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Experimental results are reported on controlling the phase memory of the polarization echo in 
ferroelectric crystals by applying to the sample, along with the microwave pulses, various 
combinations of pulses of an electric field of constant amplitude AZ and length At. For LiNbO, 
crystals, pulses with AZ- 755 kV/cm and At - 10 - s lead to a complete suppression of the 
polarization-echo signal in certain cases. In LiNbO, crystals activated with Ni2 + ions, the phase 
memory is destroyed at AE- 150 V/cm and At- 10 - ' s. This destruction of the phase memory of 
the polarization echo can be either reversible or irreversible. It  stems from dispersion-induced 
spreading, curvature of the wavefront, and a violation of the phase-matching conditions during 
phase conjugation of the hypersonic pulse. For crystals doped with Ni2 + ions, the phase memory 
can be controlled efficiently by applying weak pulses with AZ- 1-10 V/cm ( At - 10- 7-5. 10 - ' 
s).  

INTRODUCTION in the pauses between these pulses. The results show that 

A polarization echo can form in ferroelectric and pie- either a reversible or an irreversible change in phase memory 

zoelectric samples. This echo is a hypersonic response of the may occur, depending on the particular experimental condi- 

substance to the application of two microwave pulses. At the tions. 
time t = 0, a traveling hypersonic wave is formed by the first 
microwave pulse, of frequency o .  This hypersonic wave EXPERIMENTAL PROCEDURE 

- - 
propagates through the crystal at a velocity s. If a second All the measurements were carried out at liquid-helium 
microwave pulse, of frequency 20, is applied to the crystal at temperatures, on two samples: a LiNbO, sample without a 
the time t = T, the parametric interaction of the hypersonic dopant and a LiNbO, sample doped with ~i~ + ions. The 
wave with the microwave field gives rise to phase conjuga- samples were rectangular parallelepipeds. The polarization 
tion of the hypersonic pulse. At the time t = 27, the surface echo was excited in a regime of traveling hypersonic waves 
of the crystal generates a polarization-echo signal. 

The polarization echo in the microwave range has been 
studied a~tivelyl-~ in a number of piezoelectric and ferroe- 
lectric materials. This research has made it possible to distin- 
guish the processes by which hypersound is absorbed from 
scattering by inhomogeneities and from the diffractive loss 
stemming from the reconstruction of the wavefront of the 
oppositely directed wave. It has also been found possible to 
study the spin-phonon interaction in crystals containing a 
paramagnetic impurity. Since the amplitude of the polariza- 
tion echo is proportional to the constants of the nonlinear 
piezoelectric effect, this phenomenon could in principle be 
utilized to determine the components of the nonlinear pie- 
zoelectric tensor. However, such a study runs into difficul- 
ties in the calculation of the actual microwave field in a cav- 
ity, with allowance for the distortions of the field which arise 
when the test sample is inserted into the cavity. Further- 
more, the expression for the echo amplitude contains a fairly 
complex combination of the linear and nonlinear piezoelec- 
tric effects. This circumstance poses additional difficulties in 
attempts to determine the nonlinear constants from polar- 
ization-echo experiments. In the present study, we accord- 
ingly examine the possibility of determining these constants 
from the efficiency with which the polarization echo is sup- 
pressed by pulses of an electric field of constant amplitude. 
We also examine the conditions under which it becomes pos- 
sible to control the phase memory of the polarization echo by 
applying electric-field pulses of constant amplitude to the 
sample, both during the application of microwave pulses and 

by a two-frequency method. The frequencies of the first and 
second microwave pulses were 9.6 and 19.2 GHz, respective- 
ly. The sample was positioned in such a way that its polished 
end, oriented perpendicular to the z axis, was at a maximum 
of the electric component of the microwave field of the first 
cavity, which was tuned to a frequency of 9.6 GHz. The rest 
of the crystal was in the microwave electric field of the sec- 
ond cavity, which was tuned to 19.2 GHz. The first cavity 
was used to excite a traveling hypersonic wave in the sample, 
while the second was used to apply the electric field of the 
second microwave pulse to the 9.6-GHz hypersound propa- 
gating through the crystal. The electric field was applied in 
the direction perpendicular to the propagation direction of 
the hypersonic pulse in the sample. Experiments were also 
carried out in which there was a single-frequency excitation 
of the polarization echo by microwave pulses with a modula- 
ted frequency of 9.6 GHz. 

Figure 1 shows experimental results on a LiNbO, sam- 
ple both of whose ends perpendicular to the z axis were pol- 
ished. The sample itself was inserted completely into a reso- 
nant cavity. In this case, along with the echo signals on the 
oscilloscope traces one sees multiple reflections from the 
plane-parallel ends of the sample of the hypersonic pulses 
excited by the first and second microwave pulses. Trace a 
corresponds to the excitation of a polarization echo without 
the application of an electric field pulse. Trace h corresponds 
to suppression of the echo by an electric field pulse. 

The traces in Fig. 2 were obtained during two-frequen- 
cy excitation of the echo. The LiNbO, sample in this case 
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had only one polished end (perpendicular to thez axis). The ential-amplifier input of the oscilloscope. Pulses of negative 
echo signals on the traces are thus not accompanied by hy- polarity were fed to the second input; the length and time of 
personic pulses. During the recording of the traces, the out- application of these negative pulses corresponded to the elec- 
put signal from the microwave receiver was fed to one differ- tric field pulses applied to the sample. In this case the sample 

FIG. 2. Effect of electric field pulses of constant amplitude on the 
polarization echo in LiNbO,. The first two pulses on each of the 
oscilloscope traces are exciting pulses; the echo signal follows. The 
negative swings correspond to the electric field pulses of constant 
amplitude which are applied to the sample. 
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was positioned between the plates of a structural capacitor, 
to which electric field pulses were applied both during the 
microwave pulses and in the pauses between them. 

The application of electric field pulses before, during, or 
after the phase conjugation by the second microwave pulse 
(traces 1-5 in Fig. 2) resulted in a suppression of the echo 
signal, because of the asymmetry of the conditions for the 
propagation of the hypersound in the forward and backward 
directions. Identical propagation conditions were arranged 
for the hypersonic pulse before and after its conjugation. 
Thus a nearly complete restoration of the amplitude of the 
polarization echo was achieved, by applying additional elec- 
tric field pulses at the instants at which the hypersound 
passed through a given region of the crystal, first in the for- 
ward direction and then in the backward direction (traces 6 
and 7 in Fig. 2).  The application of a single electric field 
pulse at the time of the second micro17 dve pulse (trace 8 in 
Fig. 2) did not result in any substantial suppression of the 
echo. Nor was the echo suppressed when an electric field 
pulse was applied throughout the echo formation process, 
from the time of the excitation of the echo to the time of its 
detection (trace 9 in Fig. 2). 

INTERPRETATION AND DISCUSSION OF RESULTS 

To describe the experimental results we write the free- 
energy density Y of the sample in the form4 

where Co and Ch3' are the linear and nonlinear elastic ten- 
sors, respectively, E, and ,$'" are the linear and nonlinear 
dielectric tensors, respectively, ,Bo and 7, are the linear and 
nonlinear piezoelectric tensors, respectively, p, is the pho- 
toelastic tensor, f, is the electrostriction tensor (we are 
omitting the tensor indices), U =  U,  = 1/2(d, U, + a, U, ) is 
the strain tensor, and E = E, is the electric field (a  vector). 
Using ( 1 ) , we can derive the coupled equations of the theory 
of elasticity and electrodynamics. As a zeroth approxima- 
tion we adopt a wave solution of the linear equations deter- 
mined by the first three terms in Y. These terms characterize 
the dispersion and the polarization of the wave in the given 
direction. We then take the nonlinear terms in Y into ac- 
count, with the result that a component Sa which is nonlin- 
ear in U and E appears in the stress tensor: 

We consider the propagation of a hypersonic wave of 
frequency w through the crystal. The wave is described by 
the displacement vector Ui under the condition that the fol- 
lowing electric fields are present in the crystal: zi, which is a 
quasiconstant field (these are the constant-field pulses), and 
E Y and E f m ,  which are the microwave field pulses at the 
frequencies w and 2w; in other words, we have 
Ei = Ei ( t )  + E y(t) + E Tw ( t ) .  In addition, the linear pie- 
zoelectric effect means that the hypersonic wave with wave 
vector k is accompanied by an electric wave E yk. Assuming 
the pump wave to be given, and taking (2) into account, we 
find 

a , ,  u i - s"3kkUi=~-L [qnij,,~En+~ni~k~En2W+fnmijk~EnwEmoI ajiu~r 

wherep is the density of the crystal, and s' is the velocity of 
the wave with wave vector k. The tensors C"', 7, and f in 
( 3 )  have been renormalized with allowance for E yk to p, 
and 'lo, as was done in, for example, Ref. 5. 

We set 

Ud*qt(')Ul (r ,  t )  e'('f-kr)+qi(e)Uz ( r ,  t )  e'("f+kr) + c.c., 
Eio=-i g i ( 3 ) 8 0 ( t )  etW1 + c.c., 

E i a e = - i q i ( ' ) ~ Z ~ ( t ) e 2 ~ ~ t  + C.C. I q ( l ) l  = [ q t 2 ) 1 = I  q ( ~ ~ j =  lq(4)I=1. 

Using the method of slowly varying amplitudes with the 
given pump wave, we find 

d,U,+s-ia,U,+rU,=iAF, ( 2 ,  t)+aU,*, 
( 5  

We assume that the wave is propagating along the z axis. 
Here r is the hypersound attenuation coefficient, and 
MIo, = F,,,, (z,t) - F, (0,0), where 

We find F2 from F, by replacing 9''' by q'2': 

where s is the sound velocity when the nonlinear F, (0,O) 
contributions are taken into account (we are assuming that 
the hypersonic wave is emitted from the z = 0 end of the 
crystal at t = 0 as a result of the application of the first mi- 
crowave pulse). 

We change variables: 

A direct substitution of (8) and (9) into (5 )  easily veri- 
fies that the equations for n, and n, become 

727 Sov. Phys. JETP 72 (4), April 1991 Validov et a/. 727 



to 

AF (s, t; t') =AF,(z-st+stl, t') +AF,(z+st-st', t') . 

Equations (8)-( 11 ) describe all stages of the evolution 
of the hypersonic pulses in the polarization echo: ( 1 ) In the 
time interval 0 < t < ~ ( t ,  = 0), in a pause between micro- 
wave pulses, we have a = 0, n2 = 0, and Dl #O; and Eqs. 
(8)  and ( 10) describe a damped wave with an additional 
phase shift determined by the integral in the argument of the 
exponential function. (2)  In the interval r<t<r + At (At is 
the length of the second microwave pulse), there is a para- 
metric interaction of the first hypersonic pulse with the elec- 
tric field of the pump at the second frequency, 2w. ( 3 )  In the 
interval r + A t < t < 2 r  (to = r +  At) we have a = 0, and 
Eqs. (9)  and ( 11 ) describe the evolution of the conjugate 
wave, with damping and with an additional phase shift. 

In the absence of external agents, we have 
AF, = AF2 = 0, and Eqs. ( 10) and ( 11 ) become the usual 
equations of slowly varying amplitudes for three-wave mix- 
ing in the approximation of a given pump wave. The coeffi- 
cients AF,  and AF2 in (5)  strongly influence the magnitude 
of the echo signal. Changes of two types-reversible and ir- 
reversible-can occur in the phase memory in this case. 

If AF,  # O  holds on the interval O<t < r, and AF = 0 
holds on the interval r < t < r  + At, parametric phase conju- 
gation occurs, but the wave packet representing the hyper- 
sonic pulse changes by the time t = T as a result of AF, #O, 
so that by the time t = 27 a wave packet with a distorted 
phase profile arrives at the z = 0 end. In other words, the 
phase memory is lost. Two reasons for this change could be 
cited: ( 1 ) dispersion-induced spreading of the wave packet 
[since we have AF,  cc w; see (6)  1 and (2)  curvature of the 
front of the sound wave if the external field is spatially 
nonuniform. 

As can be seen from (8),  a total loss of the phase mem- 
ory of the polarization echo occurs as a result of dispersion- 
induced spreading of the wave packet of the hypersonic 
pulse under the influence of the pulse of the constant field, of 
length At, under the condition that the spreading of the 
packet, S, is 

where Aw is the width of the packet. 
To estimate the curvature of the wavefront of the acous- 

tic pulse in the presence of a gradient of the electric field $ 
we use the geometric-optics method. We assume for simpli- 
city that the crystal is acoustically isotropic. We can then 
write an equation for an acoustic ray of the hypersonic pulse 
in the presence of the external field k. As the refractive index 
n we must choose 

where s, = (s2 + 77Ep - I ) is the phase velocity of the hy- 
personic wave in the external field k (we are omitting the 
tensor indices). 

Euler's equations for the acoustic ray are (Ref. 6, for 
example) 

where x, = x, (I) are the Cartesian coordinates of point r on 
the ray. These coordinates are treated here as a function of 
the length 1 measured along the ray. We assume that there is 
a constant gradient of the electric field, directed perpendicu- 
lar to the ray. If the ray is directed along the z axis at the 
z = 0 end, while the electric field gradient y is directed along 
they axis, we have 

In this case the ray clearly lies in the yz plane. We find the 
following equation for the component y( l) ,  which charac- 
terizes the excursion of the acoustic ray from the z axis: 

Since 1 does not appear explicitly in ( 16), the order of the 
equation can be lowered, and then a general solution of this 
equation can be found. Imposing the boundary conditions 

we find the following result for the angle a through which 
the acoustic ray is deflected from the z axis: 

We have assumed a 4 1 in the derivation of ( 17). 
However, the disruption of the phase memory caused 

by the dispersion-induced spreading and by the deflection of 
the ray can be repaired if a pulse AE,, is applied to the crystal 
after the phase conjugation, in order to cancel the additional 
phase shift, and if the wave packet is then "gathered up 
again" and sent back down the curved path, this time in the 
opposite direction. In this sense, mechanisms of this sort for 
the disruption of the phase memory can be called "reversi- 
ble." 

If we have AF # O  during the time interval r < t < r  + At, 
the pump is phase-modulated, as can be seen from ( 10) and 
( 11 [ a  is replaced by 

o exp [-is j AF(Z, t; tl)dtl] 

in ( 10) and ( 11 ) in the process]. This result reduces the 
efficiency of the parametric phase conjugation, because of 
the deviation from phase matching (Ref. 7, for example). In 
certain cases, there is no excitation of the conjugate wave at 
all (this is an irreversible disruption of the phase memory of 
the polarization echo). If AF = const on the interval 
r g t < r +  At, we find from ( l o )  and (11) 
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The general solution of this type of equation, under ar- 
bitrary initial conditions, is well known.' For the very sim- 
ple initial condition 

(A is the amplitude of the first pulse) we find 

x J I .  ( L I a I 2 ~ 2 - s z t 2 ~  "1 exp -i - d p ,  
-sAt  ( A;p) (19) 

where Jo ( x )  is the Bessel function of the first kind of index 
zero. For sufficiently short pulses, under the condition 
laIsAt< 1, we can set J,, ( x )  = 1 in the integrand. As a result, 
we find the following result for the amplitude of the conju- 
gate wave: 

sin E 
I = I o  - ~ ~ n t j . t l A E n ~ A t  

E 
, E =  ktOkjOq:" q,'2', (20) 

ps2 

where I, = IalAAt is the amplitude of the conjugate wave 
which has arisen by the end of the pulse, At, in the case 
A F  = 0. 

The reversible and irreversible mechanisms for the dis- 
ruption of phase memory which were discussed above com- 
pletely explain the oscilloscope traces in Figs. 1 and 2. We 
first note that the resolution of the memory, which is asso- 
ciated with the nonuniformity of the field E, is the most 
sensitive property. Since we have E, % 1 for LiNbO,, the 
nonuniformity of the electric field stemming from edge ef- 
fects in a cell consisting of a capacitor and a sample is very 
large. If the electric field E is applied when the hypersonic 
pulse is at the boundary of the capacitor, the field will vary 
by a factor of tens in this region. We thus have y ~ - ~ Z .  
Assuming yl- AE = 7.5 kV/cm, s = 7.2. lo5 cm/s, p = 4.7 
g/cm3 (Ref. 9) ,  and v13, z 50 C/m2, we find a z 10 from 
( 17). At hypersonic frequencies, a change of this sort in the 
direction of the wavefront leads to a sharp decrease in the 
electromagnetic response from the end of the crystal as the 
hypersonic pulse approaches it (Ref. 10, for example). 

Traces 2 and 3 in Fig. 2 confirm the discussion above. If 
a pulse A@ of the same height and length is applied when the 
conjugate wave approaches the end, the wave will be sent 
back in the opposite direction, and the echo signal will be 
reconstructed (trace 6 ) .  In examining traces 2,3,  and 6 we 
should also take the dispersion-induced spreading of the 
packet into account, but even for very short pulses 
(At- 10- S)  the spreading of the packet can be ignored 
since we have S - 10 - <n-, as can be seen from ( 12) (we are 
assuming Aw - l/At) . 

Traces 4,5, and 7in Fig. 2 can be explained in the same 
way as traces 2, 3, and 6-in terms of the presence of an 
electric field gradient during the application of a pulse AE to 
the crystal. The gradient would arise because of the finite 
transverse dimensions of the crystal ( -0.5 cm). In general, 
an irreversible disruption of the memory associated with a 
decrease in the phase-conjugation efficiency due to a disrup- 
tion of the phase matching should have been seen on trace 8. 
However, no significant suppression of the echo signal oc- 
curred. This result can be explained by calculating from 

(20). Setting AB, = 7.5 kV/cm, ko = (0,0,l), qo = (0,0,l), 
At = 3 .  10Wg S,S = 7.2. lo5 cm/s, and v13, = 50 C/m2 (Ref. 
1 1 ), we find 6 = 0.29 and thus I = I , .  In order to observe an 
irreversible disruption of the echo memory, we would need 
AB- 10 kV/cm and some fairly long pulses, with 
At-At, -lo-'- 10W6s. 

The suppression and restoration of the polarization- 
echo signal on traces I and 9 in Fig. 2 become understanda- 
ble as a result of these calculations. A pulse h3applied at the 
time of the phase conjugation has essentially no effect on the 
phase conjugation. It affects only the electric field gradient. 
In other words, the effect is the same as on traces 2,3, and 6. 
Trace 9 is explained by noting that we have AF = 0 in this 
case, and the nonuniformity of the electric field is the same 
for the first pulse and for the conjugate hypersonic pulse. 
There is accordingly no suppression of the echo. 

Figure 1 shows traces for undoped LiNbO, . In LiNbO, 
crystals doped with Ni2+ ions, a polarization echo is ob- 
served three orders of magnitude greater than that in un- 
doped crystals., For the case corresponding to traces 2 and 
3, the disruption of the phase memory occurs at A E ,  = 150 
V/cm (under otherwise equal conditions), so we find the 
estimate v133 = 2500 C/m2 in this case. 

We note in conclusion that the electric field also affects 
the first hypersonic pulse, which returns from the opposite 
end of the crystal after a reflection, but the phase portrait of 
the returned pulse is strongly masked by edge effects at the 
opposite ends of the crystal. Consequently, the reconstruc- 
tion and disruption of the phase memory do not occur as 
frequently as in the echo signals. 

It can be seen from these calculations that the effect of 
an electric field on the magnitude of the polarization-echo 
signal could be utilized to determine the constants of the 
nonlinear piezoelectric effect, 7. The most convenient ap- 
proach here is to use the irreversible disruption of the phase 
memory of the echo, since in this case the electric-field nonu- 
niformity AE has no effect, as can be seen from trace 8 in Fig. 
2. We might add that, according to (17), if hypersonic 
pulses of slower transverse waves are excited in LiNbO, 
crystals doped with Ni2 ' ions then one could use some fairly 
weak pulses of a constant electric field, AZ- 1-10 V/cm, for 
efficient control of the phase memory. These pulses would 
have to be applied at the times at which the hypersonic pulse 
arrives at the end of the crystal. The surface of the crystal 
should have steep steps in order to increase the electric-field 
gradient. 

We wish to thank B. I. Kochelaev and the participants 
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