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A three-coordinate vibration magnetometer has been used to study the static magnetic properties 
of the easy-plane antiferromagnet CsMnBr, in fields up to 75 kOe over the temperature range 1.7- 
80 K. In a certain interval of fields Hlc,  a magnetization component MIIc arises in the crystal. It  is 
concluded from an analysis of the experimental data that the spins deviate from the basal plane of 
the crystal in this case. The static magnetic properties are calculated with the help of a 
thermodynamic potential containing all the terms of second order in the vectors I and m 
allowed by the symmetry of the crystal. The results of these calculations show that the observed 
phase diagram could occur if the parameters of describing the exchange interaction in the basal 
plane and describing the magnetic anisotropy were related in a specific way. 

INTRODUCTION 

The magnetic properties of quasi- 1 D hexagonal antifer- 
romagnets with an ABX, structure, where the cations A and 
B are respectively an alkali metal ion and an ion of a 3d 
element, and X is a halide anion, have recently attracted 
considerable theoretical and experimental interest. The qua- 
si-1D magnetic properties of such compounds are deter- 
mined by the particular crystal structure of these com- 
pounds: The distances between the 3d cations along the 
principal axis are considerably smaller than in the perpen- 
dicular direction. ' 

Another characteristic feature of these compounds is 
that as they are cooled they go into an ordered state with a 
noncollinear magnetic structure, so they exhibit magnetic 
properties quite different from those of the well-studied col- 
linear antiferromagnets. It is this combination of a quasi-1D 
nature and a noncollinear magnetic structure that is respon- 
sible for most of the research interest in these substances. 
One representative of this group of magnetic materials is 
CsMnBr,, which furthermore has a nontrivial magnetic 
phase diagram. 

According to experimental data on elastic neutron scat- 
tering,, in a zero field (H = 0)  and below the tem~erature of - 
3Dordering, TN = 8.32 K, theCsMnBr, crystal (of symme- 
try space group D:, , with room-temperature lattice con- 
stants a = 7.61 A and c = 6.52 A; Ref. 4)  has a triangular 
magnetic structure, with spins lying in the easy basal plane of 
the crystal, a. The spins alternate in an antiferromagnetic 
fashion along the c axis (the principal axis), parallel to C,, 
and neighboring spins in the basal plane make angles of 120" 
with each other (Fig. 1). The magnetic properties of crystals 
of the CsMnBr, type are usually described by a Hamiltonian 
which is quadratic in the spin operators,' 

8 = 2 j .  ~ s . s . , ~ . + z I , ~  S . S . + , , A b  

i t 

with the following' parameter values as T-0: J, = 0.88 
meV, Jab = 0.0019 meV, and D = 0.014 meV (Ref. 5 ). The 
antiferromagnetic exchange interaction is very anisotropic, 
differing in the directions along the principal axis (Jc ) and 

in the basal plane (Jab ( Jc /Jab =: 460). As a result, slightly 
above TN (at T >  10 K )  the magnetic structure of CsMnBr, 
consists of a set of antiferromagnetic chains, and this com- 
pound exhibits properties characteristic of quasi-1D mag- 
netic  material^.^ 

In a classical calculation based on Hamiltonian ( 1 ), 
Chubukov7 derived the magnetization M and the antiferro- 
magnetic-resonance frequencies fli of CsMnBr, as a func- 
tion of the magnetic field H,  directed either parallel to or 
perpendicular to the c axis. According to the results, in a 
field H l c  as H-0, one group of parallel spins (a  magnetic 
sublattice; we call these spins S , )  lie in the basal plane, per- 
pendicular to the field H,  while two other groups S, and S,, 
make angles of ?r/6 and 5 ~ / 6  with this field (Fig. lb). With 
increasing H, the first of these sublattices rotates slightly 
toward the magnetic field, while the angle of 28 between the 
two other sublattices decreases from its initial value of 2 ~ / 3  
in accordance with 

cos 0= [ 2 -  ( H I H , ) 2 ] - 1 ,  (2)  

where 

and vanishes at H = Hc. The sublattices partially collapse. 
If the condition D > 3Ja, holds, as it does in CsMnBr, ac- 
cording to the data of Ref. 5, the spins do not deviate from 
the basal plane at any value of H. The collapse of the sublat- 
tices consisting of the spins S, and S, corresponds to a sec- 
ond-order phase transition. This entire discussion of course 
also applies to the spins S,, S,, and S, which lie in a neigh- 
boring basal plane, at a distance of c/2 from the plane under 
consideration (Si IIS, + , ) . 

Using the parameter values given in Ref. 5, we find a 
value H, = 6 1 kOe from ( 3 ). With a further increase in H, at 
Hc < H < 8c =: 8Jc S /gp,, there is a smooth rotation of the 
spins toward the H direction, as in the case Hllc, H < B ~ .  
The angle a between the direction of the spins Si and the 
field H under the conditions specified above is the same for 
all spins and is given by 

cos a=gpBH/8J,S.  (4)  

Working from the calculations in Ref. 7, we find the 
following expressions for the magnetization of crystals with 
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FIG. 1 .  a-Arrangement of the magnetic moments of the Mn2 + 

ions in the unit cell of the CsMnBr, crystal; b-magnetic mo- 
ments of the sublattices in one of the basal planes of the crystal as 
H-0,  brought to a common point. 

a magnetic structure of the CsMnBr, type: 

for H<Hc, H lc  or 

for Hc (H <Bc ,  H l c  and also for H < BC, Hllc, where N is 
Avogadro's number, p is the molecular weight, and p is the 
density (the x-ray density of CsMnBr, is4px = 4.30 g/cm3). 

In experiments on elastic neutron scattering, Gaulin et 
studied the magnetic phase diagram (H, T )  in fields H up 

to 65 kOe. The fields were applied in the basal plane of the 
crystal. Gaulin et al. confirmed the conclusions reached by 
Chubukov7 regarding the existence, between the triangular 
and paramagnetic phases, of an intermediate phase with par- 
tially collapsed sublattices (in contrast with the phase at 
H > k, with totally collapsed sublattices) . Gaulin et al. 
found a value H, ( T  = 2 K )  = 64 kOe. [In saying that this 
intermediate phase lies "between" the other phases, we 
mean that T is being varied at constant H < H, (0 K).] 

Results of a study8 of the static magnetic properties of 
CsMnBr, agree qualitatively with the theoretical predic- 
tions of Ref. 7, but they indicate that the spins deviate from 
the basal plane of the crystal at fields HzzH,, Hlc. Chubu- 
kov's theory7 does not describe such a deviation. 

Our purpose in the present study was to pursue the re- 
search on the static magnetic properties of the CsMnBr,, 
calculating these properties with the help of a thermody- 
namic potential a containing all the terms of second order in 
the magnetic moments which are allowed by the symmetry 
of the crystal. 

TEST SAMPLES AND EXPERIMENTAL PROCEDURE 

The magnetization was measured on a vibration magne- 
tometer similar to that described in Ref. 9. A horizontal 
magnetic field up to 75 kOe was produced by a slotted super- 
conducting magnet consisting of two windings. With three 
pairs of measurement coils it was possible to simultaneously 
measure the three mutually perpendicular components of 
the magnetic moment of the sample, one of which, A , ,  was 
parallel to the magnetic field H. The vibration axis of the 
sample was perpendicular to H. The absolute error in the 
measurements of was -7%, while the relative changes in 
A within a single experiment could be measured more pre- 
cisely, within 3%. 

Measurements were carried out over the temperature 
range 1.7-80 K. Above 4.2 K, the sample temperature was 
measured by an (iron + 0.03% gold)/chromel thermocou- 
ple within an error - 3%; below 4.2 K the sample tempera- 

ture was determined to within -0.1 K from the saturation 
vapor pressure of helium. 

The test samples were single crystals with dimensions - 2 X 2 x 2 mm. The CsMnBr, crystals are very hygrosco- 
pic; in air, they quickly decompose, converting into a white 
substance having a large paramagnetic susceptibility. Before 
each experiment, a sample was accordingly cleaved from the 
interior of a single-crystal boule held in a desiccator. The 
CsMnBr, single crystals were grown by S. V. Petrov at the 
Institute of Physical Problems, Academy of Sciences of the 
USSR. 

EXPERIMENTAL RESULTS 

Figure 2 shows the results of measurements of the mag- 
netization components parallel to the field H: MxII for Hllc 
a& M,, for Hlc. We see that the Mx (H)  curve is generally 
described well by expressions (5 ) and (6), but there are two 
deviations. First, for H)Hc the Mx, (H)  curve runs under 
MxII (H);  second, for H)H, the M,, (H) curve is steeper 
than the theoretical curve. In other words, it deviates from 
the behavior M a H which would follow from (6). The first 
of these features can be attributed to a possible anisotropy of 
theg-factor (g,, > g, ); such an anisotropy has been seen pre- 
viously' in several quasi-1D antiferromagnetic chlorides 
which have different magnetic 3d ions and which are isomor- 

FIG. 2. Field dependence of the magnetizations (0) M,,, and (8) M,, at 
T = 1.7 K. The solid line is a curve of M(H) calculated from the theory of 
Ref. 7. 
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phic with CsMnBr,. The second of these features can be ex- 
plained under the assumption that the collapse of the sublat- 
tices does not terminate at the field H, . The latter possibility 
could of course stem from an imperfect stacking of the crys- 
tal and a related deviation of the field H from the basal plane. 
In an effort to rule out the possibility of this trivial explana- 
tion, we rotated H in a plane perpendicular to the basal plane 
at steps of lo. However, we were not able to eliminate the 
effect. 

Figure 3 shows the temperature dependence of the mag- 
netic susceptibility in a field H = 22.5 kOe, at which the 
M,, (H) dependence is still essentially linear. It follows 
from the results in Fig. 3 that the magnetic susceptibility 
remains anisotropic up to T- 80 K )  TN. The results of 
these measurements are approximately the same as thex( T) 
dependence found previously3 in a field H = 15.3 Oe. The 
value found from (6)  with allowance for the M I ,  (H)  depen- 
dence as T+O is Jc = 0.89 meV + 7% and agrees, to within 
the experimental error, with the data of Refs. 3 and 5. 

The most important result, in our opinion, is that when 
the field H is parallel to the basal plane of the crystal a signal 
appears in the z coils in a certain magnetic-field interval. 
This signal falls off with increasing temperature, vanishing 
at T z  TN. The presence of this signal indicates the appear- 
ance of a magnetization component M, (IclH in this field 
interval. Figure 4 illustrates the situation with an M, (H)  
dependence measured at T = 1.7 K. Because of the small 
value of M, , in analyzing the experimental data we subtract- 
ed from the signal induced in the z coils a parasitic signal 
which stemmed primarily from the paramagnetic moment 
induced in the heater (constantan wire wound around a sap- 
phire holder). This signal turned out to be significant in 
cases in which a high sensitivity was required in the M, mea- 
surements. The maximum value of M, was reached in a field 
H z H , ;  at the lowest temperature, T = 1.7 K, it was less 
than - 3% of M, in this field. It  can be concluded from this 
result that the collapse of the magnetic moments of the sub- 
lattices is accompanied by a deviation of these moments 
from the basal plane of the crystal. 

FIG. 4. Field dependence of the magnetization M, Ilc (Hlc, T = 1.7 K).  

Figure 5 shows the temperature dependence of the field 
H, , which we measured as the field at which M, reached its 
maximum. This dependence agrees well with the tempera- 
ture dependence measured for the critical field Hc in Ref. 2. 
That field was interpreted by Gaulin et ~ 1 . ~  as the field at 
which the sublattices collapsed. Figure 6 shows the tempera- 
ture dependence of the maximum value (M, ),,, = M, ( H ,  ) 
and of the width AH of the field interval in which this com- 
ponent of M is observed. 

Taken together, these results seem to indicate that a 
transition to an intermediate phase with a component 
M, #O occurs in CsMnBr, at a certain field Hc, slightly 
below H, , instead of the transition, at H, , from the triangu- 
lar phase to the partially collapsed phase which is predicted 
by the theory of Ref. 7 with the parameter values Jab and D 
given above. Extrapolation of the experimental data in Fig. 4 
to higher fields, with allowance for the dependence M, (H)  

FIG. 3. Temperature dependence of the magnetic susceptibility x of a FIG. 5. Temperature dependence of the critical magnetic field H, found 
single crystal for the orientations (e) Hllc and (0) Hlc  ( H  = 22.5 kOe). from the M, (H)  dependence. 
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FIG. 6. Temperature dependence o f  (a) the maximum value 
( M ,  ),,, = M, ( H ,  ) and (0)  the width A H o f  the field interval in which 
M, is observed. 

(Fig. 2) ,  suggests that at a certain field Hc2 > Hc there is a 
transition from a phase with M, #O to a partially collapsed 
phase or to a phase with similar properties with M, = 0 and 
M, cc H. Consequently, between the triangular phase and 
the partially collapsed phase which was predicted in Ref. 7 
and which has been observed previously,238 or a similar 
phase, there is an intermediate "angular" phase with spins 
making an angle with the basal plane. 

THEORY 

It is simple to show that there exist no relations among 
the parameters of the Hamiltonian ( 1 ) which enable that 
Hamiltonian to explain the existence of a phase with a com- 
ponent M, # 0 in CsMnBr, when the field H is applied in the 
basal plane of the crystal. The reason that the phase diagram 
generated from ( 1 ) depends on only the ratio of the param- 
eters D and Jab ( Jc % J,, > 0). For D > 3Ja,, as was shown 
above, the spins remain in the basal plane for any value of a 
field Hlc, so we have M, = 0. 

For D < 0 the crystal becomes an easy-axis crystal. As 
H-0, the spins form the same triangular lattice, with angles 
of 120" between the directions of neighboring spins, as in the 
case with D >  3Jab, which we have already discussed. The 
only distinction is that now these triangles lie in a plane per- 
pendicular to the basal plane and to the field Hlc. As the 
magnetic field is increased at H < g C ,  the angle a between 
the directions of the spins S, and H, as in the case with 
D >  3Jab but HJlc, is the same for all spins and varies in ac- 
cordance with (2).  Correspondingly, the magnetization 
MllH in this case is determined by (6) (M, a H ) ,  and again 
we have M, = 0 for any value of H. 

In the case 0 < D < 3Jab, which we have not yet dis- 
cussed, a phase transition occurs from a phase analogous to 
the phase in the case D >  3Ja, to a phase corresponding to 
the condition D<O. This transition occurs at a field 
H f  < Hc, whose value is determined below. In this case, of 
course, the magnetization MllH of the crystal is given by 
expression ( 5 ) in fields H < H :, while in fields H > H: it is 
given by expression (6).  It is simple to see that in this case we 

should observe a jump in the magnetization M, at the field 
H r ,  but we should have a component M, = 0 at either 
H < H :  o r H > H r .  

On the other hand, it is clear that the Hamiltonian ( 1) 
does not contain all possible second-order terms. In particu- 
lar, it lacks the obvious term B,S:Sf, which describes the 
magnetic anisotropy. In particular, this term stems from a 
dipole-dipole interaction. To generate a theoretical descrip- 
tion of the results, we accordingly write a thermodynamic 
potential which contains all terms of second order in the 
sublattice magnetizations M, that are allowed by the sym- 
metry of the crystal. For this purpose we follow the custom- 
ary procedure of introducing vectors L and M which are 
linear combinations of the sublattice magnetizations 
M, = NpgpBS,/6p and which are the bases of irreducible 
representations of the symmetry space group of the crystal: 

In choosing bases, we took into account the circumstance 
that the magnetic unit cell does not coincide with the crystal- 
lographic unit cell (a, = 3a, b, = 3b, c, = c ) :  The vectors 
L, and M realize two 1D irreducible representations of the 
group of translations with a star vector k = 0, while (L,, L,) 
and (L,, L,) realize two 2 0  representations with vectors 
K = r_t [ 1/3, 1/3,0]. 

As a result, following the general rules," we find the 
thermodynamic potential density 

b c '+L,:) -- MH. + - M,2 + -(L2,2+L3zZ)+ _;(LhZ 
2 2 

A potential similar to (8 )  has been written out by ~i tebski i  
et al.," but they were interested in the antiferromagnetic- 
resonance spectrum of CsMnBr, in a field H = 0, and they 
omitted several relativistic terms. 

For our problem, we can simplify the potential (8).  In 
the first place, since we are interested in static properties, 
and since a state with L, = L, = 0 is realized in CsMnBr, 
according to neutron we can omit these terms from 
(8). Second, since the exchange along the z axis is much 
stronger than all other interactions, we can conveniently sin- 
gle out pairs of nearest neighbors along this axis and intro- 
duce the new vectors 

where i = 1,2,3. Using the conditions mi (4, (mil i )  = 0, 
and I f  = I - mf, where I, = 2Mi, retaining terms through 
second order in mi /Ii, and considering the exchange interac- 
tion only between nearest neighbors, we can write potential 
(8)  as follows, with an accuracy to within terms on the order 
of Jab /J, and (H /J, ) ,: 
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+cos cp2 cos cp3 cos 20+ sin cpi sin cp2+sin cpl sin cpJ 

f sin 14, sin cp3) 

(a+4c) + - lo2 (sin cp?+ sin cpZ2+sin cp?) 
2 

+ (a-2c) 1: (sin cpi sin cpz 

b 
+Sin cpi sin q,+sin cp2 sin cps) + -(mi2 sin cp,m2+m,2 ,gin cp2m2 2 

+ma2 sin cpsm2) -H,(ml cos cp,, sin 0,,+m2 cos cp,, sin 0,, 
Sm, cos cp3, sin 0,,) - HI, (mi sin cpi,+m2 sin cp2,+ms sin cp,,). 

In writing ( 10) we made use of the assertion (easily proved) 
that for one pair of sublattices (M, and M,) the conditions 
1,lH and 1,lc hold at arbitrary H. We also introduced the 
angles pi = q , ,  qrm , which are azimuthal angles reckoned 
from the basal plane, and Bi, , which are tangential angles in 
the plane, reckoned from 1,. The angle 28, between 1, and l,, 
is the same as the angle 28 between S, and S,, which was 
introduced above. 

For a later comparison of our results with the conclu- 
sions of Ref. 7, we write equations relating the parameters of 
<P and A?. The exchange parameters from (8 ), ( lo) ,  and ( 1 ) 
are related by 

The incorporation of only the term D Z i ( S f ) '  which de- 
scribes the magnetic anisotropy, in ( 1 ) is equivalent to im- 
posing the following constraints on the parameters a, b, and 
c: 

Working from ( lo) ,  minimizing with respect to mi, we 
find 

n,= (H, cos vim sin Ojm+Hll sin cpim) / (F+b sin2 cpi,) . 
(13) 

The analysis below is limited to the case of interest here, 
Hlc. The potential ( 10) can be simplified substantially by 
transforming to a coordinate system which is fixed in the 
plane passing through the triad of vectors li [within the ac- 
curacy of the derivation of ( lo) ,  the vectors li lie in a com- 
mon plane] and which makes an angle y with the basal plane 
(Fig. 7). In this notation, the angular part of the potential Q, 
is 

b 
O = - HI [l+i (cos2 0+sin2 0 sin2 y) - - sin4 0 sin2 21 

2F 2F 1 
+ Bl," (cos 20-2 cos 0) + Gclo%inZ 0 sin2 y. ( 14) 

From (14), minimizing @ with respect to 8 and y, we 
easily find the phase diagram that we need. In the case I b I (F 
and b < 0 (this is the case in CsMnBr,; the second of these 
conditions follows from g , < g l l ) ,  with Hlc and 
H < = FI,, we obtain the following three phases (Fig. 8) : 

y =0, cos 0= [2- (W/H,2) ] -' 
a t H < H c l ,  whereHf =BFI:; 

for Hcl < H < Hc2, where H = (6cF) 1'210; and 

for H,, < H < gc. At the points of the phase transitions, Hc, 
and Hc, , the angles 8 and y vary continuously. 

The magnetization of the crystal is given by 
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FIG. 8. Phase diagram of crystals of the CsMnBr, type in a field Hlc as 
calculated from the thermodynamic potential (8  1. 

H 
M, = - - sin2 0 sin 27 

F 

l b l x [ i + s i n '  0 sin2 27 (eosz 8+sin2 0 sin' 7)]  . 

These results hold at T = 0. As the temperature is raised, the 
critical fields change, and M, decreases. This decrease can 
be taken into account by multiplying expressions ( 19) by 
(1 -x, , /x ,) :  M,+Oas T + T N .  

DISCUSSION OF RESULTS 

As we mentioned earlier, the magnetization curves 
M, (H) which we measured are approximately the same as 
those predicted by Chub~kov .~  On the other hand, these ex- 
perimental results suggest that in a certain interval of fields 
H the state of the magnetic system of the crystal corresponds 
to an angular phase with M, #O. The calculations above 
show that (first) the values of the critical fields H, and 
and the condition 6c> B, under which a state with y = 0 
persists in strong fields, which we calculated are the same as 
those calculated by Chubukov,' if we make use of the con- 
version coefficients in ( 11 ) and ( 12). Second, in the case 
6c > B, the calculated phase diagrams are also the same. 

The results of the calculations are different for 
0 < 6c < B. In this case, one should observe two second-order 
phase transitions with increasing H, instead of the single 
first-order phase transition from a state with y = 0 to a state 
with y = ?r/2 which was predicted by Chub~kov .~  The rea- 
son is that our data reveal an angular phase with 0 < y < 17/2 
between these states. The existence of an angular phase is 
determined by the presence of a term bM; in a. The field 
interval in which this phase should be observed is 

In turn, the coefficient b describes an anisotropy of the mag- 
netic susceptibility according to ( 12). This anisotropy also 

prevails in the paramagnetic region and has an anomalously 
large value in CsMnBr,: 1b I amounts to - 10% of F. This 
property appears to be a general property of quasi- 1D anti- 
ferromagnets. ' 

If we set b = 0, the angular phase disappears, according 
to our calculations, and a single phase transition should be 
observed at H = H ,*. However, to second order the accura- 
cy, with which the potential ( 8 )  is written, the potential @ 
does not depend on the angle y in a field H # H r. In order to 
determine the order of this transition, we thus need to exam- 
ine the higher-order terms. 

If we wish to explain the presence of an angular phase in 
CsMnBr, we are thus obliged to assume that the condition 
0 < 6c/B < 1 holds in this crystal. The approximate agree- 
ment of the experimental dependence M, (H) with that cal- 
culated in Ref. 7, which we mentioned earlier, would then 
mean that 6c/B is approximately unity. In this case, at fields 
H)H,, the angle 20, between the spins S, and S,, would be 
small, and the directions of the spins in the case y # 0 would 
be slightly different from those which would prevail in the 
case y = 0. This may be why an angular phase is not ob- 
served in neutron e ~ ~ e r i m e n t s . ~  

Unfortunately, this explanation of the experimental 
data does not answer the question of whether the relations 
among the anisotropy parameters and the exchange in the 
basal plane which have been found previously in neutron 
experiments5 and from the antiferromagnetic-resonance 
~pec t rum '~  ( D >  3J,, ) correspond to the relations which 
would be necessary, according to our calculations, for the 
existence of an angular phase (6c < B). The reason is that in 
the analysis of the experimental data in those earlier studies 
the expressions which were used for the magnon spectrum 
were calculated from the Hamiltonian ( 1 ). The most impor- 
tant step to take in order to resolve this question is thus to 
calculate the magnon spectrum in CsMnBr, on the basis of 
thermodynamic potential ( a ) ,  containing all the second-or- 
der terms. 

I am deeply indebted to L. A. Prozorova, A. V. Chubu- 
kov, and I. A. Zaliznyak for valuable discussions; D. V. Ni- 
kiforov for assistance in the measurements; and S. V. Petrov 
for furnishing the CsMnBr, single crystals. 
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