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Structural phase transitions of the weak crystallization type and an equilibrium between the 
corresponding phases in weakly charged polyelectrolyte systems are considered. A general 
method is proposed for the construction of the relevant Hamiltonian. It is reduced to the Landau- 
Brazovskii Hamiltonian for the specific case of a melt of weakly charged and uncharged 
polymers. An alternative formulation of the Brazovskii approximation is based on the variational 
principle, which is convenient for the calculation of the correlation functions and of the free 
energy of the systems described by this Hamiltonian; it is assumed that the radius of the first 
coordination sphere of the coexisting lattices and the unrenormalized (bare) vertices of the 
Hamiltonian describing them are different. These results are used in numerical calculation and 
analysis of the investigated system both in the mean-field and Brazovskii approximations. It is 
shown that supercrystalline phases may appear and they may coexist with one another and with 
liquid phases. The conditions are identified for selecting real systems in order to observe the phase 
diagram under discussion and also of other Coulomb systems which can have similar phase 
diagrams. 

1. INTRODUCTION 

Systems which may exhibit a structural phase transi- 
tion due to an absolute instability against fluctuations of the 
components of the order parameter with a finite wavelength 
L and a corresponding wave number go = 2r/L are current- 
ly attracting attention. An analysis of phase transitions due 
to such an instability is the task for what is known as a theory 
of weak crystallization1-4 which deals with the behavior of 
systems which for a scalar order parameter are described by 
the Hamiltonian 

where p (q )  = Jd V@( r )  exp (iqr ) is the Fourier transform of 
the order parameter @(r) (here and below the functions in 
the coordinate representation will be represented by capitals 
and their Fourier transforms by the corresponding lower- 
case letters); T is the effective temperature; a characteristic 
momentum q, and the vertex functions y and A are usually 
assumed implicitly to be the same for all the phases, i.e., they 
can be regarded as special chemical potentials (or their com- 
binations). I '  

Although the best known applications of this theory are 
to Bquid crystals, systems which are relatively low-molecu- 
lar,3-5 it has also been used successfully in discussing struc- 
tural phase transitions due to instabilities in multicompo- 
nent polymer  system^."'^ The order parameter is in this 
case the vector representing the concentrations of polymer 
links of various kinds and the corresponding transitions in 

the physics of polymers are usually called microphase strati- 
fication, formation of a domain structure, or supercrystalli- 
zation; it should be noted that the term supercrystallization 
is used in the case of a large parameter L /a, where a is a 
characteristic microscopic scale of the system. The special 
features of the application of the theory of weak crystalliza- 
tion to polymer systems are: 1 ) it is possible to obtain expres- 
sions for the leading vertices of the effective Hamiltonian 
explicitly by microscopic analysis; 2) there are additional 
features because in the case of some polymer systems the 
parameter q, and the functions y and A may be state func- 
tions that differ for the coexisting phases. It would be of 
special interest for the development and application of the 
theory of weak crystallization to analyze the singularities in 
the specific case of a phase equilibrium in concentrated sys- 
tems of charged macromolecules whose behavior is quite 
universal. Such an analysis is given below. 

The features of the behavior of systems of charged parti- 
cles due to their long-range Coulomb interaction have al- 
ways attracted the attention of physicists (see for example, 
Ref. 13). Charged polymer systems are particularly interest- 
ing because of their special nature, which is responsible for 
the much greater range of behavior than that of low-molecu- 
lar electrolytes and is due to the general properties specific to 
high-polymer systems; such systems have an anomalously 
low (compared with low-molecular systems) configuration- 
al entropy, a high susceptibility to external perturbations, 
and a large correlation radius. In particular, as demonstrat- 
ed first in Refs. 8-1 1 (see also Refs. 14 and 15), a specific 
(compared with low-molecular electrolytes) behavior is ex- 
hibited by a number polyelectrolyte systems under condi- 
tions for which in the case of an uncharged polymer one 
would expect stratification into two phases with different 
concentrations of the polymer, such that the improvement of 
the energy of the short-range interaction between the links 
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would have exceeded the loss of the entropy resulting from 
the nonuniform spatial distribution of macromolecules. In 
fact, in the case of charged polymers this stratification is 
much less favorable because it results in an additional large 
loss of the entropy of the redistribution of low-molecular 
charges (counterions and salts), needed for the compensa- 
tion of the polymer charge. This is why under certain condi- 
tions the competition between the short-range segregating 
and Coulomb stabilizing interactions in polyelectrolyte so- 
lutions may give rise to structural phase transitions of the 
weak crystallization type. 

We shall consider these phase transitions and equilibria 
of the corresponding phases in the following sequence. In 
Sec. 2 we present a general method for the derivation of the 
appropriate Hamiltonian and its reduction to the Landau- 
Brazovskii (LB) form in the specific example of one simple 
polyelectrolyte system. In Sec. 3 we give an additional for- 
mulation of the Brazovskii approximation based on the use 
of the variational principle, which is convenient for the cal- 
culation of the correlation functions and the free energy of 
such systems which are described by that Hamiltonian for 
which the quantities q,, y, and R differ for the coexisting 
phases. The results obtained are used in Sec. 4 to construct 
and analyze the phase diagram of the investigated system 
both in the mean-field and Brazovskii approximations, and 
to demonstrate that supercrystalline phases exist and can 
coexist with one another and with liquid phases. Finally, in 
Sec. 5 we discuss the conditions for selection of real polymer 
systems which can exhibit the phase diagram in question. 

2. CONTINUUM DESCRIPTION AND THE LANDAU- 
BRAZOVSKll HAMlLTONlAN OF POLYELECTROLYTE 
SYSTEMS 

Consider a system in which there are on the average N, 
(macro)molecules of type S in  volume V (the type of mole- 
cules may be described by their structure formulas). In or- 
der to describe the state of such a system we have to specify 
not only molecular-structure distribution { N ,  1, but also the 
distribution in the space of local densities (numbers per unit 
volume) @, (r)} of all k types of particles or "broken links" 
(see below) in the system. (We regard as particles both the 
links in the macromolecules and small molecules which may 
differ from one another by the nature of the short-range in- 
terparticle interaction and have a charge zie, where e is the 
electron charge and z, is the valence of particles of type i.) 
The free energy of such a system can be represented by the 
functional integral over the densities bi (r)}: 

F=-T In 1 6 p i  (r) erp { -F(  {pi (I ) ) .  T)/T), (1)  

which can be given a rigorous meaning by the method of 
collective variables,16 and in our case it is convenient to carry 
out calculations by a method described in Ref. 9 and includ- 
ing a procedure for the removal of ultraviolet divergences 
typical of systems with the Coulomb interactionL3 and of 
polymer systems with a local interaction between  link^."^'^ 
The quantity F(@, ( r ) } , T )  in Eq. ( 1 ) is the free energy of 
such a polymer system with a specified (nonequilibrium) 
distribution of the densities b, (r)),  which can be represent- 
ed in the form 

F((pi(r)},~)=~({pi(r)),~)+S drdr - , Q(r)Q(rf)  
E ( r-r' 1 -. (2)  

Here, Q(r )  = e8zip, ( r )  is the local charge of the system, cis  
the permittivity of the medium, e is the electron charge, and 
g ( G i ( r ) ) ,  T) is the free energy of what is known as the 
basis ~ys t em~ . " . ' ~  whose polymer structure and the short- 
range interaction between the particles are exactly the same 
as for the investigated polyelectrolyte, but all the valences zi 
become zero. 

We now calculate the functional integral ( 1 ) by ex- 
panding the free energy F(bi ( r  )}, T) as a series in the pos- 
tulated small fluctuations 

retaining, as is usual in the Landau theory of second-order 
phase transitions,I3 only terms up to fourth order in Qi ( r ) :  

where the following notation is used: 

The integration with respect to each of the coordinates ri in 
Eq. (5)  is carried out over the whole volume Vof the system 
and the summation (instead of the summation sign we shall 
use th6 Einstein rule for the summation with repeated in- 
dices: 8:= uiui = uiu, ) is carried out over all the transposi- 
tions (a , ,  ..., a, ) of n (not necessarily different) numbers ai 
each of which can have any value from unity to k, where k is 
the total number of different types of particles of the investi- 
gated polymer system or, which is equivalent, the number of 
components of the corresponding system of broken links. 

The concept of a system of broken links introduced by 
Lifshitzi9 makes it possible to obtain explicit expressions for 
the vertex functions TK! ,,,, ( r  ,,..., r, ) in terms of the micro- 
scopic characteristics of the interparticle interaction and the 
polymer structure, bearing in mind the following consider- 
ations. This concept is valid in the case of (not very dilute) 
polymer systems for which the main contribution to the in- 
teraction energy comes from collisions between links be- 
longing to different micromolecules. Averaging of the con- 
tribution of these collisions which occur over short 
(low-molecular) distances can be made statistically inde- 
pendently of averaging of the contribution of the conforma- 
tion set of macromolecules, which occur at longer (macro- 
molecular) distances. (The condition for the validity of the 
factorization of these averages and, therefore, the validity of 
the idea of a system of broken links and the more general 
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concept of a system of "quasim~nomers"~~ are discussed in 
Ref. 21.) Therefore, the partition function of such systems 
splits into a product and the free energy into a sum of the 
corresponding contributions: 

where the first (energy) term, which in view of the above is 
independent of the polymer structure, can be interpreted as 
the contribution of the free energy F of some model low- 
molecular system representing broken links. (The quantity 
F * is frequently called the contribution of the bulk interac- 
tion between the polymer links.) In the case of the structure- 
entropy contribution F, (@; (r)), {N,}), T, it represents 
the free energy of an ideal polymer, i.e., of a system of nonin- 
teracting (macro) molecules (including the small molecules 
of the solvent) with the same molecular-structure distribu- 
tion IN, }  as in the case of the polymer system of interest. 

In particular, instead of F*(@, (r)) ,  T ) ,  it is frequent- 
ly convenient to use an expression obtained using the Flory- 
Huggins lattice model, which is standard in the theory of 
polymers: 17.18,22,23 

where uU is the matrix describing the bulk interaction 
between the particles in a melt. Equation (7)  describes only 
that part of the bulk interaction which corresponds to the 
attraction between particles, whereas the presence of a solid 
core (excluded volume) of the particles is allowed for by 
adding the condition of incompressibility which imposes 
limitations on possible local fluctuations of the melt compo- 
sition: 

where ui is the excluded volume of particles of type i. There- 
fore, in this case, which is the only one which we shall con- 
sider, we have 

and if n > 2, then all the coefficients T,*,j"n ( r  ,,..., r, ) vanish 
identically [here and later an appropriate index will be used 
to denote that part of the functional derivative of Eq. (5a) 
which is taken from the contribution with the same index]. 

However, in a calculation of the polymer contribution it 
is convenient to employ the familiar interpolation expression 
for the free energy F, (loi (r)), {N, ), T )  of an ideal polymer 
mixture suitable in the case when the characteristic scale of 
fluctuations is small compared with the dimensions of a 
polymer tangle, as well as in the opposite limiting case:".22 

The summation in the first term of Eq. (9)  is carried out over 
all types of low-molecular ccmponents (i.e., counterions, 
salts, and possibly solvents); in the second term it is carried 
out over all the macromolecules of the system with the struc- 

ture formula S; a is the size of a statistical segment; p, is the 
average density of macromolecules of type S. Using Eqs. (7 )  
and (9)  in writing down Eq. (6)  and substituting then Eq. 
(6)  into Eq. (2) ,  we readily obtain the final expression for 
the coefficients in the expansion of the free energy of a poly- 
electrolyte system in terms of the density fluctuations. 

However, it is pointless to write down this expression 
for polydisperse polyelectrolyte systems in its general form, 
because of the difficulty of analyzing the phase diagrams of 
systems with a large number of thermodynamic degrees of 
freedom when several phases may coexist, when there may 
be triple points, etc. (A  similar situation is encountered also 
in the case of heteropolymers with more than two compo- 
nents.) Therefore, in the present investigation we analyze 
the conditions of formation of a domain structure and the 
nature of a typical phase diagram by using the following 
simple model, proposed in Ref. 14, with just one thermody- 
namic degree of freedom. We discuss a polymer melt consist- 
ing of a polyelectrolyte A containing (on the average) one 
charged group for every m monomer links, and an un- 
charged polymer B with the degrees of polarization NA and 
N, , respectively, and we assume that the average concentra- 
tion of the polyelectrolyte is 

where vi is the average number of macromolecules of type i 
per unit volume. We also assume that the excluded volumes 
of the charged and uncharged links A and B are equal for the 
same value of u, while the salt effects can be ignored, since 
counterions present of necessity in the system for the pur- 
pose of neutralizing the polymer charge and assumed (for 
the sake of simplicity) to have the same valence z as the 
charged links of the polymer A,  contribute only to the Cou- 
lomb interaction and their contribution to the bulk interac- 
tion can be ignored (the error committed by this assumption 
is of order l/m, i.e., it is small for the present case of a weakly 
charged polyelectrolyte characterized by m > 1) .  Then, the 
condition of incompressibility (8)  can be written in the form 

where xi ( r )  = up, ( r )  is the volume fraction of a polymer of 
type i at the point r. Therefore, the state of the system in 
question is characterized by a distribution of two indepen- 
dent local densities: the density pA ( r )  of all (charged or 
uncharged) links in a weakly charged polyelectrolyte [or 
their volume fraction xA ( r )  ] and the density of counterions 
p, ( r ) .  In contrast to the local condition of incompressibility 
of Eq. (8a), the condition for electrical neutrality of this 
system as a whole 

1 PA 
i . . = T I ~ p c ( r ) = - = - -  rn mV ' 1  d r p  ~ r  ( )  

does not affect the independence of the Fourier components 
of the corresponding densities 

when q = 0. On the other hand, ZA = upA is the only thermo- 
dynamic parameter which represents the state of the system 
as a whole. 

On this basis we can write down the following expres- 
sion for the free energy of the investigated system: 
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+&,zizj j dr drl pi ( r )  pi (r') 
4n 1 r-r' 1 ' 

wherex = (uaa + v,, - 2vab )/2vT is what is known as the 
Flory-Huggins parameter representing the short-range in- 
teraction between the links A and B (Refs. 17, 18, 22, and 
23), which is usually represented in the form x = 0 /2T  
(the quantity O is known as the Flory temperature) and 
I, = 4ne2/&T is known as the Bjerrum length. In Eq. ( 10) 
and in the following text the indices 1 and 2 denote the densi- 
ties of all (both charged and uncharged) links in a polyelec- 
trolyte and counterions. In accordance with the definition of 
our system, we have z, = z and z, = d m ,  since in this case 
the correlation radius (or, which is equivalent, the screening 
radius) of the system under consideration is large compared 
with the rms distance between the charged links of a polymer 
(this is the case which is attracting most interest), so that a 
polyelectrolyte can be regarded as uniformly charged with 
an average linear charge density ze/m per polymer link. The 
quantities which then occur in the expansion (4)  of the func- 
tional ( 10) are given by the following expressions 

Before we investigate the conditions of formation of the 
supercrystalline order in our system, we have to face the 
question of selection of the order parameter in order to de- 
scribe the effect. Usually second-order phase transitions are 
described selecting as the order parameter that variable or 
combination of variables which fluctuates most strongly as 
the phase transition point is approached (in general, the 
phase transition ~urface) . '~  Consequently, in our case we 
have to investigate the eigenvalues {Ai (q)} of the inverse 
matrix of the total density-density correlation functions 
3 - I  (q): 

Obviously, the system may be in a spatially homogeneous 
state (even metastable) only if the matrix 9 - ' (q) is posi- 
tive definite. Therefore, the point (or in general the surface 
of the spinodal) which limits the range of the absolute insta- 
bility of a spatially homogeneous state of the system is de- 
scribed by the condition 

min h- ( q )  =0, (13) 

where II - (q) is the minimum, for a given value of q, eigen- 
value of the matrix 9 - ' (q)  and the minimum of Eq. ( 13 is 
sought on the semiaxis O<q2< oo . Two cases are possible: 1 ) 
if the minimum of Eq. (13) occurs at go = 0, then for 
A - (9,) <O we have the usual stratification due to macro- 
scopic spatially homogeneous phases; 2) if the minimum 
( 13) is reached at qo#O, then for II - (9,) < 0 the supercrys- 
talline order appears in the system. In both cases the role of 
the order parameter is played by the eigenvector which cor- 
responds to the eigenvalue II - (9,) < 0. 

If we consider the term with the Coulomb interaction as 
a regular perturbation," we readily obtain the following 
expression for the eigenvalues of the matrix (12): 

- 
where II 7 (q) = i;, , (q)/v, II ': = r2,/v, x = lba2/v. We can 
easily see that the larger of these eigenvalues is always posi- 
tive, whereas the smaller tends to zero, which can be de- 
scribed by a fraction 

Therefore, the solution of Eq. ( 13) is obtained when the 
value of the numerator of this fraction 

and its derivative with respect to q vanish simultaneous- 
ly,9*1' which gives rise to the expressions obtained in Ref. 14 
for the equation of the spinodal (boundary of the region of 
the absolute instability of a spatially homogeneous state, 
which may be even metastable) and the critical momentum 
of the investigated system: 

where 2 = xm . In standardization of these equations and 
reduction of our effective Hamiltonian to the Landau-Bra- 
zovskii' Hamiltonian, it is convenient to introduce new di- 
mensionless 

Q.2=q.2a2rpZ, rp2=m/ ( I ~ X ? ~ ? ? ~ )  %, x=lba2/v, 

We can easily show that if we use such notation, then the 
solution of Eq. (15) and the tangent of the angle a ( q ) ,  
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which determines the transition to the basis of the eigenvec- 
tors Yi of the matrix ( 12) by the transformations 

can be written in the following simple form: 

Therefore, an instability typical of the weak crystalliza- 
tion process occurs in the case of a finite value of the critical 
momentum Q: > 0 only if the condition s < 1 is satisfied. 
Not too close to the boundary of the region within which 
weak crystallization exists, as demonstrated by Eq. ( 18), we 
have tg [2a(q,) ] -0 when m -+ a. In other words, for weak- 
ly charged polyelectrolytes in the region where supercrystal- 
line phases can exist, we can assume that a strongly fluctuat- 
ing order parameter Y, (q)  is proportional to fluctuations of 
the polyelectrolyte density p,  (q), while the weakly fluctuat- 
ing order parameter Y,(q) is proportional to fluctuations of 
the counterion density p2 (q).  Therefore, in carrying out the 
preliminary integration over all the distributions of the 
counterion density in the continuum integral ( 1 ) needed to 
obtain the effective Hamiltonian as a functional of just the 
strongly fluctuating order parameter, we can limit ourselves 
to the single-loop approximation, corresponding to the De- 
bye-Hiickel theory, which allows us to write the free energy 
of Eq. ( 1 ) in the form 

F=Po (f a, T) +AF,  

AF=-T ln 6pl (r)exp(A~( {p, (r) ), T)/T), ( l a )  

where 

and the continuum integral describing the fluctuation con- 
tribution to the free energy can be rewritten conveniently by 
using the variables ( 16) introduced above and substituting 
the integration variable 

in the following way: 

AF=-Tln j 6 ' Y  (r)exp{-H({Y (r)),  T)/T), 

g-'(Q) =y"' (Q)=Q2+t+ (QZ+s)-'. (22) 

Since g - ' ( Q) considered as a function of Q = I Q I has a 
minimum at Q = Q. = (1 - s )  '", it can be expanded near 
this minimum as a Taylor series in powers of (Q - Q. ) : 

g-'(Q)=(2 Q.)2{~+(Q--Q.)zi-. . .), (23) 

where 47 = (2 - s + t ) / (  1 - s) and the leading terms of 
the expansion (23) in the range r/Q 2,g 1, typical of the 
weak crystallization region, can be ignored. Moreover, since 
in the case of the correlation function of the (23) type the 
main contribution to the calculation of the diagrams is made 
by momenta close to Q, in magnitude, we must assume 

Next, substituting Eq. (23) into Eq. (21) and making the 
substitutions indicated above, we finally obtain an expres- 
sion which is fully identical with the Landau-Brazovskii 
Hamiltonian: 

where 

3. VARIATIONAL PRINCIPLE AND CALCULATION OF THE 
FLUCTUATION CORRECTIONS TO THE FREE ENERGY OF 
THE HAMILTONIAN OFTHE LANDAU-BRAZOVSKI~TYPE 

In the calculations of the contribution A F  to the total 
free energy of the system made using the mean field approxi- 
mation, i.e., accurate to within a preexponential factor, it is 
sufficient to find a minimum of the functional (24) which 
should be found assuming 7 < 0-i.e., in the instability range 
of a spatially homogeneous (liquid) state-using the theory 
of weak crystallization and seeking the class of nonzero peri- 
odic functions of the coordinate \I, ( r )  with the symmetry of 
some Bravais lattice: 

where the summation is carried out over all the vectors of the 
reciprocal lattice (related to the corresponding Bravais lat- where 
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tice) whose absolute values are Q.. 
A correct allowance for fluctuation effects, i.e., calcula- 

tion of the integral (22) in the situation when the corrections 
to the steepest-descent value of this integral are large, must 
include the transition from the unrenormalized (bare) cor- 
relation functions (in our case they are the density-density 
correlation functions) to the total (renormalized allowing 
for the fluctuations) correlation functions. This transition is 
easily made using the general field approachz6 based on deri- 
vation of the generating functional of the appropriate class of 
diagrams in which the arguments are both the unrenorma- 
lized and total correlation functions. The free energy of the 
system is then found by minimizing this functional with re- 
spect to the total correlation functions and the dependence 
of these functions on the parameters of the system (tempera- 
ture and composition) is obtained by solving the appropriate 
equations for extremals. In the theory of weak crystalliza- 
tion it is quite permissible, as demonstrated by BrazovskiK3 
to allow only for the influence of fluctuations on the renor- 
malization of a pair correlation function, so that the renor- 
malized pair correlation function is sought in the form 

G-I (Q) = ( IQI  -Q.)'+r. (27) 

Omitting the intermediate steps, corresponding to what is 
known as the second Legendre transf~rmation,'~ we give the 
final expression for the free energy in the form of the follow- 
ing functional series: 

which includes expressions only for the contributions of 
those diagrams which correspond to the Brazovskii approxi- 
mation, while the contributions of higher-order diagrams 
corresponding to the renormalization of the vertices of the 
third and fourth orders are omitted, which is permissible if 

Then the Brazovskii approximation itself has the following 
range of validity3 

Replacingg, G, and \y in Eq. (28) with the expressions (23), 
(27), and (26), we obtain 

where h = Q : / 2 ~ ,  A are identical-as demonstrated by di- 
rect minimization of similar functionals in Refs. 2-4 and 6- 
amplitudes of the reciprocal lattice vectors belonging to the 
first coordination sphere, and the coefficients a, and 0, 
depend on the nature of the supercrystalline lattice as fol- 
lows: 

for a lamellar lattice (1) 

for a triangular ( A )  lattice 

for a body-centered (bcc) lattice 

Minimization of the functions (30) with respect to r 
and A gives a system of equations first obtained by Bra- 
zovskit3 this system of equations defines rand A as functions 
of the effective temperature T and characterizes the form of 
the supercrystalline lattice by the parameters a, and 0, : 

r-z-hX/2r'"-XA2=0, 

Therefore, the variational principle based on minimization 
of the functional (28) gives an alternative formulation of the 
theory of Refs. 3 and 4. It is specifically in the case of this 
formulation that the theory of weak crystallization is more 
suitable for describing the formation of a domain structure 
in systems in which 7, ?,A, Q. are functions ofthe state of the 
system or, as in our case, depend on the composition of the 
melt. This is because the method for the calculation of the 
free energies of the supercrystalline phases proposed in Refs. 
3 and 4 makes it possible to find only the differences between 
these energies and the free energy of a homogeneous state 
with the same values of the parameters T, y, 2,  Qr , which is 
undoubtedly fully justified and convenient in an investiga- 
tion of the phase transitions in systems for which these pa- 
rameters are the same for all the coexisting phases. However, 
as shown in the preceding section, in our case these param- 
eters clearly depend on the volume fraction of a pO1yelectro- 
lyte and stratification of the latter should make them dilTer- 
ent for the coexisting phases. Therefore, in discussing the 
equilibria of the phases (for example, supercrystalline) in 
polyelectrolyte systems we must know the absolute value of 
the free energy, which (in contrast to Refs. 3 and 4) allows 
us to find the functional (28). 

Substituting in Eq. (31) the trivial solution A = 0, 
which corresponds to a homogeneous phase, we can find the 
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dependence of r  on T for the homogeneous phase: X~ 

However, in the case of an inhomogeneous state we have to 
solve the system 

Substitution in Eq. (30) of the solutions of Eq. (32) or of the 
system (33) for different types of lattices yields the depen- 
dence AF, ( bi ( r )  1, T) for a supercrystalline state of a giv- 
en symmetry on the temperature and composition of the 
poly&ectrolyte. Similar - expressions, defining r and FIG. 2. Phase diagram of the investigated polymer system calculated in 

u, ( bi ( r  I), T) are in the mean field approxima- the mean-field approximation assuming that x = 1 .  The shaded regions 
represent coexistence of two phases. The regions are numbered as follows: 

tion if Eq. (30) is simplified by dropping terms of the I)  L; 11) bee; III) A; IV) I; V )  A-I,; VI) ~CC-I,;  VII) L,-1,; VIII) A,-L, 
hX /r1'2 type, which corresponds to assuming that the per- and bcc-A,; IX) L2-1,. 

turbation parameter hX /r3I2 is small. 

4. PHASE DIAGRAMS OF THE INVESTIGATED 
POLYELECTROLYTE SYSTEM line lattice symmetry should be sought either by solving the 

We now describe the procedure for constructing the System of equations assuming the equality of the pressures 

phase diagram of the investigated polyelectrolyte system. and chemical potentials of the stratified phases or by directly 

With this in mind we write down the final expression for the minimizing the function 

free energy, which is found by combining Eqs. (17) and @ (12, 1 )  =fiFn({pi("), T) +fzFl({~i(~'), T) , 
(28): 

fi+fz=l, (35 

where the equilibrium values of r and A for a given super- 
crystalline phase are found, as described in the preceding 
section, by minimization of the function (34) with respect to 
these quantities, while n is used to number the type of the 
supercrystalline lattice. Determination of the metastable re- 
gions is carried out in the usual way and in general the boun- 
daries of these regions need not coincide with the boundaries 
of similar regions for a homogeneous melt. The equilibrium 
compositions of the phases for a fixed type of supercrystal- 

wheref; is the volume fraction of the ith phase, which should 
be done for all the sets of the index pairs n, I numbering the 
types of supercrystalline structures, and by selecting phases 
of such symmetry which should correspond to the absolute 
minimum of the functional @(n,l) for given values of the 
parameters and temperature. These results of numerical im- 
plementation of the procedure described above are presented 
in Figs. 1 and 2. 

All the phase diagrams shown below are calculated for 
the following values of the parameters: m = lo2, NA 
= N, = lo3, v/a3 = 1. For example, in Fig. l a  the phase 
diagram of a weakly charged polyelectrolyte melt is plotted 
in the (x, ZA ) plane on the assumption that x = 1. The 
shaded regions are those where two phases coexist simulta- 
neously. The regions are numbered as follows: I )  a homoge- 
neous melt liquid (L)  : 11) a region where two homogeneous 
phases coexist (L,-L,); 111) a region where the supercrys- 
talline structure with the lamellar symmetry (1) can be 
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FIG. 1. Phase diagrams of the investigated polymer 
system calculated in the Brazovskii approximation: a) 
x = 1; b) x = 6. The shaded regions correspond to the - coexistence of two phases. The following regions are 
identified by numbers: I)L; II)L,-L,; 111) L,-I,; IV) 
L2-1,; V) I. 
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found; IV), V) regions where the homogeneous and lamellar 
phases coexist (L-I). The period of the supercrystalline lat- 
tice is different in these regions because in our c a s e i n  con- 
trast to the case considered by Brazovskii-the pair correla- 
tion function depends on the composition of the melt. A 
characteristic feature of this phase diagram is that when jj 
increases (i.e., when temperature is lowered) a "corridor" 
of composition appears where the melt can exist in the lamel- 
lar supercrystalline structure. The change in the behavior of 
the system as a function of x is demonstrated in Fig. lb, 
where the phase diagram for x = 6 is given. We can see that 
this new phase diagram still has five regions. However, in 
contrast to the preceding phase diagram, it has a wide range 
of regions of the parameter 2 where stratification into two 
homogeneous phases takes place and the region where the 
pure lamellar phase exists shifts toward lower temperatures. 

Figure 2 gives the phase diagram calculated in the 
mean-field approximation for x = 1, where the single-phase 
regions in which a spatially homogeneous melt (L)  and su- 
percrystalline structures with symmetries of the body-cen- 
tered cubic (bcc) , triangular (A ) , and lamellar lattices exist 
are labeled by the numbers I, 11, 111, and IV, respectively. 
The regions with compositions corresponding to stratifica- 
tion into two coexisting phases are labeled as follows: V) A- 
1,; VI) bcc-1,; VII)l,-L,; VII1)l-A, and A,-bcc; IX)L2-I,. 
Comparing the phase diagrams shown in Figs. l a  and 2, we 
can see that an allowance for the fluctuation effects leads, 
firstly, to a shift of the transition lines toward lower tempera- 
tures (widening of the phase transition region) and, second- 
ly, to suppression of the regions in which phases with higher 
types of symmetry coexist, i.e., it results in predominance of 
the phase with the lamellar symmetry, which is typical of 
weak cry~tallization.~,~ 

5. DISCUSSION OF RESULTS 

We have demonstrated that melts of weakly charged 
polyelectrolytes may exhibit not only supercrystalline 
phases, but also an equilibrium of these phases with one an- 
other and with the spatially homogeneous (liquid) phase. It 
is natural to ask the question: for which systems and under 
what conditions can the phase diagrams plotted above be 
observed? The definitions (25 of the parameters that occur 
in the conditions (29) for validity of the Brazovskii approxi- 
mation readily show that in the most interesting region, 
which is inside the corridor bounding the region of existence 
of the lamellar phase, both these existence conditions can be 
readily satisfied for values of Q. which are not too small, 
because if X, = Z, = 0.5, the parameter y vanishes, while 
the parameter 2 decreases on increase in m (i.e., on reduc- 
tion in the degree of ionization of the polyelectrolyte). It 
therefore follows that the main constraint on the possibility 
of observing this lamellar phase is the condition 

where we introduced I ,  = 4re2/&@ and 

for the temperature which satisfies the spinodal equation 
( 17a), and in the definition of s we assumed that f, = X,. 
Substituting Eq. (37) into Eq. (36), we can readily show 
that the latter is equivalent to the inequality 

In the case of what are known as flexible-chain macromole- 
cules, with typical values a - 20 A, "/a3 -0.1, and 0 - 300- 
500 K, the above inequality is satisfied for m k 4, which is 
known to be true in the case of weakly charged polyelectro- 
lytes characterized by m% 1. However, when the tempera- 
ture of the system is lowered, the parameter s rises and we 
first find ourselves outside the range of validity of the Bra- 
zovskii approximation, while for s > 1 we are also outside the 
range of existence of supercrystalline phases. Therefore, the 
theory developed above is valid only in that part of the phase 
diagram which is shown in the figures. 

It also is useful to compare the results obtained in the 
present study with the phase diagram derived earlier qualita- 
tively by one of the present authors and Boryu9-" for a dif- 
ferent system in which the coefficient in front of the cubic 
term does not contain an additional small parameter. In the 
light of the above analysis we can expect that the structural 
phase transitions discovered in Refs. 9-1 1 for such a system 
in the case of a fixed average composition should be metasta- 
ble against stratification into two phases of different compo- 
sitions, but a quantitative analysis of the equilibrium of these 
phases is outside the framework of the theory of weak crys- 
tallization. 

We conclude by noting that the mechanism of weak 
crystallization associated with the presence of a stabilizing 
Coulomb factor described above is not specific to polymer 
systems. We can expect similar phase diagrams for other 
systems of charged particles with long-range correlations of 
the non-Coulomb origin (such as near-critical electrolytes, 
systems of charged dislocations, etc.). 

The authors are grateful to I. A. Nyrkov and A. R. 
Khokhlov for valuable discussions. 
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