

We find the parameters (n,), G '*', and So through an 
expansion in T in which terms up to T are retained. We can 
carry out this procedure if we retain, in the summation over r 
in (9)-( 11 ), only the first t h r e e r m s ,  with r = 0, 1, and 2. 
Here we can show that we have Q= 1 in (7).  The same result 
can be found more simply by working from the formula 

wherep( T) is found from Eq. (4),  after the latter is differen- 
tiated with respect to Tone more time. We thus have 

G(') (T) =I-2T+ [- 1z1'+41~1~+2]  T2 .  (13) 

It is interesting to compare these results with the corre- 
sponding expressions derived for n, S,, and G '2' in the case 
of two-photon absorption (TPA) of coherent light.9 A com- 
parison yields 

1 2 1 ~  SHRs (T) = STPA (T) - - T2 cos 20. 
4 

One can also show that G gAs = G$yA - IzI4T2. It follows 
that early in the process the pump field is absorbed and is 
squeezed to a greater extent during HRS than during two- 
photon absorption. The exact solution shows (see the dis- 
cussion below) that this tendency persists even later, leading 
in the case of HRS to a significantly greater squeezing of the 
pump field. The distinction between the two processes starts 
to become apparent at terms on the order of T '. This circum- 
stance can be explained in a relatively simple way by noting 
that a distinguishing feature of HRS is the additional emis- 
sion of Stokes photons. Since the probability for the appear- 
ance of the first photon in the Stokes mode is proportional to 
T, however, it comes into play in terms of order T 2  and 
higher. 

b )  Steady-state solution at long T. 
After a long time the system should evidently reach a 

steady state, since the pump will be completely depleted. The 
system at this point either will contain only one photon, or it 
will go into the vacuum state. The reason is that, according 
to (7) ,  the only matrix elements px, which do not vanish in 
the limit T- co are those for which the condition 
L ;, (q)  = 0 holds. It is not difficult to verify that this condi- 
tion holds if q = r and if m, n = 0 or 1, i.e., if only p&, pi', , 
and p z  = (p';', ) * are nonzero. For them we find the follow- 
ing results from (7) in the limit T-+ oo : 

Obviously, 

[Co.r(w) +pltrr(w) 1-1. 
t 

Since Eq. (5)  actually splits into two equations, one of 
which couples all the even-n prn with each other, while the 
second does the same for the odd-n elements, and since we 
furthermore have Znsrprn = 1, the following sums are con- 
served separately: 
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even odd z z p n n r r  and z Pnn". 

n r n  r 

Thus 
even even 

Odd ",id 

. . 
n  r n r 

Using (6)  and ( 15), ( 16), we easily verify that these conser- 
vation laws hold for the solutions which we have found. 

We now seek n,, G '2', and S, in steady state ( 15)- 
(17): 

r 

Since the operator a + a/2 + b + b is conserved, 

as is easily verified with the help of (4),  we have 

Using ( 19) we find 

or, if 1zI2% 1, 

1 
<n.(w)) -- I z I z  

2 
and (nb(m)> =-. 

2 

For the squeezing parameter S, we find 

where 

is the modified Bessel function of index zero. For 1zI2% 1 we 
have 

i.e., S, ( ) > 0. In the same limit we have G 2 (  co ) = 0, since 

n.? , 
This result was to be expected since in the limit T+ co there 
is at best only one photon in the pump mode. 

We turn now to the exact solutions for (n ,  ), G '2', and 
S,. Figures 2-4 show the results of numerical calculations 

FIG. 2. Time evolution of the average number (n,), of photons in the 
pump mode for an initial value E, = 10. The dashed line shows the same 
function in the case of two-photon absorption, again for ii, = 10 (Ref. 
1 3 ) .  

from Eqs. (9)-(11) and (7)  for 0 = 0. Shown for compari- 
son are plots of (no ), G "' (Ref. 13), and S, (Ref. 9) versus 
Tin  the case of two-photon absorption. We see that in the 
case of HRS the quantities ( n ,  ) and G "' fall off more rapid- 
ly with increasing T. These results are evidence of a more 
intense absorption (Fig. 2) and of a higher antibunching 
correlation (Fig. 3) in the pump mode than in the case of 
two-photon absorption. The distinction between the two 
processes can be seen far more vividly in the plot of S, ( T) 
(Fig. 4). In the case of HRS, the minimum in Sa is much 
deeper and is shifted further down the T scale. This effect 
becomes greater with increasing initial number of photons in 
the coherent pump mode, E , .  At large values of E ,  ( - 10) 
the extent of squeezing is more than 80% of the maximum 
possible extent, and it also exceeds the value of Sa predicted7 
in the case of second-harmonic generation. The following 
arguments reveal the reason for these differences among the 
three processes, each of which involves a two-photon ab- 
sorption of a pump. This absorption must be most intense in 
the case of HRS, since its probability in this case, propor- 
tional to the number of Stokes photons, increases exponen- 
tially with T, while in the case of two-photon absorption it 
remains constant, and in the case of second-harmonic gener- 
ation it increases only linearly with T, being proportional to 
the number of photons in the second-harmonic mode. It fol- 
lows in particular from this assertion that the difference be- 
tween two-photon absorption and HRS increases with in- 
creasing E , ,  since there is also an increase in the number of 
Stokes photons, as can indeed be seen in Fig. 4. 

FIG. 3. Time evolution of the factor G '2' for the pump mode in the cases 
of (solid line) hyper-Raman scattering and (dashed line) two-photon 
absorption. l 3  
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FIG. 4. The squeezing parameter S, of the pump field versus T for the two 
values ( 1 ) Izl = 1.73 and ( 2 )  Izl = 3.  Dashed line 3 represents the case of 
two-photon absorption" with lzl = 3. 

We have one final comment regarding the approxima- 
tion, used above, that it is legitimate to ignore the effect of c- 
mode generation on the basis of FWM. Clearly, that approx- 
imation is not valid in the region of strong pump depletion or 
at large values of T. Incorporating that process does not alter 
the basic results (in particular, the prediction of a pro- 
nounced squeezing of the pump field), but it does lead to 
certain changes in the behavior of (n, ) and S, as functions 
of T at large T. Accordingly, we will simply list these 
changes, omitting the detailed calculations. These changes 
occur because as the pump is depleted and, correspondingly, 
as the number of photons in the c-mode increases, the de- 
structive interference between the two mechanisms for the 
filling of level 3 becomes complete, so that, no further ab- 
sorption of the pump occurs. As a result, the new asymptotic 
values of (n,), G ',', and S, turn out to be larger than the 
previous values, in ( 19)-(20). The parameter S, goes posi- 
tive even at Tvalues lower than those in Fig. 4; i.e., its mini- 
mum becomes narrower. All these effects, however, set in at 
a progressively later time as the ratiof,, /fI3 inceases, where 
f;/ is the oscillator strength of the i-j transition. This fact 
must be taken into consideration in experimental tests of the 
theoretical predictions. 

I wish to thank M. L. Ter-Mikaelyan and G.  Yu. 
Kryuchkyan for useful discussions. 

APPENDIX 

Let us derive a solution of Eq. (5 )  forpz, . We switch to 
the quantities F k, = pg, (m!n!) 1'2/r !, for which the equa- 
tion is 

[rn (rn-1) +n (n-I) ] F~.'+F$,~+z aFmnr/aT = - - 
2 

with the initial conditions 

Taking Laplace transforms, and using the recurrence rela- 
tions, we find the following expression for the transform of 
the function F k, : 

t 

where L k, (q) is given in ( 7 ) .  If there are no repeated fac- 

FIG. 5. L ;, versus qat a fixed value N = n + 2r. A given value Lo is taken 
on at only two points, q, and q,, which lie within the segment [O,r,,,,, 1. 

tors among the s + L(q) ,  q = 0, 1 ,..., r, then the inverse 
transformation immediately gives us 

FmnT(T)=fm+z,n+z. e x p [ - ~ ( q ) ~ l  .n [L(k)-L(q) I-'. 
q- 0 k-0 

kf., 

The situation becomes more complex, however, if L (q)  
takes on identical values for different values of q. We will 
first prove that the number of roots of the equation 
L (q)  = const is 2 if q~ [O,r] . To do this, we plot L L, versus q 
for given values of n and r [for L k, (q) with n = m - 1, 
m - 2, the assertion can be proved in a corresponding way]. 
It is convenient to write L L n  (q) in the form 

where N = n + 2r. For a given value of N, the maximum 
value of r is obviously N/2 or ( N  - 1)/2. It follows then 
from Fig. 5 that the function L in (q) takes on a given value 
Lo only at two points q, and q, which belong to the segment 
[O,r,,, 1. If there is only one pair of equal factors in the 
product 

in (A2), then q, kn becomes 

and we have, correspondingly, 
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Formally, this result can be put in the form 

n [ L ( k ) - L ( q )  I-'. 

If the number of pairs of equal factors is i, then 

where L ( q i )  = L(q j ) .  

Combining (A3)-(A5), we can write the general solu- 
tion of Eq. ( 5 ) in the compact form in (7) .  
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