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A scaling one-parameter variant of the theory ofphase transitions is proposed in which the 
concept of the order parameter does not appear explicit1 y and which is conceptually close to the 
theory of the Anderson transition. The key parameter of the theory is the total free energy of a 
topological defect, which contains information about the character ofthe spontaneous symmetry- 
breaking in the ordered phase. When applied to ideal systems the proposed scheme gives the 
possibility of an asymptotically exact calculation of the phase-transition temperature and 
correlation-length index near the lower critical dimensionality. New results here are the 
following: expressions for the indices and transition temperature of the Ising model in the 1 + E 

approximation and of the roughness phase transition in the 2 + E approximation. In application 
to nonideal one- and two-component spin systems in the presence of defects of the random-field 
type the new results are the following: a prediction of a quasiferromagnetically ordered phase in a 
space of lower critical dimensionality with a weak degree of disorder; the construction of a 
disorder-temperature phase diagram on which, in dimensions greater than the lower or equal to 
critical dimensionality, there are two tricritical points; a proof of the absence of any phase 
transitions at nonzero temperature in dimensions less than the lower critical dimensionality; a 
proof of the impossibility in such systems of performing an E expansion about the lower critical 
dimensionality; a demonstration of the violation of the correspondence d-d - 2 between the 
indices of the ideal XYsystem and the defect XYsystem as d- 4. In connection with defects of the 
random-temperature type, an accurate formula for estimating the indices ofpercolation theory is 
obtained, and it is also shown that at a nonzero temperature to first order in E = d - I the value of 
the correlation-length index coincides with the value for the ideal system. 

INTRODUCTION 

In the modern theory of phase transitions the properties 
of matter near a critical point are described by a set of critical 
indices, only some of which are independent (see, e.g., the 
reviews in Refs. 1 and 2) .  One ofthese, certainly, is the corre- 
lation-length index v. By virtue'of this, all the singular prop- 
erties of matter can be divided into two groups: global prop- 
erties (associated with the behavior of the correlation 
length), and the rest. This division appears reasonable in the 
light of the scaling hypothesis (scale invariance) . ' 1 2  The 
only question that arises after this is the following: Is it possi- 
ble to construct a theory ofjust the global properties of mat- 
ter near a critical point? The present paper is devoted to 
answering this question. 

Below we show that the global properties of a broad 
class of physical systems can be described by a simple scaling 
one-parameter theory that does not even require the explicit 
use of the concept of the order parameter. The new theory 
not only has methodological significance but also makes it 
possible to obtain a number of previously unknown results, 
pertaining both to conventional systems and to systems with 
defects. The proposed scheme is conceptually close to the 
scaling theory of Anderson localization (see, e.g., Ref. l ) ,  
and links together all areas of the physics of phase transi- 
tions, including the percolation problem. 

The following is an outline of the article: First we intro- 
duce the concept of the rigidity of a spin system and perform 
an elementary analysis of the properties of the classical d- 
dimensional vector model of phase transitions. The subse- 
quent analysis pertains to one-component (Ising) and two- 
component (XY) systems. For these systems the scale 
dependence of the rigidity is found under arbitrary assump- 

tions about the causes of the phase transition (thermal fluc- 
tuations and (or)  inhomogeneities) . The general relations 
obtained are then used to analyze the following specific 
problems: the phase transitions and the forms of ordering in 
the presence of defects of the random-field type (for the clas- 
sification of defect types, see, e.g., Refs. 1 and 2 )  and ran- 
dom-temperature type. As examples of possible applications 
of the one-parameter approach we also consider the phase 
transition in a spin glass and the roughness phase transition. 
Some of the results described, pertaining to the Ising model 
with defects of the random-field type, have been published in 
a brief comm~nication,~ and a complete summary of the new 
results is given in the concluding part of the article. 

1. IDEALSYSTEMS WITH DISCRETE AND CONTINUOUS 
SYMMETRIES 

Traditionally, a state with spontaneously broken sym- 
metry is described by an order parameter that vanishes at the 
transition to the disordered phase. There exists, however, 
another quantity, which characterizes not only the ordered 
state but also its stability against fluctuations. Consider, e.g., 
the possibility of the formation of a domain of the opposite 
sign in the ordered phase of the Ising model. If the surface- 
tension coefficient of the domain boundary is equal to a and 
the radius of the domain is L, the corresponding increase of 
the energy will be proportional to the area of the domain 
wall: aLd-  ' where d is the dimensionality of space. At not 
too high temperatures T the probability of formation of a 
domain is small and proportional to exp( - aLd-  ' /T). 

Considering the possibility of the reversal of the mag- 
netization of the entire sample, we find it to be unrealizable 
in the thermodynamic limit L -+ w if d > 1 holds. This is the 
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signal of a state with broken symmetry, and the well known 
inequality d > 1 is a necessary condition for the existence of 
an ordered phase at T >  0 (Ref. 1). The total domain-wall 
energy G(L) = a L d  I is the key (and only) parameter of 
the theory. 

However, a somewhat different definition is conven- 
ient. Consider a d-dimensional spin system of arbitrary na- 
ture and linear size L, and calculate the difference in the free 
energies when, in any of the directions, we impose antiperio- 
dic boundary conditions (the spins at the edge of the sample 
are in opposite directions) and periodic boundary condi- 
tions (these spins are in the same direction), respectively. 
The energy difference thus obtained will be called the rigid- 
ity G(L). Ifwe have G(L - cc ) -0, this is an indicator ofthe 
disordered phase. In any other case the system is in an or- 
dered state. The rigidity introduced in this manner is a posi- 
tive-definite quantity in systems with ferromagnetic order- 
ing (since the periodic boundary condition corresponds to a 
lower energy) and negative-definite in systems with antifer- 
romagnetic interactions. In spin glasses, G(L) is of variable 
sign, since it is not known in advance which boundary condi- 
tion will be preferable for the given configuration of random 
exchanges. In other words, the spin glass is characterized by 
a distribution of probabilities of different values of G(L), 
and a measure of the order is given by the nonzero width of 
this distribution for L - co (Ref. 4).  

Except for spin glasses, below, for definiteness, we shall 
be speaking of ferromagnetic ordering. If we have 
G(L - cc ) = a L d  ' , the latter is characterized by the Ising 
spontaneous magnetization. In the ordered phase of systems 
with continuous (Heisenberg) symmetry, it is obvious that 
G(L - co ) = pLd - holds (p  is the so-called spin-wave 
stiffness), since the reversal of the magnetization here oc- 
curs continuously over the entire sample. In this case, a nec- 
essary condition for the existence of the ordered phase is that 
the well known inequality d > 2 be fulfilled.' 

It is clear that the concept of rigidity embodies a sub- 
stantially greater amount of information than does the tradi- 
tional order parameter. In addition, it contains the a priori 
possibility of ordered states with zero spontaneous magneti- 
zation. For example, if in a system with discrete symmetry it 
turns out, for various reasons, that G(L- cc ) a L ' with 
8 < d - 1, it may be asserted that the ordered state is charac- 
terized by zero spontaneous magnetization. Examples of this 
kind of phase will be given below. Apparently, the first to 
draw attention to the possibility of using the concept of rigid- 
ity to describe the ordered phase of an Ising spin glass were 
Fisher and Huse." In the theory of Anderson localization the 
analog of the rigidity is the conductance.' 

We turn now to the determination of the dependence 
G(L) in the disordered phase. In the latter, change of the 
form of the boundary conditions affects only a narrow layer 
whose width is on the order of the correlation length f near 
the edge of the sample, and therefore, as in the theory of 
localization, it is reasonable to assume that G(L) decreases 
exponentially fast: G(  L)  a exp ( - L /l). It should be noted 
that this dependence holds in any system, since all the disor- 
dered phases are the same. We now assume, in the spirit of 
the scaling hypothesis, that the rigidity Gis the only quantity 
that determines the behavior of the system as its size 
changes. We shall show that the information available to us 
is already sufficient to deduce the presence of a phase transi- 

tion. From the examples given above it can be seen that the 
indicator of an ordered state was the power of L ( d  - 1 or 
d - 2),  and, therefore, instead of investigating the depend- 
ence G(L),  it is more convenient to consider the so-called 
Gell-Mann-Low function (GLF) 
p ( G )  =d In G / d  In ( L l a )  
(a  is of the order of the interatomic spacing). The informa- 
tion given above permits us to write out the following asymp- 
totic formulas for O(G): 

p=d-l ,  G*= ( Ising ordering ), ( 1  

p=d-2, G + - 3  ; Heisenberg ordering ) , ( 2 )  

!3=1ln G+const, G-0 (disordered phase ) . ( 3 )  

On the basis of these, it is possible to propose the de- 
pendence P(G)  shown in Fig. 1 for the Ising system. It can 
be seen that the curves have substantially different forms for 
different dimensionalities. For d <  1 the function P(G)  is al- 
ways negative. It follows from this that as the size increases 
the function G always decreases, i. e., the system is in the 
disordered phase. For d > 1 the situation is different. If we 
start from a small G, thenflis negative and G decreases with 
increase of the size. But if we take G to the right of the inter- 
section point G = G,, then p >  0 and G increases as a func- 
tion of L, approaching the asymptotic dependence 
G a L  d p l .  

Thus, the unstable fixed point G, divides the ordered 
phase from the disordered phases, and the condition for the 
phase transition is that the initial value G,, coincides with G, . 
Taking the initial value ofL to be ofthe order of the interato- 
mic spacing a, we arrive at the conclusion Go= J (J is the 
exchange-interaction constant). The analysis of the phase 
transition repeats exactly the investigation of the Anderson 
transition. ' In the vicinity of the transition point the correla- 
tion length diverges as 

and, for Go > G,, the surface-tension coefficient vanishes as 

To calculate the index Y it is necessary to know the be- 
havior of the function P(G)  near the fixed point G,. . We 

FIG. 1 .  Form of the Gell-Mann-Low function for the ideal d-dimensional 
Isingmodel: 1 ) d >  1,2)d = 1 , 3 ) d <  1; thearrowsindicatethedirectionof 
change of the rigidity with increase of the scale, and the dashed lines 
correspond to the value f l=  d - 1 .  
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show how the dependence ( 1 ) for G-+ co can be made more 
precise. Thermal fluctuations decrease the surface-tension 
coefficient of an Ising domain wall, and this, in turn, leads to 
a correction to the GLF ( 1 ). A regular procedure for obtain- 
ing this correction will be described below, but for the pres- 
ent case of an ideal system the form of this correction is easily 
estimated from scaling arguments. At a nonzero tempera- 
ture it can be a function only of the ratio T/G, and, since we 
are speaking of an entropic correction, it should be linear in 
the temperature. Hence, 

where c, - 1. The right-hand side of the latter equation van- 
ishes at the value 

G,=cdT/ ( d -  I), (7)  

which tends to infinity as d-+ 1 + 0. Therefore, Eq. (6)  can 
be used to determine the transition temperature and indices 
only in the sense of the 1 + E expansion. Representing Eqs. 
(4) and ( 5 )  in a more familiar form, we finally find 

T-T,  -' 
ElaI- I  , V-I- -d-1, 

Tc 

For d = 1 the solution of Eq. (6)  gives an expression for 

that vanishes for L = l z a  exp (G(,/c, T) . 
If we choose G,,/c, = 2J, then 4 will correspond to the 

well known rigorous result that in the one-dimensional Ising 
model the long-range order is destroyed as a result of fluc- 
tuational creation of kinks. ' Thus, the results obtained above 
are correct for d = 1 + E ( ~ g  1 ). There are, however, 
grounds to suppose that they give a reasonably adequate de- 
scription under less stringent restrictions too. Indeed, for 
d = 2, it follows from (8)  and ( 10) that Y = ,u = 1, which 
coincides with Onsager's exact solution of the two-dimen- 
sional Ising model.' Taken on its own, the fact that the result 
to first order in E coincides with the exact result for E = 1 
appears to be accidental; however, it is by no means exotic. 
Below we shall give a further example of how, at one point, 
the result to first order in E coincides with the exact value. 

All that has been said above about the Ising model per- 
tains equally to the Heisenberg model as well if, in all the 
formulas, d - 1 is replaced by d - 2; correspondingly, the 
indices and transition temperature can be calculated in the 
2 + E approximation. We shall write out certain results per- 
taining to this case: 

fl ( G )  =a-2-cdT/G. (13) 

We draw attention to the fact that for d = 4 (i.e., in the 
upper critical dimensionality) Eq. ( 1 1 ) reproduces the well 
known exact value Y = + that follows from the Landau theo- 
ry. The relations ( 11 ) and ( 12) were obtained in a different 

way in Refs. (6)  and (7 ) , and this also argues in favor of a 
one-parameter theory. 

The expressions (6 ) and ( 13 ) will be reproduced below 
as a particular case of a more general relation. 

2. GENERAL ANALYSIS 

We shall consider an Ising domain wall situated in a 
random medium. The corresponding Hamiltonian has the 
well known form' 

Here, r is the effective stiffness of the domain wall, f is its 
displacement relative to an arbitrary reference plane, and V 
is the random potential, with zero average and with a corre- 
lation function 

< V ( f ,  x)V(f',x')>=R(f-f1)6(x-x') 
that depends on the type of inhomogeneities.' The effect of 
fluctuations (of the defect or temperature type; in the latter 
case, V=O) is reflected in the roughness of the domain 
boundary-the dependence of the characteristic transverse 
displacement w on the scale L over which it is accumulated: 

where A depends on the source of the fluctuations and < is 
the so-called roughness index. Since the relation ( 15) arises 
as a consequence of balancing the contributions from the 
increase of the elastic part of the energy of the deformed wall 
[the second term of ( 14) ] and the decrease of the random 
term (the third term), the fluctuation contribution to the 
surface-tension coefficient can be estimated as the average 
value of the second term in the integrand of (14). Conse- 
quently, for the relative correction Aa/a we have' 

A a  ~ A Z  a ~ ( c - ~ )  - ~ ~ ( c - t )  
- = const -- 
a a 2 (b-1) 

(16) 

For < < 1 the first term of Eq. ( 16) corresponds to a negative 
contribution to the surface tension, while the second term 
corresponds to a positive size correction that vanishes as 
L + cz . For [> 1, however, the sign of ( 16) changes; it begins 
to grow, leading to the vanishing of the total surface-tension 
coefficient, and, consequently, to instability of the uniformly 
magnetized state.2 We draw attention to the similarity of the 
expression ( 16) to the interference correction to the conduc- 
tivity in the theory of localization. ' 

The form of the GLF is established in exactly the same 
way as in the theory of localization. In the zeroth approxi- 
mation /? is expressed by Eq. ( 1 ) . Using the zeroth-approxi- 
mation result G = aL " - ' and the correction ( 16), we final- 
ly find 

where k = TA ' a 2 ' ;  "/a is the dimensionless "intensity" 
of the source of fluctuations. Substituting for A and [ their 
values for the ideal, defect-free system at nonzero tempera- 
ture' 

we return to Eq. ( 6 ) ,  obtained from elementary consider- 
ations. 

We turn now to systems with continuous symmetry; we 
shall consider only two-component (XY) magnets. The ana- 
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log of the Hamiltonian ( 14) in this case is also well known 
(see, e.g., Refs. 8 and 9) :  

where q, is the phase (angle of rotation of the spin) and 
V(q,,x)  is a random 2~-periodic potential with zero average. 
The form of the0 function in this case is established in exact- 
ly the same way as was described above for the Ising model. 
Omitting the analogous calculation, we find 

G 2C/(d-2) 

/3.= = d-2-k(-) , k=A20". 
pad-' 

(20) 

In the defect-free system, A and fare  given by formulas simi- 
lar to (18): 

Substituting these values into (20), we again arrive at the 
already familiar formula ( 13 ) . 

The general relations (17) and (20) obtained above 
will be used below to analyze various specific cases. 

3. ISING MODEL AND XY MODEL IN A RANDOM FIELD 

We shall find it more convenient to analyze the Ising 
model and X Y  model at the same time. We consider first the 
case of zero temperature. Substituting f = (5 - d)/3 (Ref. 
2)  into Eq. ( 17) and f = (4  - d)/2 (Ref. 10) into Eq. (20), 
we obtain 

G 2(2-d)/3(d-1)  

= a-I-k(-) J t (21 

In writing Eqs. (21) and (22) we have taken into account 
the fact that aad- ' zpad-  * z J. It should also be noted that 
in (21) and (22), for simplicity, we have used the single 
symbol k to denote the different dimensionless quantities 
that control the degree of disorder. On the basis of these 
formulas, and also the relation ( 3 ) ,  we may postulate the 
dependencep(G) depicted in Fig. 2 for different dimension- 

FIG. 2. a )  Form of the Gell-Mann-Low function in dimensions greater 
than or equal to the lower critical dimensionality for the d-dimensional 
Ising model (the values corresponding to the XY model are indicated in 
brackets) in the presence of defects of the random-field type; k is the 
dimensionless degree of disorder; b) the same in dimensions less than the 
lower critical dimensionality, with k (  1; G , ,  is the unstable fixed point, 
G,? is the stable fixed point, and the arrows indicate the directions of the 
changes of the rigidity with increase of the scale. 

alities of space. Because of the qualitative similarity of the 
behavior of the systems under consideration, the values of 
the parameters pertaining to the X Y  model are indicated in 
brackets. We note that, strictly speaking, Fig. 2b can be es- 
tablished only ford < 2(d < 4, respectively), but there are no 
obvious reasons why, under less stringent restrictions, Fig. 
2b could undergo qualitative changes, since the curves 
shown should be obtained from each other by continuous 
deformation upon decrease of the dimensionality of space. 

For d > 2 for the Ising model ( d  > 4 for the X Y  model) 
the behavior of the GLF qualitatively resembles that for the 
defect-free systems for d > 1 and d > 2, respectively. With 
increase of the degree of disorder (increase of k) ,  G, inter- 
sects the initial value G, ,zJ  and a phase transition to the 
disordered phase occurs. In this case the indices are given, as 
before, by the general formulas (4) and ( 5 ) ,  but a correct 
calculation of the index Y turns out to be impossible. In fact, 
the right-hand side of (21 ) vanishes at the value 

k 3(d-1)/2(d-2)  

G = J  (-) 
d- I 7 

which, for any d > 2, cannot be regarded as large (we recall 
that Eqs. (21) and (22) have been written out in the limit 
G- co ), and, therefore, the expression (2 1 ) can be used only 
for a rough estimate of Y. Bearing this in mind, we find 

The estimates given turn out to be certainly inapplica- 
ble for d - 2, since for d = 2 the right-hand side of (2 1 ) does 
not depend on G at all. For d = 6 Eq. (23) gives v = 4, 
which is fairly close to the exact value Y = + (we recall that 
the upper critical dimensionality is d = 6, for which the val- 
ue of the index Y should coincide with the result of the Lan- 
dau theory1.* ), so that far fromd = 2 the relations (23) and 
(24) are fully applicable. 

All that has been said above about the indices of the 
Ising model with defects of the random-field type applies 
equally to the X Y  model as well. The corresponding results 
have the form 

Formally, the relation (25) can be obtained from Eq. ( 11 ) 
by the replacement d-d - 2 (indeed, the literature contains 
statements about the correspondence d-d - 2 between the 
indices of the pure system and the defect ~ y s t e m ' . ~ . ~  ). It 
should be remembered, however, that Eqs. ( 1  1) and (25) 
have entirely different meanings: The result ( 11) is asymp- 
totically exact ford+ 2, whereas (25 ) is certainly inapplica- 
ble for d-4 and is a rough estimate. In other words, the 
correspondence d-d - 2 between the indices is not fulfilled 
for d-4 at least. It may be hoped that far from d = 4 Eq. 
(25) is a reasonable approximation, since for d = 6 it gives 
the exact value Y = 4. 

Consequently, in the presence of defects of the random- 
field type the position of the fixed point of the renormaliza- 
tion-group equation is not controlled by the proximity to the 
lower critical dimensionality; therefore, in contrast to the 
assertions of a number of authors (see, e.g., the literature 
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cited in Refs. 1,2, and 9) ,  in such systems it is not possible to 
perform an E expansion about the lower critical dimensional- 
ity. The physical reason for this unusual behavior is that, at 
the critical dimensionality itself, complete destruction of the 
long-range order does not occur (see below). 

As can be seen from Fig. 2, ford = 2 for the Ising model 
( d  = 4 for the XY model) the corresponding ordered phases 
are characterized by a rigidity with the asymptotic depend- 
ence G(L) = YL ", with a nonuniversal, disorder-dependent 
index 8 = 1 - k ( 0  = 2 - k for the XY model) and zero 
spontaneous magnetization. At zero temperature and with 
increase of the degree of disorder in such systems a phase 
transition to the paramagnetic phase occurs. Since the initial 
value GO- J i s  finite, it may be asserted that at the transition 
point we have 0, > 0 (kc < 1 and kc < 2 for the Ising and XY 
models, respectively). In the critical region the correlation 
length increases in accordance with the law (4) ,  and the 
specific rigidity Y vanishes as 

The information at our disposal is not sufficient for an 
estimate of the index Y. For 8 > 8, and nonzero temperature, 
in the system under consideration a temperature phase tran- 
sition occurs, which can be described as follows. The GLF 
for this case, for the same reason as for ordinary defect-free 
systems undergoing a phase transition as a result of thermal 
fluctuations, has, to lowest order in T/G, the form 

( G )  =0-cT/G,  

where c- I ,  while the second term, just as in Eqs. (6)  and 
( 13 ), corresponds to the entropic correction. If 0 4 1, the use 
of the latter formula to find the critical behavior is fully justi- 
fied. In this approximation, we find 

We shall show that the results obtained lead to the con- 
clusion that there exists a tricritical point in the (k, T) plane. 
If we have in mind a second-order temperature phase transi- 
tion from the paramagnetic phase to an ordered phase with 
rigidity G a L ", the corresponding transition temperature 
vanishes at that degree of disorder for which 8 = 0. On the 
other hand, it was shown above that a zero-temperature 
phase transition in such a system occurs at a lower disorder 
k c ,  i.e., when 8, is still greater than zero. In our view, the 
only way to resolve this contradiction is to assume the exis- 
tence of a tricritical point with approximate coordinates 
( T, (k, ),kc ), at which a line of second-order phase transi- 
tions, issuing from the transition point T, (0)  of the pure 
system, terminates. The point with coordinates (0, kc ) auto- 
matically turns out to be tricritical, and the line connecting 
the two tricritical points corresponds to first-order transi- 
tions. 

Although, up to now, we have been speaking of the criti- 
cal dimensionality, it is clear from continuity considerations 
that the picture outlined should be preserved qualitatively in 
higher dimensions as well. It is curious that the existence of a 
tricritical point in the Ising model is predicted in the mean- 

field approximation for a certain distribution of the random 
field. 

The effect of an external magnetic field on the systems 
under consideration, in a space of the critical dimensionali- 
ty, can be investigated in exactly the same way as has been 
done in the phenomenological theory of a spin glass with a 
finite interaction range.4 Let us consider the possibility of 
the formation, in the ordered phase of the two-dimensional 
Ising model (or four-dimensional XYmodel) , of a "droplet" 
of linear size L with global reversal of the spin in an external 
field H. The change of the energy here is estimated as4 

where m is the spin magnetic moment, and the second term 
corresponds to the exchange-energy gain, which is found 
from considerations of the Imry-Ma type.I2 Since, in the sys- 
tems under consideration, we have 8 < 2 (we recall that 0 < 1 
hold for the two-dimensional Ising model and 0 < 2 for the 
four-dimensional XY model), droplets of a size exceeding 
the "magnetic length" 

will be oriented along the field; consequently, the ground 
state is nondegenerate and the phase transition is smeared 
out. 

For 2 < d < 4 for the XY model ( 1 < d < 2 for the Ising 
model) the Gell-Mann-Low equation has an unstable fixed 
point G,, and a stable fixed point G,,. If the initial value 
satisfies GO < G,, , the system is in the disordered phase. If we 
have Go > G,, , as L increases the measurable rigidity tends 
to G,, and does not depend on the size of the system. The 
ordered phase in this case resembles the one-dimensional 
Ising model at zero temperature (we recall that the latter is 
characterized by a size-independent rigidity, equal to W ) .  
As d + 4 from below (d + 2, for the Ising model), G,, tends 
to infinity, and, therefore, the indices determining the spatial 
behavior of the spin-spin correlation functions should van- 
ish as d + 4  - 0. In addition, it can be seen from Fig. 2 that all 
the phases for 2 < d < 4 ( 1 < d < 2, respectively) are similar. 
These properties of the phases with constant rigidity are in 
qualitative agreement with the results of Ref. 8, in which a 
renormalization-group analysis of the Hamiltonian ( 19) in 
real space was performed. 

At an arbitrarily low temperature, just as in the one- 
dimensional Ising model, disordering occurs, since in the 
thermodynamic limit the probability of formation of a drop- 
let of the opposite sign is nonzero and proportional to 
exp( - G,, / T ) .  The correlation length here is given by the 
formula 

E=a exp ( G c 2 / T ) .  

For d-4 - 0, using the expression (22) we find 

An analogous formula can also be written out for the Ising 
model. 

Thus, we arrive at the conclusion that, in the presence of 
defects of the random-field type, at a nonzero temperature 
no phase transitions are possible in the Ising system ford < 2 
or in the XY model for d < 4. The corresponding phases are a 
paramagnet with the correlation length (32). 
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4. KING MODEL WITH DEFECTS OF THE RANDOM- 
TEMPERATURE TYPE 

An interesting application of the method described 
above is the investigation of the phase transition in the Ising 
model, at zero temperature and in the presence of defects of 
the "random temperature" or "random coupling" 
as the degree ofdisorder is increased, since it is known that in 
this case we are dealing with a percolation pr0b1em.l.~ Sub- 
stituting into (17) the value of [ from Ref. 13, viz., 
[ = (2/9) (5  - d ) ,  we find the form of the GLF: 

G Z [ l - L ~ f , / 9 ( < ! - 1 )  

!=a-l-k (-) 
J 

(33) 

Estimating in the same way as was done above for the XY 
model and Ising model in a random field, for the correlation- 
length index we have 

This estimate is certainly inapplicable for d-  1, but for not 
too small d it gives reasonable results. For d = 2, from (34) 
we find v-4, which is fairly close to the exact result v = 4 
(Ref. 14); for d = 3 we obtain the value Y -- 0.9, which is in 
excellent agreement with the most accurate numerical data 
( v  = 0.88). l4 The situation is analogous for larger d as well: 
For d = 6, it follows from Eq. (34) that we have VZ&, 
which is close to the exact value v = + [we recall that the 
upper critical dimensionality for the percolation problem is 
d = 6 (Ref. l ) ] .  

The indexp, expressed here by the general formula (5) ,  
corresponds to a discrete lattice formulation of the percola- 
tion problem (see, e.g., Ref. 15 and the literature cited there- 
in). If we are speaking of a random network of resistances, it 
describes the way in which the conductivity vanishes near 
the percolation limit. 

We shall consider now the phase transition that occurs 
at nonzero temperature. To investigate it, we must take into 
account the renormalization of the random part of the Ham- 
iltonian ( 14), and also the temperature dependence of the 
effective rigidity T. This can be taken into account phenom- 
enologically by introducing an extra index into the general 
formula ( 17). Following the ideas described in Ref. 2, we 
shall demonstrate how it is possible to calculate this index. 
In Ref. 13 it was shown that a unified description of defects 
of different types is possible if the correlation function R ( f ) 
of the random potential f o r h a  is chosen in the form 

R ( f )  =A(lla)P7. 
For y = - 1 it corresponds to defects of the rando I-field 
type, and for y = y, = + the index (, as calculated using 
arguments of the Imry-Ma type, corresponds to defects of 
the random-temperature type, and also to correlated disor- 
der with y> y, , independently of y. 

The estimate for the energy of a distorted wall of linear 
size L and with characteristic transverse displacement w has 
the form' 

To take account of the above-mentioned renormalization, in 
the second term it is necessary to introduce an index u that 
allows for this effect: 

-7-0 I12 

E=rLd-l (t)' - [.I,-' (f) ] . 

Minimizing the latter expression with respect to w gives 

~ ( 5 - d ) / ( 4 + 7 + 0 ) .  (35) 

Substituting this dependence into the preceding formula and 
dividing by the area Ld of the part of the wall under consi- 
deration, we find the contribution arising from the scale L to 
the surface-tension coefficient: 

Summation over all scales from a to L leads to a formula of 
the form (16), from which the form of the GLF follows 
automatically: 

G 2 ( i - d - ~ - o ) / ( 4 + ~ + o ) ( d - l )  

!=d-l-k (-) 
J 

(36) 

We note that for a = 0 and y = - 1 (defects of the 
random-field type; T = 0 )  we return to Eq. (21), while for 
o = 0 and y = + (defects of the random-temperature type; 
T = 0 )  we return to (33).  The unknown index can be estab- 
lished from considerations of scale invariance. In fact, near 
the critical point there is only one length scale in the system, 
and therefore, in the critical region, a distorted piece of a 
domain wall is transformed into an isotropic region of the 
high-temperature phase, of characteristic size 6. Substitut- 
ing the correlation length into (35) in place of w and L, and 
also taking into account that T - a  cx 6 - '" I ) ,  we find the 
following relation between the indices: 

y+o=d-1. 
Substituting this into the expression (36), irrespective of the 
type of defects we find 

J 6 / ( 3 + d )  

!=d-L-k(-) G . (37) 

In the limit G+ cc and d >  1, the correction term is 
much greater than the entropic correction T/G to the GLF, 
and, therefore, from (37) and the general formula (4 )  there 
follows an expression for Y: 

which is asymptotically exact for d -  1 (i.e., coincides, to 
first order in E = d - 1, with the corresponding result (8 )  
for the defect-free system). In the next orders in E ,  however, 
as can be seen from the estimate (38), differences between 
the pure system and the defect system should appear, al- 
though numerically, for small E,  the indices should differ 
only slightly. This conclusion is in qualitative agreement 
with that of an exact investigation of the two-dimensional 
Ising model," and also with the results of renormalizing- 
group analysis in the 4 - E approximation (see Ref. 1 and 
the literature cited therein). Although Eq. (38) is an asymp- 
totically exact result for d-  1, it can serve for estimates for 
large d as well, since for d = 4 it gives a value v z  6 close to 

I 
T '  

The formulas (37) and (38) are consistent from the 
standpoint of defects of the random-temperature type, and 
agree qualitatively with the conclusions of Ref. 17, in which 
it was shown that near the percolation limit and at T >  0 the 
critical behavior changes and is found to be asymptotically 
the same as in the case of weak disorder' (in particular, the 
upper critical dimensionality will be d = 4, instead of d = 6 
for T =  0) ,  with preservation of the usual relation ( 5 )  be- 
tween the indices. 
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As regards defects of the random-field type [we recall 
that (37) and (38) were obtained, irrespective of the type of 
defect, under the assumption that the transition is contin- 
uous], the expression (38) is a further argument that, in the 
presence of such defects at zero temperature, at least in some 
part of the phase diagram, a first-order transition should 
occur, since it follows from (38) that the lower critical di- 
mensionality for T # O  is d = 1, which contradicts every- 
thing that has been said above about inhomogeneities of this 
type and also contradicts all the available data in the litera- 
ture. 

5. OTHER APPLICATIONS 

The one-parameter approach turns out to be most effec- 
tive in those cases when, in the system under consideration, 
there is no obvious microscopic order parameter. A classic 
example, here, evidently, is the spin glass. It has already been 
pointed out above that the ordered phase of the Ising spin 
glass is characterized by a distribution of probabilities of 
different values of the rigidity, where the width of this distri- 
bution, according to the results of numerical experi- 
m e n t ~ , ' ~ . ' ~  behaves as YLH. This distribution is symmetric 
about zero as a consequence of the evenness of the distribu- 
tion of random exchanges, and therefore the sign of the rigid- 
ity is in no way distinguished here. This fact leads to the 
following important conclusion: The renormalization-group 
equation should be invariant under change of the sign of G. 
In other words, the GLF should be an even function of the 
ratio T/G. 

Taking this circumstance into account, to lowest order 
in T/G we have 

fl (G) =0-c (T/G)', (39) 

where c- 1. For 8< 1 (according to the results of the nu- 
merical experiments of Refs. 18 and 19, this situation is real- 
ized in the three-dimensional case, where 8-0.2), the latter 
relation and the general formula (4)  can be used to deter- 
mine the critical behavior. As a result, we find 

v - ' ~ 2 0 ,  

Here, T, is the glass-transition temperature, and J has the 
meaning of the absolute value of the characteristic exchange- 
interaction constant. The results (40) were obtained in a 
somewhat different way in Ref. 20. The above-mentioned 
symmetry property of the glass phase under change of the 
sign of G leads to a linear dependence of the specific heat at 
low temperatures, since the entropic contribution to the free 
energy for T-0 should be quadratic in the temperature. 

Up to now, the examples of the application of the one- 
parameter theory have been spin systems. From the analysis 
ofjust these, it is already clear that the rigidity of any system 
is equal to the total energy of the topological defect whose 
properties reflect the character of the spontaneous symme- 
try breaking. As soon as this aspect has been elucidated for 
any particular system, the subsequent analysis of the phase 
transition can be performed using the rules described above. 

As a very simple example, consider the phase transition 
from the atomically smooth state to the rough state on the 
( d  - I)-dimensional boundary of a crystal. By fixing (in 

opposite directions along the surface) the positions of the 
boundary to be at heights differing by a lattice constant, we 
obtain an elementary step.If its total energy G(L- w ) -0, 
the boundary does not sense the crystal relief and is rough. In 
any other case it will be smooth. In fact, if G(L -+ co ) - W ,  

the probability ( a exp [ - G(L) /T  1 ) of formation of a nu- 
cleus of size L in the neighboring valley of the potential relief 
will vanish in the thermodynamic limit. Consequently, the 
crystal boundary will remain in the initial valley for an arbi- 
trarily long time, and it is this which serves as a signal of a 
state with broken symmetry. 

We consider first an ideal, defect-free surface in the 
smooth state. The step here is a ( d  - 2)-dimensional object 
with total energy G(L - w ) =pL  " 2 ,  while a kink on this 
step is a ( d -  3)-dimensional object with energy 
E (L)  = 6L "p and 6 are the corresponding specific en- 
ergies). From these definitions it rapidly follows that the 
inequalities d > 2 and d > 3 serve as necessary conditions for 
the existence of stable surfaces and steps, respectively. For 
the values d<3 that have physical meaning, a step will al- 
ways be rough; it is for this reason that we can disregard the 
periodicity along the surface, as is done in the usual investi- 
gation of the roughness transition ford = 3 by means of the 
sine-Gordon model." 

Consequently, we have the situation that we encoun- 
tered in the analysis of the Heisenberg magnet, and all the 
results ( 1 1 )-( 131, together with the law of vanishing of the 
specific energy of a step (in a magnet, this is the spin-wave 
stiffness) 

p=T,zZ-d 
are carried over in their entirety to the roughness phase tran- 
sition. However, in contrast to the case of the magnetic sys- 
tem, the result ( 11 ) of the 2 + E expansion gives a qualita- 
tively incorrect result for E = 1 (d = 3). This fact is not 
surprising, since d = 3 is the upper critical dimensionality 
for the roughness phase transition (for d >  3 the crystal 
boundary is found to be smooth even without allowance for 
the crystal relief) and in this case nonpower singularities 
near T, occur." Nevertheless, in the 2 + E approximation 
the results ( 1 I)-( 13) remain asymptotically exact. 

In defining the smooth state as a thermodynamic phase 
in which the step energy G(L -+ w ) - a, we have included 
the a priori possibility of the existence of states with a de- 
pendence G ( L )  that differs from the above-mentioned law 
G(L) a L We now show that such an exotic smooth 
phase with G(L) a L "(8 < 1 ) arises on the surface of an or- 
dinary three-dimensional crystal in the presence of point de- 
fects. A step on the surface of the crystal is a one-dimension- 
a1 object, similar to a domain wall in the two-dimensional 
Ising model. However, as follows from the above investiga- 
tion, in the presence of defects of the random-field type in the 
two-dimensional Ising model a quasiferromagnetic phase 
with rigidity G(L) a L '(6< 1) is realized. The entire ques- 
tion is whether there exist defects of the random-field type 
(that "prefer" a higher to a lower step terrace, or vice versa) 
on the crystal surface. The inequivalence of a higher terrace 
and a lower terrace is connected with the fact that a step, 
being a surface defect, induces internal stresses in the crys- 
tal, from the standpoint of which, in the absence of inversion, 
the above-mentioned inequivalence  arise^.'^ Consequently, 
all point defects will play, in relation to the step, the role of 
defects of the random-field type. Thus, all that has been said 
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above about the properties of the two-dimensional Ising 
model with defects of the random-field type, including the 
phase diagram, tricritical points, indices, etc., carry over ful- 
ly to the roughness phase transition on the defect surface of a 
crystal, with the role of the quasiferromagnetic phase being 
played by the smooth phase and that of the paramagnet be- 
ing played by the rough phase. 

DISCUSSION OF THE RESULTS AND CONCLUSIONS 

Before proceeding to a direct discussion of the results, 
we must discuss what place is occupied by the proposed var- 
iant of the theory of phase transitions among the existing 
approaches, and whether there are any fundamentally new 
aspects in this variant. The existing scheme of the renormal- 
ization-group description is a many-parameter scheme, its 
parameters being the coefficients of the Landau functional 
and also the characteristics of the random interactions (if 
such are present) . I 3 '  The results obtained from such an anal- 
ysis are asymptotically exact near the upper critical dimen- 
sionality. At the same time, the investigation of such ques- 
tions as the existence of long-range order in ideal and defect 
Systems~.2.5.~2 has shown the fundamental importance of 

topological defects, the properties of which reflect the char- 
acter of the spontaneous symmetry breaking and determine 
the lower critical dimensionality. It is clear, therefore, that 
they are responsible for the character of the phase transition 
(at  least at the descriptive level) in dimensions higher than 
the lower critical dimensionality as well. 

Since, in the final analysis, the ordered phase and disor- 
dered phase have, respectively, a nonzero and a zero topo- 
logical-defect energy in the thermodynamic limit, it is natu- 
ral to attempt to construct a one-parameter theory whose 
macroscopic parameter will be the rigidity that has been 
mentioned repeatedly above. Since, in such a theory, the 
concept of the order parameter is absent, one of its weak 
points is the incompleteness of the information obtainable 
about the phase transition (in the Introduction it was noted 
that the theory gives the possibility of calculating only the 
correlation-length index and the indices related to it by the 
scaling laws). At the same time, in a number of cases (the 
spin glass, spin systems with defects of the random-field type 
in a space of the lower critical dimensionality, and the 
roughness transition), when in the object investigated there 
is no obvious microscopic order parameter, this weak aspect 
turns out to be strong, since even in these cases the rigidity, 
as before, is well defined. 

Thus, the fundamentally new point is the idea of using, 
instead of many parameters, just one-the rigidity, which 
subsumes all the important information about the properties 
of the ordered phase. Correspondingly, in the theory, instead 
of many renormalization-group equations' there is one, re- 
flecting the character of the ordering and the cause of the 
phase transition. The results thus obtained "gravitate" to- 
ward the lower critical dimensionality. Thus, the one-pa- 
rameter approach supplements the existing theory,' and, in a 
number of cases, leads to new results. 

For ideal systems, we obtain asymptotically exact ex- 
pressions for the transition temperature and indices near the 
lower critical dimensionality, and of these results the follow- 
ing are new: Expressions for the indices and transition tem- 
perature of the Ising model in the 1 + E approximation; ex- 

pressions for the indices and transition temperature of the 
roughness phase transition in the 2 + E approximation. 

In addition, the one-parameter theory in the 2 + E ap- 
proximation reproduces the known results pertaining to the 
indices and transition temperature of the Heisenberg mag- 
net.(',' 

We turn now to a discussion of the results pertaining to 
systems with defects. 

The central results in the presence of defects of the ran- 
dom-field type are as follows: The prediction of a new quasi- 
ferromagnetic phase in spin systems in space of the lower 
critical dimensionality; the construction of a disorder-tem- 
perature phase diagram on which, in dimensions not less 
than the lower critical dimensionality, there are two tri- 
critical points; the prediction of new types of quasiferromag- 
netically ordered phases that are unstable against thermal 
fluctuations in dimensions less than the lower critical dimen- 
sionality, and, consequently, a proof of the absence of any 
phase transitions at  a nonzero temperature; a proof that in 
such systems it is impossible to perform an E expansion about 
the lower critical d imen~iona i i t~ ;  a demonstration of the vio- 
lation of the relation d - d  - 2 between the indices of the 
ideal XY system and the defect XY system for d-4. 

The results listed above are in many respects a conse- 
quence of the fact that the lower critical dimensionalities for 
the ideal system and the defect system do not coincide. They 
are also insensitive to the actual values of the roughness in- 
dices; it is important only that the values of the latter give the 
same critical dimensionality. For example, in deriving Eq. 
(22) we used the result of Ref. 10, obtained by means of 
perturbation theory. Although, at present, there are doubts 
as to its correctness,' the fact that the lower critical dimen- 
sionality is d = 4 is not in dispute. Therefore, even if the 
criticism made by Fishery is justified, the exponent in the 
second term of Eq. (22) should vanish for d = 4 in any case, 
and this turns out to be sufficient for all the subsequent con- 
clusions. Of course, the estimates (25 )  and (26) will be 
changed, but these are only estimates and all the qualitative 
conclusions remain unchanged. 

It is also curious that the conclusion that a stable quasi- 
ferromagnetic phase and unstable quasiferromagnetic 
phases are present follows even without knowing the form of 
the extra terms in (21) and (22).  Consider, e.g., the two- 
dimensional Ising model at zero temperature and with weak 
disorder, and assume that we know (e.g., from arguments of 
the Imry-Ma type1') that the system is in a space of the lower 
critical dimensionality. We try to guess the behavior of the 
G L F  as G- W .  First, it is clear that p ( G )  cannot tend to 
unity (otherwise, we have obtained ferromagnetism) . Sec- 
ond, it is obvious that, for a small degree of disorder, defects 
begin to have an effect only for sufficiently large G, i.e., as 
soon a s p  > 0. For the largest value of the G the G L F  cannot 
intersect the abscissa, since when the dimensionality is in- 
creased infinitesimally the assumed intercept should move 
away discontinuously to infinity, and, because of continuity 
considerations, this is impossible. Thus, two variants of the 
behavior o f b ( G )  as G- w are conceivable: The G L F  tends 
to a constant value, differing from unity in proportion to the 
small magnitude of the degree of disorder; the G L F  tends to 
zero from above. In either of these cases, it is obvious that 
G(L-  w ) -+ W ,  which is the signature of a phase that is sta- 
ble against thermal fluctuations and "softer" than a ferro- 
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magnet. The specific calculation performed in the paper 
shows that the first of the above variants is realized. For 
d < 2 the second intercept G,., (Fig. 2) arises in a natural 
manner, with all the consequences that flow from this. 

It is interesting that, in some numerical experiments on 

the two-dimensional Ising model with defects of the ran- 
dom-field type in the presence of weak disorder, a certain 
ordered phase, called by the authors a spin-glass phase, is 
found (see Ref. 23 and the references therein), with an or- 
dered state of an obscure nature. In the light of the results 
obtained above, it is obvious that a spin-glass phase in such a 
system is impossible, since the rigidity is positive-definite, It 
is not ruled out that this phase and the quasiferromagnetic 
phase under discussion are identical. As shown in the pre- 
ceding section, an experimental object on which the theoreti- 
cal predictions could be checked is the surface of a defect 
crystal undergoing a roughness phase transition. 

Note also that Fisher9 has drawn attention to the fact 
that the position of the fixed point of the renormalization- 
group equation is not controlled by the proximity to the low- 
er critical dimensionality, and also that the relation 
d-d - 2 between the indices in the XYmodel may possibly 
not be fulfilled. However, a physical reason for this behavior 
(incomplete destruction of the longer-range order in a space 
of the critical dimensionality) and an explicit demonstration 
of the nonfulfillment of the above relation between the in- 
dices for d-4 are indicated only in the present paper. 

As regards defects of the random-temperature type, 
here we have found the following new results: An accurate 
estimation formula for the indices of percolation theory has 
been obtained; it has been shown that, at a finite temperature 
to first order in E = d - 1, the value of the correlation-length 
index coincides with that for the ideal system, but in the next 
orders differences should appear that are greater the higher 
the dimensionality. 

Thus, using this example in which the properties of a 
broad class of physical systems are studied, we have demon- 
strated the effectiveness of the one-parameter approach. It 
may be hoped that it will be found useful in the investigation 
of other systems too. 

The author is grateful to E. I. Kats, A. P. Levanyuk, S. 
A. Minyukov, B. V. Petukhov, and A. A. Chernov for useful 
discussions of the results of the paper. 
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