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Distinctive features of the propagation and scattering of waves in a randomly inhomogeneous 
medium are analyzed for the case in which anomalously large-scale fluctuations in the medium 
have a correlation function with a singular spectrum a l/qYin the limit q-0. The exactly 
solvable model of an instantaneously homogeneous medium is analyzed as a limiting case. The 
asymptotic behavior of the mean field in this case is a superexponential attenuation 
a exp( - const . r  *). A simple method is proposed for calculating the asymptotic behavior of the 
mean field. This method generalizes the Bourret approximation to the case of singular correlation 
functions, for which the total scattering cross section diverges in the Born approximation. It leads 
to a superexponential attenuation at y)2. Particular features of the angular distribution of the 
scattering intensity which stem from multiple scattering by anomalously large-scale 
inhomogeneities are discussed. The scattering function is studied as a function of the path length 
traversed by the wave in a random medium. A new method is proposed for calculating the 
intensity of multiple small-angle scattering. This method is free of ultraviolet divergences. An 
expression derived here for the total cross section for multiple scattering is valid in the case of a 
superexponential attenuation of the mean field. 

The propagation and scattering of waves in randomly 
inhomogeneous media have been studied quite thoroughly.' 
In particular, it has been shown by field-diagram methods 
that, under some fairly general assumptions, the mean field 
falls off exponentially, a exp( - r r ) ,  at large distances r be- 
cause the deterministic component becomes random. In the 
case of weak scattering the corresponding attenuation index 
7 (the extinction coefficient) can be calculated in the lowest, 
single-loop approximation (the Bourret approximation2 ). 
On the other hand, there are systems in which the scattering 
is weak but the extinction coefficient calculated in this man- 
ner turns out to be infinite.' This is true in particular of all 
degenerate systems which have Goldstone fluctuations 
(with a singular spectrum a l/q2; Ref. 4).  This "infrared" 
divergence of the extinction coefficient for correlation func- 
tions of the Goldstone type was recognized a long time ago 
(see, for example, the first edition of Landau and Lifshitz' 
book3 ) in the particular case of the scattering of light at the 
point of a second-order phase transition, in which case the 
correlation radius is infinite. An attempt5 to eliminate this 
divergence through the use of the nonlinear Kraichnan ap- 
proximation6 turned out to be unsatisfactory:' A systematic 
analysis shows that the divergence exists even in this approx- 
imation. A summation of the infrared divergences of the dia- 
grams showed8 that the asymptotic behavior of the 
mean field in this case is superexponential: 
a exp [ - r r  In (const. r )  1 .  This result was subsequently de- 
rived9 by a simpler method: through the use of various types 
of perturbation theories for small- and large-scale inhomo- 
geneities (a  mode separation method). 

We now know of a number of systems in which the fluc- 
tuation spectrum has a l/q7' singularity in the limit q-0. 
The case y = 2, for example, is realized for transverse fluctu- 
ations in nematic liquid crystals'0 and magnetic materials,' 

while the case y = 1 is realized for longitudinal fluctuations 
in these systems.4 The case y = 2 - 77, where the Fisher in- 
dex 77 depends on the dimensionality of the space and the 
number of components in the order parameter, is typical of 
fluctuations in the order parameter at the critical point. The 
relation 77 > 0 holds for most known systems, but cases with 
7 < 0 are also being examined. 

In the present paper we take a look at the particular 
features of the propagation and scattering of waves in ran- 
domly inhomogeneous media with anomalously large-scale 
fluctuations whose spectrum has a l/qY singularity with 
y < 3 in the limit q-0. To analyze the effect of a singularity 
in the correlation function, we consider an exactly solvable 
model: wave propagation in a medium with extremely large- 
scale inhomogeneities [with a correlation function a S(q)  ]. 
The mean field in a medium of this sort decays in a superex- 
ponential fashion, a exp [ - ( ~ r ) ~ ]  (the Fourier spectrum 
of the exact propagator has an essential singularity at infin- 
ity but no other singularities in the plane of the complex 
variable q; i.e., it is an entire function). We propose a method 
for calculating the mean field in randomly inhomogeneous 
media which does not require separation of modes. It leads 
to the prediction of a superexponential attenuation for sin- 
gular correlation functions with y>2. It is shown that for 
finite systems this effect yields a dependence of the extinc- 
tion coefficient on the longitudinal size of the sample. We 
analyze effects caused in the angular distribution of the in- 
tensity of the scattered waves by multiple scattering by 
anomalously large-scale inhomogeneities. We show that the 
scattering function has different regimes, depending on the 
distance (2) traversed by the wave in the medium. As z in- 
creases, this function changes in shape from a function cor- 
responding to the scattering function in the Born approxi- 
mation to a Gaussian angular distribution. 
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1. GENERAL THEORY OF WAVE PROPAGATION IN A 
RANDOMLY INHOMOGENEOUS MEDIUM 

We consider a scalar harmonic wave field u(r,t) 
= u ( r )  exp( - iwt). The amplitude u ( r )  is described by the 

Helmholtz equation 

where k, = WE;"/C is the wave number, cis the wave propa- 
gation velocity, ~ ( r )  = SE(~)/E, ,  ~ ( r )  = E, + S E ( ~ )  is the 
dielectric constant of the medium, S&(r) is its fluctuating 
part, and w is the frequency. The random field p ( r )  is as- 
sumed to be Gaussian with a zero mean and with a correla- 
tion function $(r' - r" ) = (p( r ' )p ( r l ' ) ) ,  where the angle 
brackets mean a statistical average. 

In this section of the paper we are interested in calculat- 
ing themean Green's function of Eq. ( 1.1 ), i.e., (G(r)) .  The 
function (G(r' - r " ) )  satisfies the Dyson equation' 

<G (r) > = Go (r) + j Go (r-rr)2 (rT-r") (G (r")) dr' drr', 

where Go ( r )  = (471r) - I exp(ikor) is the Green's function 
ofEq. (l . l) inthecasep=O,and8(r'-rV)isthekernelof 
the mass operator. In diagram form, Z is the sum of all the 
strongly coupled diagrams: 

where a solid line corresponds to the Green's function Go, 
and a dashed line to the correlation function $. A factor of 
k: is to be understood at the vertices in ( 1.3). 

If the terms in series (1.3) fall off sufficiently rapidly, 
the Dyson equation can usually be solved in the Bourret 
approximation. In this case, the first term of the series ( 1.3) 
is used as Z (Ref. 2)  : 

XBt (rr-r") =ko4GO (rf-r") $(rr-r") . (1.4) 

On occasion, the Kraichnan appr~ximation,~ 

X,, (rr-r") =ko4<G (r'-r") >$ (r' -r") , (1.5) 

is also used. The latter approximation corresponds to a par- 
tial summation of the series ( 1.3). The procedure for deter- 
mining (G ) in this case reduces to solving a nonlinear inte- 
gral equation. 

For a known kernel 8 ,  using the Fourier-transforma- 
tion formulas 

f ( q ) = j d r f ( r ) e - ' q ' ,  

we can easily solve Eq. ( 1.2) : 

( ~ ( q )  ) - '=G,- ' (~)  -r (q) ,  

where G, ' (q) = q2 - k - iO. Going back to the r repre- 
sentation, we find 

rn 

1 qeiqr dq 
<G(r))  =- j 

4n2ir -_ q"ko2-E (q) ' 

If we adopt the customary assumption of 

maxl (G(q))  140 as 191 - co in the complex plane, then by 
closing the integration contour by means of an infinite semi- 
circle in the upper half-plane we find that the value of the 
integral in ( 1.7) is determined exclusively by the singulari- 
ties of the function (G(q))  with Im q > 0. Let us consider 
some simple situations. 

If (G(q))  has a first-order pole at the point 
q = k,, = k '  + ik ", then 

where 2:' = ( 1 - dB/dk :,) - '. For the case of an nth- 
order pole, the asymptotic behavior of (G(r ) )  at large dis- 
tances is 

where Z1;,' = 2nk,,in- '/(2S2, - a "Z/dk :, ), n>2, and 
S,, is the Kronecker delta. 

If (G(q))  has a branch point of the type 
(q-k, , ) - I+" lnp(q/k, - l)fo(q), where f , (q )  is a 
smooth function near q = k,, , then we can write 

where zB, = 2ke,f, (ken exp [ - i ~ ( p  + 1 / 2 ~ )  I /  
r( 1 - Y ) ,  and T (x )  is the gamma function. 

If the function (G(q))  has several finite poles and 
branch points q = k ' + ik ", the behavior of (G(q))  at large 
distances is dominated by the singularity with the smallest 
imaginary part k ". 

To find the positions of the poles (and also the positions 
of the branch points in the case v < 1 or v = 1 and p > O), 
q = k,, , we need to solve the equation 

q2-ko2-X (q) =O. (1.11) 

I f B g k i ,  wefindk,, = k o  + 8 ( k o ) / ( 2 k o )  infirstor- 
der in Z. If we use the Bourret approximation, ( 1.4), for 8 ,  
go over to the q representation, and note that we have 

(p2-k,2-i0)-'=in6(p2-kgl) +9'(p2-ko2)-' 

according to the Sokhotskii formula, where 9 means the 
principal value of the integral, we find 

m 

The quantity 2k " in this case is the same as the total scatter- 
ing cross section calculated in the Born approximation, 0,. 

2. MODELOF AN INSTANTANEOUSLY HOMOGENEOUS 
MEDIUM 

Let us consider wave propagation in a random medium 
with a correlation function 

$ ( 4 )  = (2n) "'6 (q)  , $(r) =az, 

in which case all points of the medium are correlated identi- 
cally strongly, regardless of the distances involved (an "in- 
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stantaneously homogeneous medium"). In this model it is 
possible to construct, in closed form, an exact solution for 
(G(r ) )  as well as solutions in the Bourret approximation, 
GB, ( r ) ,  and the Kraichnan approximation, G,, ( r ) .  

In the Bourret approximation, ( 1.4), the kernel of the 
mass operator is 

(q) =a2kObG0 ((11. (2.1) 

According to ( 1.6), the Green's function (G(q) ) with this 
kernel has four first-order poles k,, = + k, ( 1 + a )  'I2, of 
which two contribute to (G(r)  ) by virtue of the circumven- 
tion rule. These two are k,,,, = k, ( 1 + a )  As a result, we 
find" from ( 1.8) 

The quantity Im 8,, (k,), which corresponds to the to- 
tal scattering cross section in the Born approximation, 
(1.13), is infinite in the case of kernel (2.1). On the other 
hand, G,, ( r )  in (2.2) has no anomalies. The reason is that in 
deriving (2.2) we calculated not 8,, (k, ) but the quantity 
Z,, (k,, ), without ignoring the distinction between k,, and 
k,. Incorporating this distinction thus eliminates the in- 
frared divergence in the extinction coefficient in the Bourret 
approximation. 

In the Kraichnan approximation, we have 

in our model, and a quadratic equation arises in the deter- 
mination of G,, (q):  

G,<,-I (q) =q2-ko2-a2k04 GKn(¶). (2.4) 

The quantity 8,, (k, ) is finite and equal to iak here (when 
the circumvention rule is taken into account). In other 
words, in this case the Kraichnan approximation makes it 
possible to eliminate the divergence in the extinction coeffi- 
cient (cf. Ref. 5) .  On the other hand, the quantity Z,, (k,, ) 
becomes infinite for the value of k,, given by Eq. ( 1.11 ) (cf. 
Ref. 7 ) .  It is, however, possible to find the exact asymptotic 
behavior of G,, ( r )  by analogy with (2.2). 

Solving Eq. (2.4), we find that GK, (q)  has four branch 
points in the form of roots k,, = + k, ( 1 + 2a) Replac- 
ing E, by e, + iO, we find that we are left with two of these 
branch points in the upper half-plane: 
k,,,,, = k, ( 1 + 2a) 'I2. If these points are far enough apart, 
and the condition Jk,, - k,, Ir) 1 holds, then by using 
( 1.10) with Y = + andp = 0 we find (cf. Ref. 12) 

GKn (r) - - (2na) -" ko-"'r-"~ 

In this model we thus do not have the customary expo- 
nential-attenuation factor exp( --- k "r)  in the Bourret and 
Kraichnan approximations. For a < 1, each of the models 
exhibits beats, and an "algebraic" attenuation p 3'2 is seen 
in the Kraichnan approximation, (2.5). We are assuming 
here that we have singled out a factor of r in (2.5); for the 

Green's function in three-dimensional space, this factor is 
purely geometric and is unrelated to the attenuation. The 
derivation of an exact solution in this model is based on the 
circumstance that all the integration operations are carried 
out explicitly in the diagram series for (G ) with the correla- 
tion function $(q) a 6(q) .  The result is 

rn 

(G(q)) = Go (q) z (2n-1) !! [G,'(q) ko'azl". (2.6) 

In deriving this result, we noted that in our case all the 
(2n - I)!! diagrams of nth order contribute identically to 
(G: (q)k :a2)"G0 (q) .  Series (2.6), a power series in 
G k :a2, has a zero convergence radius. If we instead look at 
it as an asymptotic series and use the identity 

m 

(2n)Ih(2n-I) !!= J dx exp ( - X ~ / ~ ) X ~ ~ .  
- - 

we can sum this series (cf. Refs. 13-1 5) : 

1 exp (-x2/2a2) ax . (2.7) 

Then taking inverse Fourier transforms, we find (cf. Refs. 
11 and 13) 

rn 

Expression (2.8) can also be derived on the basis of 
some almost obvious considerations. The idea is that a model 
of a medium with $(q) = (2a)  b2S(q)  corresponds to a sit- 
uation in which the probability for any inhomogeneous fluc- 
tuation is zero, and only homogeneous fluctuations are pos- 
sible: p = pq , , . In the Gaussian case, the state distribution 
function, x = pq = ,, is 

p (x) = [ (2n) '"a]-'exp (-x2/2a2). (2.9) 

Now noting that in this case the expression 

determines the Green's function of an arbitrary unaveraged 
state with E = E, ( 1 + p ) ,  and taking an average of (2.10) 
with the distribution function (2.9), we find (2.8). 

To find the asymptotic behavior of the integral in (2.8) 
at k, r >  1, we use the method of steepest descent. Making the 
substitution ( 1 + X )  'I2 = t ,  we find the cubic equation 
t  + t ,  + kora2/2 = 0 for the saddle points. It follows from 
the form of our integration contour in the t plane that the 
asymptotic behavior of (2.8) is determined by the root t ,  for 
which the relations 3 ~ / 2  < arg t ,  < 5a/3 hold. A represen- 
tation uniform with respect to the parameter a2 is 

(G (r) >-Z(r) (4nr)-'exp [i4 (r)-h(r) I ,  (2.11)' 

where 

716 Sov. Phys. JETP 72 (4), April 1991 Val'kov etal. 716 



( I + ~ / ~ X ~ ~ )  korx l+'/Z~o~ 
$ (r) = kor-,- - h(r)= -- 

I +x: 4 l+xo2 ' 
'Ipxo (5+3x02) 

@, = arctg -- 
( l i x o Z )  (1 - i -3 .~~~) '~~  + (I-x;) (if '/IXO~)'~' 

Xo (I +3/4~02) '" 
- arctg 

1+'/2x02 ' (2.12) 

and xo is the real root of the equation 
x: + xo - kora2/2 = 0. In particular, if kora2( 1, by retain- 
ing the first terms of the expansions of the quantities Z ( r ) ,  
#(r) ,  and h( r )  in this small parameter, we find the approxi- 
mate result 

Correspondingly, we find the following result for the mean 
field (u (z) ) propagating along the z axis: 

In the opposite case, with k,ra2b 1 in (2.1 1 ), we find 

and the field disappears almost completely. 
We see that the asymptotic form of the exact solution is 

fundamentally different from the asymptotic behavior in the 
Bourret and Kraichnan approximations." There are no 
beats in the exact solution, while there is a factor which 
causes a superexponential attenuation. It follows from 
(1.8)-(1.10) that an attenuation law of the form (2.1 1 )- 
(2.14) cannot be derived through an analysis of any simple 
singularities of (G(q) ) which lie in the region of finite q; i.e., 
(G(q) ) has a singularity only at q = w in this problem. On 
the other hand, since (G(q))  must tend toward zero as q 
tends toward infinity along the real axis, by virtue of the 
convergence of the integral ( 1.7), we conclude that q = w is 
an essential singularity for (G(q) ) [cf. the function w(z) in 
Ref. 161. This conclusion demonstrates, in particular, that 
this model is not valid as an initial approximation for finding 
finite singularities of the spectrum of the Green's function in 
the Kraichnan approximation for more realistic correlation 
functions (Refs. 17 and 18, for example). 

Let us examine the physical mechanism for the onset of 
the unusual superexponential attenuation in (2.11 )-(2.14). 
The customary mechanism for the attenuation of the mean 
field, which involves the escape of scattered radiation off to 
the sides of the original wave propagation direction (along 
the z axis), leads to the Bouguer law' (u) cc exp( - TZ). In 
this model, each instantaneous state of the medium is homo- 
geneous, and there is no loss of radiation off to the sides; all 
the scattered waves propagate strictly forward. The resul- 
tant field is a superposition of waves with randomly shifted 
phases. This superposition gives rise to a non-Bouguer at- 
tenuation in our case. The attenuation of the mean field re- 
sults from a transition of the coherent component of the field 
into a random component, propagating in the same direc- 
tion. 

3. GENERAL CASE OF A SUPEREXPONENTIAL 
ATTENUATION OF THE MEAN FIELD 

In a medium with a correlation function different from 
S( q),  two damping mechanisms operate: the escape of radi- 
ation off to the sides and random phase shifts of the forward- 
scattered waves. If large-scale inhomogeneities constitute a 
sufficiently large fraction of the spectrum $(q), so that the 
total scattering cross section becomes infinite in the Born 
approximation, the resultant attenuation law is something 
between exp( - ~ r )  and exp [ - (rr)']. One would natural- 
ly assume that in this case (G(q))  would again-as in the 
case $(q) a S(q)--have a singularity only at q = w . The 
use of a resummation of the Dyson type (based on a classifi- 
cation of diagrams on the basis of their degree of coupling) 
for the perturbation-theory series is ineffective in this situa- 
tion. That this is true can be seen simply from the circum- 
stance that all the (2n - I)!! diagrams of order n in (2.6) 
(both strongly and weakly coupled) turn out to be identical. 

It follows from (2.8) and (2.10) that in order to find a 
superexponential attenuation of (G(r)  ) we need to deal cor- 
rectly with the phase relations between the forward-scat- 
tered waves. It is not difficult to see that to find the asympto- 
tic behavior of (2.13) and (2.14) it is sufficient to expand 
( 1 + X )  in a series and retain up to the linear term in the 
argument of the exponential function in (2.10). For the field 
u ( r )  this approach corresponds to the approximation 

u (r) a. exp (ikor+ikorx/2). (3.1) 

For a medium with arbitrary large-scale inhomogene- 
ities, the corresponding correction to the phase of the plane 
wave, uo ( r )  = Uo exp(ik,z), can be found in the eikonal 
approximation: 

1 

,iko 
u (r) = U. exp[ik,z + -J cp (p, z') dz ' ]  . 

2 0  

To use expression (3.2) is to assume that the fluctuations are 
relatively small, q, '-4 1 (weak coupling). We accordingly 
restrict the analysis below to this case alone. The mean value 
of the field in (3.2) for a Gaussian random field q, is 

[We are using the notation z, p and q,, , q, for the compo- 
nents of the vectors r and q respectively along and across z; 
we are also using $(r) = $(p,z), $(q) = $(q, ,qll ).] A nec- 
essary condition for the applicability of the eikonal approxi- 
mation is the inequality I, )A, where I, is a length scale of 
the inhomogeneities, and A = 2?r/k0 is the wavelength. If 
there is a length scale rm in the system which characterizes 
the spectral region q 5 rm - ' in which $(q) is significantly 
nonzero, the corresponding applicability condition becomes 
r,,, %A. 

Below we discuss singular correlation functions of the 
type 

where ro is a dimensional parameter, and the function f(x)  
falls off rapidly at x %  1 (unless the opposite is stipulated) 
and,has a value f(0) + 0. Here O< y < 3. 
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If the condition z < r, holds, we can use the substitution the function f(x)  does not fall off sufficiently rapidly as 
x -  co [e.g., f (x)  = const]. When one applies the eikonal 

gIl-' sin2(q1,z/2) =z2/4 (3.5) method to such systems one runs into the difficulty that a 
over the entire region in (3.3) which is important to the substantial fraction of the spectrum $(q) consists of the 
integration. We then find small-scale part [the weak decay of $(q) as q- 03 1. By vir- 

tue of the condition for the applicability of the eikonal ap- 
ko2z2 

<u( r )  > = U o  exp ikoz - -j %$(q)]. proximation, I, %A, the integration in (3.3) is justified only [ 8 (Zn)' (3'6) in the region ((1 I .  It thus becomes necessary to intro- 
duce a truncating upper limit k,, 5 A - ' in the integral. [A 

If the rm the be- corresponding situation arises in the general case of correla- 
havior of the mean field is tion (3.4) if r, <A.] In this case it is natural to require, as 

(u( r ) )=Uo exp [ikoz-H(z) 1,  (3.7) the condition for the applicability of the eikonal approxima- 
tion, that the leading terms of the asymptotic behavior of 

where the function H(z )  is given in the limit z- co to within (u  (Z) ) be independent of the parameter k, . 
terms - const by It follows from (3.8) and (3.9) that with y < 2 for sys- 

Here 

tems of this sort the coefficient of the leading term in H(z)- 
the attenuation rate of u,,/2-depends on k,; i.e., the ei- 
konal method is not valid. Actually, in this case it is suffi- 

(3.8) cient to use the Bourret approximation, since a, is finite. In 
the case y)2, the coefficients s,  and s, of the leading terms of 
the asymptotic behavior of H(z )  do not depend on k,, and 
we can say that the eikonal approximation is valid. The cor- 
rection coefficients a, and a,,  on the other hand, are func- 
tions of k,. If the contribution of the small-scale inhomo- 
geneities is also taken into account correctly-to do so 
requires going beyond the eikonal approximation-then one 
can calculate the contribution to k, from the constants a, 
and a,. One known method of this type is the method of 
separating the modes of a fluctuating field.93193z0 In this 
method, the field q, is broken up into two independent parts: 
a "soft" part (q< k, ) and a "hard" part (q > k, ). In other 
words, one writes q, = g,, + q,, . For the unaveraged field 
u(r,q,), one uses the appro~imation'~ 

s,=2Aof (01, s2=2Aof (0) r(i-y) sin . - ny  s,=nAof (O), 
2-7 2 '  

A, = ( k , r , a / 4 ~ ) ~ ,  and C = 0.5772 ... is Euler's constant. It 
follows from (3.8) that in the case y < 2 the asymptotic be- 
havior of the mean field is exponential [the quantity a,, is 
the total cross section for single scattering in the eikonal 
approximation; in the limit r, >A, it is the same as the Born 
total cross section, ( 1.13); Ref. 1 1. Actually, in calculating 
the leading term ofH(z) in the case y < 2 it is sufficient to use 
the replacement 

in (3.3). For values 1 ( y < 2, the singularity of the correla- 
tion function is manifested in correction terms proportional 
to s,  and s, . If, on the other hand, we have 2< y < 3, then the 
asymptotic behavior of (u (z) ) is superexponential: The sin- 
gularity of the correlation function is manifested in the lead- 
ing terms, proportional to s, and s,. As y- 3 in (3.8), an 
attenuation (u) cc exp( - const-z2) arises in (3.8), as in the 
exactly solvable model, (2.14). The reason is that in the limit 
E - 0 the correlation function $( q)  cc &/q3 -' in a sense ac- 
quires a behavior a S (q)  . 

There are, on the other hand, systems with long-range 
correlation functions of the form (3.4), for which the con- 
cept of a length scale r, would be difficult to introduce, since 

In an evaluation of the mean field (u(r,q,)), the factors in 
(3.11 ) are averaged independently. The Bourret approxima- 
tion is used for (u (r,q,, ) ), while an exact average is taken of 
the exponential eikonal term. A definite shortcoming of this 
method is the need to introduce an additional parameter to 
separate the degrees of freedom, k,, and to verify that this 
parameter disappears in the leading orders of the resulting 
equations. 

We wish to propose a calculation method which makes 
it possible to derive an expression for (u (z) ) which does not 
contain parameters of the form k, and k, and which is valid 
in both the far zone and the near zone. 

We wish to call attention to the circumstance that in all 
the weak-coupling cases which we have discussed [the Bour- 
ret approximation, ( 1.12), ( 1.13 ); the eikonal method 
(3.3); the exactly solvable model (2.13), (2.14); and the 
mode separation method] the asymptotic behavior of the 
mean field is 

From the standpoint of perturbation theory, the meaning of 
the exponential representation of solution (3.12) is as fol- 
lows: In contrast with a direct expansion of the mean field in 
powers of a2, 

718 Sov. Phys. JETP 72 (4), April 1991 Val'kov etal. 71 8 



in which the first term corresponds to the incident field 
u, (z), the corrections in the argument of the exponential 
function in (3.12) do not contain secular terms. In other 
words, the corrections of higher order in a do not increase 
more rapidly thang(z) [at least as long as the corresponding 
expansion parameter is small; see ( 3.16) 1. Adzhemyan et 
aL2' give a rigorous proof that there are no secular terms in 
the perturbation theory restructured in the necessary way. 

Because of this comment, we can seek a solution for (u) 
in the form 

and we can expand @, (z) in powers of the coupling constant 
a2: 

Terms with fractional powers of a2 may also appear in 
expansion (3.15) (Ref. 9), but the first term is always of 
order a*. [More precisely, the expansion parameter in 
(3.13), (3.15) is the quantity 

cf. the expression for y = 2 in Ref. 9 and expression (2.1 1 ) of 
the present paper for y + 3.1 The first term in (3.15) is easily 
reconstructed through a comparison with the direct expan- 
sion in (3.13): 

U O ~ )  +uo(z)a2gl (z) (3.17) 

Retaining only the first term, a2g, (z), in (3.15) (the expan- 
sion parameter 6, is - 10 - - 10 - 5,  even for such highly 
opalescent systems as liquid crystals), we find 

where 

If the volume V is a plane slab of a medium of thickness z,, 
i.e., if O<z(z, [to avoid having to deal with refraction at the 
boundary, we assume, here and below, that the medium out- 
side the sample has a dielectric constant &,, while that inside 
has ~ ( r )  = to + S&(r)],  we find the following expression 
forK,(p) = K,(p,z,): 

wherea = (k: -pL2)'/*,l?= ko -pI I ,  Ima>O,z>z,. 
If the volume V is the half-space z>O, for ZE V we find 

ko3 
K.  (p) = - - erp (-ikoz) j dl' dz" 

4a 
0 0 

We find a similar behavior of K, (p)  in the problem of the 
propagation of a wave through an infinite medium, from a 
source in the z = 0 plane, which creates a plane wave 
exp(ik, lzl). 

Working in precisely the same manner, writing the 
average Green's function in the form 
(G(r))  = Go ( r )  exp[<PG ( r )  1, we can calculate the first 
term of an expansion of <PC ( r )  in powers of a2. In an infinite 
medium, the kernel K ,  (p) for this case is 

i J dr,  exp (iK0rr) 
K,  (p) = - 

8xk, 4nr' 

x exp (ipr')cxp [iko ( I r-r' I -r) 1. (3.22) 

The results which we have derived here, (3.14) and 
(3.18)-(3.22), are generalizations of earlier results. Specifi- 
cally, if we have p2$(p) +O in the limit p-0, then we can 
take the limit k,z, - w in (3.20) [and in (3.21) and (3.22) 
we can take the limits k,z- ~ 4 ,  k,r- ~ 4 ,  respectively]. For 
kernels (3.20)-(3.22) we find 

where a2 - p ' = k : - (ko - p) 2, ko = ko z/z, in agree- 
ment with the result of the Bourret approximation, ( 1.12), 
(1.13). [To derive (3.23), we could use (3.10) in (3.20), 
(3.21) as z, z, - W ,  while in the limit r- ~4 it is sufficient to 
set lr - rl(=:r - rlr/r, k, = k,r/r in (3.22).] 

If we use kernel (3.20) for singular correlation function 
(3.4), then the real part of <P, ( r )  in (3.18) takes a form 
similar to (3.8) in the limit z, -+ ~4 . For y < 2, the only 
change is a replacement of a,, by a, in (3.8), while the 
coefficients s, and s, remain. For y>2, the coefficients s, 
and s, remain, while a, and a, become a, = a,, + a,, 
a, = a,, + a,, where 

( s ~ ~ = s ~ ~ ~ - ~  [ln (2kOrm) +C- I], oo2=ssro-1 (2k0r0) '-'I (2-y ) , 
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On the other hand, the imaginary part of @, ( r )  is linear the statistical homogeneity of the medium in planes trans- 
in z, in the limit z, -. co for all y <  3, as can be seen from verse with respect to z, using the change of variables 
(3.20)-(3.23). The proportionality factor is determined p = p' - p", p + = (pf  + p1')/2 in (4.2), and integrating 
from ( 1.12). In particular, for f (x)  -const we find from over p + , we find 

In thecase y = 2, f (x)  =const, Eqs. (3.24), (3.25), and 
(3.8) become the same as the results of Refs. 8 and 9. 

We wish to point out that for bounded systems a super- 
exponential attenuation may be thought of as a dependence 
of the extinction coefficient r on the longitudinal dimension 
of the sample, z, (the transverse dimension L, is unimpor- 
tant if k, L, % 1 ). Since we restricted the calculation of the 
kernel K in (3.17) to the single-loop diagram, the depend- 
ence r(z, ) for such systems can be found (to within correc- 
tions - l/k,z, ) from the ordinary Bourret approximation, 
provided that we allow for the finite value of z,. In other 
words, we use the following expression in ( 1.7): 

4. ANGULAR DISTRIBUTION OFTHE SCATTERING 
INTENSITY 

where T(p '  - pM,zb) = (u(p',z,)u*(p",z,)), andS, is the 
cross-sectional area of the sample. 

For a medium with large-scale inhomogeneities, it is 
sufficient to consider the scattering into the forward hemi- 
sphere alone (z, = z, ) . To calculate the field u ( p,z, ) at the 
plane z = z,, we can use the eikonal approximation, (3.2). 
Substituting (3.2) into (4.4), and assuming that the fluctu- 
ations are Gaussian, we find 

L,/Z 

I ( 8 )  = Bo J dp plo (ap)  [cF(p)-no) - e-*(."]., (4.5) 
(3.26) 0 

where 

We assume that a scalar monochromatic wave 
u ( r )  = U, exp (ik,r) is propagating along the k, = k,z/z 
direction and is incident on a sample of finite volume V. We 
assume that the sample is a plane slab of a medium of thick- 
ness z, (O<z<z, ) with sufficiently large transverse dimen- 
sions. In this case the field at a point r outside the sample can 
be found most conveniently from its value at the surface of 
the sample, as in diffraction theory." The field at point r is 
related to the field at the boundary, u (r') , by 

Here So is the surface of the sample, which coincides with 
the z = Z, plane (z, = z, or z, = 0, for scattering into the 
forward and rear hemispheres, respectively), and 
R = Ir - r' I is the distance from the observation point to the 
point r' = ( pf,zb ), which lies on surface So. For the field in 
the far zone we find from (4.1 ) the expression 

iko /z - z, ( exp (ikor) 
u ( r )  = -- --- 

2n r r 

where k, = k,r/r is the wave vector of the scattered wave. 
We are now interested in the angular distribution of the 

average scattering intensity: 

where 8 is the angle between k, and k,, i.e., the scattering 
angle, and u* is the complex-conjugate field. Making use of 

J, (x) is the Bessel function of index zero, H is the transverse 
component of the vector k,, x = ko 8, LI is a characteristic 
transverse dimension of the sample, B, = I$, k ;/2.rrr *, 
and I, is the intensity of the incident field u,. Here we have 
noted that by virtue of the applicability of the eikonal ap- 
proximation we have 8 < 1, and we have replaced the factor 
of cos2 8 by unity and the factor of sin 8 by 8. 

Because of the oscillations in the function J, (xp),  only 
the region p - H - contributes noticeably to the integral in 
(4.5). In this case, the finite value of the upper limit of the 
integration overp is manifested only for L, - x  - ', i.e., only 
for scattering angles 8 on the order of the angle of the diffrac- 
tion by the overall sample, 8,,, -2 /L, . So that we can sub- 
sequently ignore the particular features of the cross-section- 
al shape of the sample, we consider angles 8% O,,,, replacing 
the upper limit of the integration in (4.5) by in fin it^.^' It is 
not difficult to see that, after an integration ofp, the second 
term in square brackets in (4.5) makes a contribution to the 
intensity which is proportional to 6 (x ) ,  and this term can be 
discarded in an analysis of the scattering through finite an- 
gles. Actually, the role of this term is simply one of canceling 
the corresponding 6-function from the first term in brackets 
in (4.5). 

We can now show that the angular distribution of the 
scattering intensity has different regimes, depending on the 
distance traversed by the wave in the medium. We assume 
k,z, % 1. For 8 #O we have 

where 

(4.7) 
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We introduce an effective argument for the exponential 
function in (4.7), F,, = F ( x  - I) -F(p),  and we consider 
the following limiting cases. 

1. F,, ( 1. In this case the exponential function in (4.7) 

which distinguishes (4.12) from (4.11 ) is the unusual vol- 
ume dependence I($)  cc V4/" another is the smoother scat- 
tering function. 

2. F,, % 1. In this case we can use the Laplace method 
for an asymptotic evaluation of the integral in (4.7). Ex- 
panding the argument of the exponential function in a power 
series i np  near the point of the minimum, p = 0, and retain- 
ing the first nonvanishing term ( -p2), we find 

can be expanded in a series, in which we retain terms up to Ca - 
the term linear inF(p). In this case the scattering intensity is lw(zo) = . J  ko2 dpL g;' .i ddg, ql,-' s i n 2 ~ ~ ~ ( q ~ ,  91120 q I i )  4n2 - - ,. 

m 

Using the identity 
m 

p j dp plo ( P P )  J .  ( v p )  = 8 ( F Y I .  
o 

we find 
w 

In particular, for zo ) r, we find (cf. Ref. 23) 
m 

ko2zo 
M ( z 0 ) =  - j dql q13$(qL, 01,  (4.15) 

Sn 0 

and in the limit zo ( r, we find 

If the distance traversed by the wave in the medium is much 
greater than the correlation radius, z, %r,, we can use re- 
placement (3.10) in (4.10). For the intensity we find 

This result corresponds to the Born approximation. 
If the condition zo <r, holds instead, then we can use 

the replacement (3.5) in (4.10). The result in this case is 
CO 

What features are caused in the angular distribution of 
the scattering intensity by the singularity of the correlation 
function $(q)? Since we are interested only in effects stem- 
ming from the long-wavelength part of the spectrum, we 
consider a correlation function 

where r, )A, and O(x) is the unit step function. We rewrite 
expression (4.7) for I($) as follows: 

The difference between the factor qll - 2  sin2(q11zo/2) and a I ( ~ ) = B , -  1 J d t t ~ ~ ( t ) e - " t ) ,  
6-function in (4.10) corresponds to the incorporation of the o 
finite dimension of the scattering system along z in the Born 
approximation. In this case, (4.12) corresponds to the limit where B1 = Bo/k i, and where $(t) is [we are using (3.10) 
of spatial homogeneity of the fluctuations along z. A feature and (3.9) 1 

Hered, = a2(k,ro )3-Yko/8.rr, d2 = d l  k0/2a, N(t)  = 8, t/8, N ( t )  = [N2( t )  - y 2 ]  'I2, and 8, = (k,r, ) - ' is an angle on 
the order of magnitude of a characteristic single-scattering angle. 

We first consider the case 8% (kozo ) - I .  For d,z, < 1 we have 
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where 

I (0 )  = Bldlzo. , 

For y < 2, the scattering function is identical to that in 
the Born approximation. As soon as we reach y = 2, how- 
ever, the degree of singularity of the scattering function de- 
creases at small angles (the 1/02 law gives way to 1/ 
8 2 - dl211 ), and at y >  2 the scattering intensity at 8-0 be- 
comes finite. The reason for this unusual behavior of I (8 )  is 
that the condition for the applicability of the single-scatter- 
ing treatment is violated for such singular correlation func- 

' 0-", ~ < 2 ,  
O-z+dlr ,  , 0 < exp  (-l!d,z0), Y = 2 
0-2, 0 >) exp  ( - I / ~ I ~ O ) ,  Y = 2 
(dlEo)~l(2-v) C y ,  e g y > 2 , 

* €I-", 0 > ( d l z o ) l ' - a c ' ,  y > 2 , 

tions in the limit 8-0, and all scattering multiplicities must 
be taken into account. 

In the opposite limit, d ,zo)  1, the higher scattering 
multiplicities become important for all values of y. The sin- 
gular nature of I(8) persists only at y < 2, and in a very 
narrow angular region 8 5: exp [ - d l  zo 8, - Y /  (2 - y) y ] 
we can write 

I ( 0 )  =B,dlzo0-7 esp [-d,zo0,2-71 (2-7)  1. (4.20) 

In all other cases, there is a universal Gaussian law as in 
(4.131, (4.15): 

For d l  z, - 1, there is a smooth transition from (4.19) to 
(4.21 ). In particular, for y = 2,194 8, , and d l  zo < 2 we have 

With dlzo = 2 we have I(8) cc In 8 - I ,  and for d,zo > 2 the 
value of I (0)  becomes finite. The angular distribution in 
(4.22) was found for the scattering of neutrons near the 
critical point by the Glauber method25 in Ref. 24. It was also 
found in Ref. 26 for the case of critical opalescence in the 
small-angle approximation for the radiation-transport equa- 
tion. 

For 8 4 ( k o z O ) - l  and d,&41, we find from (4.12) 
that I(@) is singular in the limit 8 4 0  only for l (  y < 3: 

[with y = 1 we have I(8) a In 8 - ', while for y < 1 the 
quantity I (0 )  is finite]. 

Finally, for 89 ( kozo ) - and d 2 d  ) 1 the angular dis- 
tribution of the intensity is Gaussian, as in (4.13), (4.16), 
for all y(0 < y < 3): 

In contrast with (4.21), however, the half-width of the 
Gaussian function varies linearly with z,, rather than as z;'~. 

To conclude this section of the paper we would like to 
point out that it is not legitimate to take a limit r,  -0 in 
(4.20)-(4.22), (4.24). The reason is that Eqs. (4.5) and 
(4.7), which are based on the eikonal approximation, are 
intended to deal correctly with only the largest-scale inho- 
mogeneities. To improve the treatment of intermediate- and 
small-scale inhomogeneities, we could use approximations 
for a boundary field u(p,z,) which are better than the ei- 
konal approximation. In particular, if we use Rytov's 
smooth-perturbation method1 to calculate u ( p,zo ), we find 

u (r) = -ikoUo cos 0 exp (ikor) j dp.  exp [-  

2nr s* 

where 

ka2 
4 n z  

G (p, Z )  = - exp 

Interestingly, Eq. (4.25) may be thought of as a refine- 
ment ofthe well-known Glauber appr~ximat ion~~ in the the- 
ory for the scattering of high-energy particles by a potential 
~ ( r )  [the surface So should be chosen in a region in which 
p ( r )  is vanishingly small in this case]. The Glauber approxi- 
mation corresponds to the replacement of cos 8 by unity in 
(4.25), the replacement of G i,, ( p,z) by (ik0/2)5( p), and 
the discarding of the small longitudinal component of the 
scattering vector k, - k, . 

The use of (4.25) in (4.4) eliminates the divergence as 
r ,  - 0. In particular, if we calculate the mean field (u ( p,z) ) 
in this approximation, we find that the constants a , ,  a, ,  and 
a,, in (3 .8)  are finite. It is important to note, however, that 
the values found for these constants by this method are not 
correct, since the quantities a , ,  a,, and a, are determined 
by the entire region of the spectrum $(q) (O<q<2k0 ), while 
the smooth-potential method takes only the region q4ko  
into account correctly. Of importance for our purposes here 
is that the errors in the description of the attenuation of the 
mean field (u ( p,z) ) lead to corresponding errors in the an- 
gular distribution of the intensity, (4.4). The errors afflict 
not only the second term in brackets in (4.4) [ I (u( p,z)) 1 '; 
this point is important only in the limit 8-01 but also the 
first term [I'(p,zo ) 1, because of distortion of the amplitude 
of the mean field during propagation between successive 
scattering events. 

Effects stemming from the attenuation of the mean field 
between successive multiple-scattering events in (4.4) in the 

722 Sov. Phys. JETP 72 (4), April 1991 Val'kov eta/. 722 



case 84 1 can be dealt with most easily by writing r(p,z, ) in 
the form 

r (P, 2 0 )  =fi (p, zo) exp [ 2 Re cD, (2,) 1, (4.26) 

with @,(z) from (3.14). In T(p,zo), in contrast with 
r(p,zo) ,  we can legitimately take the limit r ,  -0. It turns 
out that an effective way to calculate T(p,zo) is to use the 
exponential representation 

where A, = d '/dX2 + d '/c3y2, {x,y) = p, and to then calcu- 
late QF (p,zo ) by perturbation theory. In lowest order in 
we find 

dq aa s in [(a - p) zo/2] a 
o = o  1 a-p I 

where a and p are given in (3.20) (with p replaced by q ) .  
The result for the intensity in this case is 

In contrast with (3.14), (3.15), for the corrections to 
@F (p,z,) of higher order in $ we cannot guarantee that 
there are no secular terms. An important point, however, is 
that only the small-scale part of the spectrum $(q) contrib- 
utes to the secular terms. Specifically, if we consider only 
large-scale inhomogeneities then we can use the approxima- 
t iona-p--ql l ,a+p=:2ko,  f o r a a n d p i n  (4.28), (3.20). 
Expression (4.29) then becomes the eikonal expression, 
(4.5). Furthermore, if we retain the term quadratic in q, in 
the expansion, i.e., if we assume a - P z q I 1  + qL2/2kO, 
a + fiz 2k0, then we find from (4.29) an expression corre- 
sponding to the use of the smooth-perturbation method, 
(4.25), in (4.4). 

By calculating I(8) from (4.29) we can take the limit 
r ,  -0 correctly. In particular, it turns out that this limit 
corresponds to the replacement 8, +2 in (4.20)-(4.22), 
(4.24). 

5. TOTAL CROSS SECTION FOR MULTIPLE SCATTERING 

The total cross section for scattering by a unit volume, 
a,, is given by' 

where P, is the total scattered power. Far from the sample, at 
a distance r% V "', we have 

where I, (n) is the intensity (the absolute value of the energy 
flux density) of the scattering in direction n. If we write the 
field u in the form u = (u)  + us,  where us is the scattered 

field, we find that the energy flux density J = C, Im(u*Vu) 
breaks up into a sum of three terms: 

where 

and C, is a constant. The energy conservation law in integral 
form in this case is 

l (r) ~ S = O  
S 

for an arbitrary closed surface S. 
As before, we consider a volume V bounded by two 

planes, z = 0 and z = z,, on which a plane wave is incident 
along the z axis from the left. Substituting (5.2) into (5.3), 
integrating over the planes z = 0 and z = z,, and taking a 
statistical average, using (3.14), we find 

There is a fundamental distinction between the first and sec- 
ond terms in braces (curly brackets) in (5.4). In the limit 
z, - we have Re Q, (z, ) - rn . The quantity Re Q, (0), in 
contrast, which is nonzero by virtue of the large-angle scat- 
tering, tends toward a finite limit with increasing thickness 
of the sample. In addition, the limit z, - is allowed by the 
two quantities Im Q: (0)  and Im @ A  (z, ). [In first order in 
p ', these assertions can be verified easily through a direct 
calculation of the first two diagrams in (3.13).] 

We can therefore replace exp [ 2  Re Q, (0)  ] in (5.4) by 
one in the weak-coupling limit ( p  < 1 ) , and we can ignore 
the quantities k c  ' Im @:. As a result we find 

where Q, (z,) is given in (3.18), (3.20). 
An expression similar to (5.5) has been derived pre- 

viously2' for the case of an exponential attenuation of the 
mean field, 2 Re @, (z, ) = - rz,. Expression (5.4) gener- 
alizes that earlier result to the case of superexponential at- 
tenuation of ( u ) .  Expression (5.5) determines the behavior 
of the total multiple-scattering cross section us as a function 
of the sample thickness. At small values ofz,, the quantity us 
is the same as the extinction coefficient (which is a function 
of z, in the case of superexponential attenuation of ( u ) ) ,  
while at large values of the thickness "saturation" sets in: 
The total cross section for the scattering of a unit volume 
tends toward l/z,, while the total cross section for scattering 
by bulk inhomogeneities tends toward the geometric value 
S, = V/zo. We might add that in the case of exponential 
attenuation of ( u ) ,  under the condition rzO 4 1, the quantity 
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a, is the same as the Born value aB,  but this is not true for 
superexponential attenuation. In particular, oB diverges in 
this case, while us remains finite at all times. 

CONCLUSION 

We conclude with an examination of possible general- 
izations of the results derived here to the case of the scatter- 
ing of electromagnetic waves, in particular, visible light, for 
which features of multiple scattering by anomalously large- 
scale inhomogeneities have been observed e~perimentally.~~ 
The primary distinction between that case and the case 
which we have treated is the vector nature of the electromag- 
netic field. 

If we are interested in the attenuation of the mean field 
in a medium, we find no particular difficulty in making the 
corresponding generalization to the vector case. In particu- 
lar, for each of the natural waves of the medium we can 
independently calculate the attenuation law by a method 
like that in Sec. 3. [For example, Eq. (3.26) remains in 
force; all that we have to do is take account of^the tensor 
nature of the corresponding Green's function Go and the 
corresponding correlation function 4 in this equation.] 

With regard to the angular distribution of the scattering 
intensity, the situation is more complex. There are, however, 
two different cases in which the vector structure of the field 
does not lead to fundamental changes. The first is the case of 
an isotropic medium with fluctuations in a scalar order pa- 
rameter. There is no depolarized scattering in this case, so 
the polarization is essentially conserved in the course of mul- 
tiple rescattering through small angles. For this reason, the 
equation for the electromagnetic field in the problem of the 
scattering of light by large-scale isotropic inhomogeneities 
reduces (see Ref. 23, for example) to a Helmholtz equation 
( 1.1 ) . The second case is that of an anisotropic medium. In 
this case we can independently analyze multiple scattering 
by anomalously large-scale inhomogeneities of the individ- 
ual natural wave by virtue of the difference between the val- 
ues of the wave numbers for these waves. For the case (of 
practical interest) of the scattering of light by uniaxial ne- 
matic liquid crystals ( y = 2) ,  for example, the pole as 8+ 0 
in the Born approximation, I(8) a (k, - ki ) - * arises only 
if both ki and k, correspond to extraordinary waves.' If ki 
and k, correspond to waves of different types-one ordinary 
and one extraordinary-then we have k, - ki # O  at 8 = 0 
(if k, and ki correspond to ordinary waves, the equality 
k, - ki = 0 is possible at 8 = 0, but the intensity vanishes 
for geometric reasons). 

If we instead consider scattering of light by fluctuations 
of a tensor order parameter in an isotropic medium (or in an 
anisotropic medium, for the same degenerate directions, in 
which the wave numbers of the natural waves are equal), 
then the interaction between modes of different polariza- 
tions arises because of the presence of a depolarized compo- 
nent in the scattering. This problem requires independent 
analysis. In particular, a direct generalization of the eikonal 
approximation would not be valid in this case. 

We sincerely thank Yu. N. Barabanenkov, A. N. Vasi- 
l'ev, and V. I. Tatarskii for useful discussions. We also thank 
L. Ts. Adzhemyan for constant interest in this study and for 
valuable advice. 

"That G,, ( r )  and G,, ( r )  donotcorrespond totheexact solution (G(r) )  
was pointed out by Sekistov," who carried out a numerical analysis of 
expressions (2.2), (2.5), and (2.8). 

2' If we use the replacement (3.10) in (4.6) in this case, we find an expres- 
sion for I ( @  which corresponds to a description of the scattering by 
means of the radiation-transport equation in the small-angle approxi- 
mation.' 
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