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Using the quantum kinetic equation method, we calculate corrections to the thermal conductivity 
of an impure metal due to interference of the electron-electron and electron-impurity 
interactions. In contradiction to the conclusions of previous papers, we show that when these 
interactions are taken into account the Widemann-Franz law is violated at low temperatures. 

1. INTRODUCTION 

The theory of weak localization, which includes inter- 
ference effects between interactions, has been successfully 
validated by its ability to explain a wide range of experimen- 
tal facts associated with low-temperature charge transport 
in conductors with short electron mean free paths.' In re- 
cent times there has been additional interest in studying the 
effect of electron-electron interactions on the transport of 
heat by electrons in impure metals. 

Central to this question is the issue of what operator to 
use for the thermal flux in a system of interacting electrons 
and how to incorporate it into various methods for calculat- 
ing the kinetic coefficients. For the thermal conductivity, 
use of the Kubo-Greenwood method (i.e., linear response) 
leads to extremely laborious calculations. There are several 
reasons for this: first of all, in addition to terms that describe 
the transport of heat by the interacting particles, the opera- 
tor for the thermal current also contains corrections from 
the interacti~n,~~' leading to a considerable increase in the 
number of diagrams. Secondly, when the kinetic coefficients 
are calculated, the results obtained when the electron energy 
in successive integrations goes into the temperature are ac- 
companied by anomalously large terms in which the inverse 
scattering time of electrons by impurities (i.e., the "uncer- 
tainty" of the electron energy) appears instead of the tem- 
perature. The discussions that follow will show clearly that 
these anomalous terms must be retained when we include 
corrections to the thermal current operator from the elec- 
tron-impurity interactions. However, retaining these terms 
turns out to be extremely laborious in practice, and in a num- 
ber of papers they are ignored, leading to erroneous resulk4 

In view of these complications associated with the use of 
the Kubo-Greenwood method, the electron thermal con- 

so that anomalous terms do not arise. The results we obtain 
differ from those found in Refs. 5 and 6: the Widemann- 
Franz law is not obeyed, because the temperature and mean- 
free-path dependences we find for the thermal conductivity 
of an electron are closely related to singularities in the den- 
sity of states for electrons' rather than the behavior of the 
conductivity. 

The article is structured in the following way. In Sec. 2 
we derive the thermal current operator for interacting elec- 
trons. In Sec. 3 we briefly describe our application of the 
quantum kinetic equation. The calculation of the thermal 
conductivity is carried out in Sec. 4. Finally, in the Conclu- 
sion we analyze the results we have obtained, and also dis- 
cuss possible reasons why our results disagree with those of 
Ref. 5. 

2. THERMAL CURRENT OPERATOR FOR INTERACTING 
ELECTRONS 

The problem of finding the thermal current in systems 
with interactions has received many treatments in the litera- 
ture. Following Refs. 7 and 8, we will consider the thermal 
current to be an energy current as defined within the Lagran- 
gian formalism, i.e., in terms of an energy-momentum ten- 
sor. 

The Lagrangian of a system of electrons interacting 
among themselves and also with an impurity field has the 
form 

- v (x, x') $+$'+Ipf$-$+$W (x) . 

ductivity of impure metals at low temperatures was investi- 
Here $ = $(x, t)  and = $( x', t ') are the electron field gated in Refs. 5 and 6 by using a generalization of the Ward 
operators: $,, = d$/dt, $,, = d$/dx,, i = 1,2, 3; V(x, x') is 

identities and an analysis of the skeleton structure of the 
the potential of the electron-electron interaction, while conductivity and thermal conductivity diagrams. In these 

papers the authors concluded that, despite the inapplicabil- W(x) is the potential of the impurity field: 

ity of simple Fermi liquid descriptions of the electron subsys- N 

tem, the Widemann-Franz law is obeyed as usual, and that w ( x ) = ~  U(x-R , ) ;  
the electron thermal conductivity can be obtained easily by j-1 

taking into account modifications in the conductivity.' here U(x) is the potential of an impurity center located at 
In this paper we calculate the electron thermal conduc- the point = 0. 

tivity directly, using the quantum kinetic equation method. The operator for energy current u can be written from 
As we show below, the operator for the thermal current can the energy momentum tensor : 
easily be used in a form that contains the electron frequency 
E in place of the electron energy and corrections frdm the a~ T,'=- aL 
interactions, which then passes directly to the temperature $tl;t$+,ll- - h"L, 

a$," a4+.v 
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(6; is the Kronecker symbol). Substituting ( 1 ) into (2)  and 
( 3 ) ,  we obtain an expression for the energy flux operator: 

1 a a 
I,= --(- v + - v ~ ) $ + $ ~ *  ==,, *-*,. 

2m at dt'  

The thermal current operator is conveniently expressed in 
terms of the energy current operator by using the chemical 
potential as a reference energy for the electrons: 

where J .is the particle flux operator and p is the chemical 
potential: 

3.THE QUANTUM KINETIC EQUATION METHOD 

In calculating corrections to the thermal conductivity 
we will make use of the quantum kinetic equation method, 
which was developed as an outgrowth of the Keldysh dia- 
gram technique. In this case we will follow Ref. 9, in which a 
systematic method was discussed for calculating the kinetic 
coefficients of an impure conductor. The quantum kinetic 
equation method developed in Ref. 9 has been applied pre- 
viously in calculations of temperature-dependent correc- 
tions to impurity conductivity due to electron-electron" 
and electron-phonon" interactions; it has also been applied 
to the problem of phonon renormalization of the thermo- 
electric power of an impure metal.'' 

In the Keldysh technique the Green's function and self- 
energy of an electron, as well as the electron-electron inter- 
action potential, are represented by matrices: 

Without taking into account electron-electron interactions, 
the Green's function of an electron averaged over the posi- 
tions of the impurities equals 

~ , , " ( p ,  & ) =  ( E - E ~ + ~ / ~ T ~ ) - ' =  [ GoA ( p ,  6 )  I * Y  (7)  
E,= (p"p.9 12m. 

where T, is the momentum relaxation time of an electron 
with frequency E due to scattering by impurities, and p ,  is 
the Fermi momentum. In using the kinetic equation we must 
include the effects of electron-electron interactions and the 
nonequilibrium nature of the system due to external pertur- 
bations. To first order in the inhomogeneity, the electron 
Green's function G c  has the form 

G C ( p ,  E )  =s (p, E )  (GA--GR) +'Id {So  ( e ) ,  GA+GR) ,  ( 8 )  

where s(p, E )  plays the role of a distribution function. In 
equilibrium we have s ( p , ~ )  = So ( E )  = - tanh (&/2T). In 
the presence of a temperature gradient, the Poisson brackets 
can be written in the following way: 

The kinetic equation for the electron distribution func- 
tion linearized with respect to VT has the form 

where v is the electron velocity; the collision integrals on the 
right side of Eq. ( 10) are associated with electron-impurity 
and electron-electron interactions respectively. Each colli- 
sion integral can be expressed in terms ofthe self-energy part 
corresponding to it by using the relations 

Z(s)  .=.I0 ( s )  + 6 I ( s ) ,  Io=- i [ZC-s (ZA-ZR)  1, 
6I=-i[6Zc-So (6CA-6ZR) ]+1 /2{ZA+ZR,  S o } ,  (11) 

where the symbol 6 without a label corresponds to correc- 
tions in the form of Poisson brackets. 

Assuming that the primary mechanism for relaxation of 
the electron momentum is scattering by impurities, we will 
solve the kinetic equation iteratively: s = S, + p, + p, . 
When the electron-electron interactions are not included, 
the nonequilibrium correction to the distribution function 
equals 

aso(&) E @ ( p ,  E)=T,vVT--  
d e  T ' 

(12) 

To first-order in perturbation theory with respect to the in- 
teraction we have 

cp i  ( p ,  e )  -T. [Ie- ,  (So+cp,) +6rntI=-tmp(So+qoj I ,  ( 13 

where Sin, I, - is a correction to the impurity collision 
integral due to renormalization of the electron density of 
states: 

here 

s inrGA= ( ~ ~ ~ ) ~ 2 ~ "  (SO+TO)  

is a correction to the Green's function of an electron due to 
electron-electron interactions. The renormalized density of 
states equals 

Expressing the thermal flux in terms of the electron 
Green's function with the help of ( 5 ) ,  we obtain 

~ = - % V T =  I -- d(3;nd~ evs  (P, e )  Im G A  (p, E )  , 

from which it is clear that the corrections to the thermal 
conductivity x are associated both with corrections to the 
distribution function p, ( p , ~ )  ( 12) and with various correc- 
tions to the electron density of states: 

where n is a unit vector directed along VT, and 

6GA= (GoA)  ' 6 ~ ~ 1 . .  (19) 
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FIG. 2. Electron-electron interaction vertex. 
FIG. 1 .  Self-energy diagram of an electron. 

4. CALCULATING THE CORRECTIONS TO THE THERMAL 
CONDUCTIVITY 

The self-energy diagram for an electron including elec- 
tron-electron and electron-impurity interactions 2:-, is 
shown in Fig. 1. The wavy lines denote the screened elec- 
tron-electron interaction potential. The corresponding 
expression for the electron self-energy has the form 

h h 

where W '  = WA + s ii," should be regarded as the exact 
vertex for the el~tron-impurity interaction. 

The vertex ~ , k  for electron-electron interactions renor- 
malized by impurities (without including corrections in the 
form of Poisson brackets) is found within the ladder approx- 
imation by solving the following matrix equation,'' corre- 
sponding to Fig. 2: 

D = v$r/d is the electron diffusion coefficient. kccording 
to (21 ), the equation for the vertex corrections W,k due to 
the Poisson brackets has the form 

1 
fjWk = - 5 * &[ O (p, e )  b B k G  (p+q, e+o)  

n v , ~ .  ( 2 r ~ ) ~  

Out of all the components of the vertex 6%; we will calcu- 
late explicit expressions only for S W i, , i.e., the component 
with the strongest singularity (a  squared diffusion pole). 
Use of this term gives the main contribution to the thermal 
conductivity: 

The screened electron-electron interaction potential for 
the case of small momenta and energy transfer g i g  1, 07-4 1 

(21) (butforp,I%l)hastheform,' 

here Gk is the bare Coulomb vertex and Cx is a Pauli matrix. 
To lowest order in (p,l) - ', where I = u,r, we obtain VR(q, o)=tVA(q,  0)1 .  

1 [So (&+a)  -So (e) ] S' where k : = 4?re2v3, k2 = 2?re2v, (here v3 = mp,/7?, waz2=o, w1,2=w ' - 
2 1  --F7 W l 1 2  = 

2" (1-b') , v, = m / 2 ~ ,  v, = v3a2), where a is a characteristic dimen- 
- .  

sion of the sample. For an electronic system in equilibrium, 
where for q l g  I ,  or g 1 

1 
5 = -- J*G* (p, c)CR(p+q, &+a)  =l+ior-Dq'r. 

nveza ( 2 ~ ) "  

(23) 
Here d is the dimensionality of the electron system and As we have already noted, in calculating 
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8, - , = (8, - , ), + 68, _, from Eq. (20) we obtain the pri- 
mary contribution by using the component W:,  . This is as- 
sociated with the fact that when ql< 1 we need retain only 
the most singular term in q. The calculations show that 
terms containing the diffusion pole ( 1 - 6) - ' 
= 7- - I  ( - iw + Dq2) - raised to the highest possible pow- 

er-i.e., cubic-are necessarily accompanied by an addi- 
tional factor of q2. From this it follows that, in addition to 
these terms, the leading-order contributions to the thermal 
conductivity are given by terms that contain the diffusion 
pole squared but without additional powers of q in the nu- 
merator. In taking into account this fact we obtain 

US, ( e )  E dSo(e+o)  e+o dder +. ae *-) T 

Substituting Eqs. ( 12), ( 13), (28) and (29) into ( 18) 
and carrying out the subsequent integrations, we solve the 
problem as posed. Rather than writing out the contributions 
of all four terms in Eq. ( 18), we will just make the following 
comments. As we have already pointed out, the primary con- 
tributions to the thermal conductivity are expected to come 
both from terms that contain the diffusion pole as a cube and 
from terms with the diffusion pole squared but without addi- 
tional powers of q in the numerator. In calculating the ther- 
mal conductivity according to Eq. ( 18) we encounter terms 
of first order only from the fourth term in ( 18) when we use 
the first-order terms in the curly brackets from (29). How- 
ever, terms that contain the squared diffusion pole can in 
principle appear within all four terms of ( 18). In calculating 
the contributions of these terms it is found that the nonlocal 
part of the collision integral in the first term in ( 18) does not 
contribute to the thermal conductivity and we need include 
only the collision integral calculated using the equilibrium 
distribution function and corrections to q, related to renor- 
malization of the collision integral ( 14) by impurity interac- 
tions. Contributions of this type come from the second term 
in ( 18), and also from the fourth term in ( 18) due to the 
second term in the curly brackets of (29). Although the 
third term in ( 18) contains a double pole due to the squaring 
operation, it also contains additional powers of q in the nu- 
merator and therefore does not contribute to the thermal 
conductivity in leading order. 

As a result, the Coulomb correction to the thermal con- 
ductivity has the form 

In calculating the thermal conductivity we find that 
contributions containing the squared diffusion pole cancel 
out, and that the main contribution comes from a term pro- 
portional to the diffusion pole cubed. This cancellation takes 
place because the expression corresponding to (3 1 ) used to 
calculate the conductivity (i.e., without the electronic fre- 
quency in front of the distribution function) equals zero. In 
the three-dimensional case in the presence of interactions we 
find according to (26) that for q 4 k  and q- (w/D)'/' we 
have 

Carrying out the integration in (30) with respect to q and w,  
we finally obtain 

where f (x)  is the Riemann zeta function and r ( x )  is the 
gamma function. 

Let us discuss the two-dimensional case in more detail. 
Here the contributions from the second term in (30) that 
contain the triple pole turn out to be of order T / a .  The pri- 
mary contribution to the thermal conductivity in this case is 
given by the first term in (30). We note that, just as in calcu- 
lations of corrections to the electron density of states from 
electron-electron interactions,' the approximation (32) 
causes the integral with respect to q to diverge at its lower 
limit. In this case it is no longer permissible to neglect Iql in 
the denominator of (26). Taking into account that the main 
contribution to the integration with respect to q comes from 
the region w/Dk, (q< (w/D) 'I2, by integrating the first 
term in (30) with respect to q we obtain to logarithmic accu- 
racy 

Then the correction to the thermal conductivity in the two- 
dimensional case equals 
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T Dkzz terms dominate. In calculations using the linear response AXzd = - ln - 
120 T '  (35) method different diagrams correspond to terms with differ- 

ent powers of the diffusion pole. The disagreement between 
In the one-dimensional case a situation occurs that is analo- the results of this paper, which were obtained by direct cal- 
gous to the One: the primary contribution culations, and the conclusions of Refs. 5 and 6, is apparently 

from the pole in (30)' In this case we connected with the fact that in their analysis of the skeleton 
the term ln - '( '/qia2) in the ( 2 6 ) .  structure of the diagrams these latter authors did not take 

As a result, we obtain to logarithmic accuracy into account the possibility of such cancellations. 

5. CONCLUSION 

The main results of this paper are expressions for the 
electronic thermal conductivity in an impure metal ( 331, 
(34), and (36), in which we have taken into account inter- 
ference between electron-electron and electron-impurity 
scattering processes. As already noted in the Introduction, 
questions have recently been raised in connection with ther- 
mal conductivity analyses based on generalized Ward identi- 
ties, regarding the validity of the Wiedemann-Franz law 
when Coulomb interactions are taken into account. The 
temperature-dependent corrections to the conductivity 
based on electron-electron scattering have the form1 

Ao3d='-0,49eZ (TID)  Ib, 

Aozd--0,05e2 1n TT, (37) 
Aoid=0,03ez (DIT)  '". 

A comparison of (33), (34), (36), and (37) shows 
that, in contradiction to the conclusions of Refs. 5 and 6, we 
find that the Wiedemann-Franz law is violated. This hap- 
pens for the following reasons. The primary contribution to 
the expression for the conductivity is given by terms that 
contain the diffusion pole as a cube, while the terms with the 
pole squared cancel out. In calculating the thermal conduc- 
tivity, terms with the squared diffusion pole give a contribu- 
tion of the same order as terms with the cube in the three- 
dimensional case, but for cases of lower dimensionality these 

The correctibns we have calculated to the thermal con- 
ductivity due to electron-electron interactions are experi- 
mentally simpler to observe in low-dimensional samples. In 
the one-dimensional case the effect can be observed super- 
posed on the electron conductivity connected with electron- 
impurity scattering by looking for a temperature depen- 
dence of the form Axld a TI'' In1" T. For samples with 
higher-dimensional interactions the corrections we have 
found are conveniently identified from their characteristic 
dependence on the electron mean free path. 
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