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It is shown that a D-dimensional ( D  > 2) electron system described by the Hubbard model far 
from the half-occupancy is unstable against the superconducting transition to a state with triplet 
pairing. It is shown that in the two-dimensional case there is no triplet pairing (in contrast to the 
case of an arbitrary value of D)  . 

1. The possibility of nonphonon superconducting 
mechanisms has rekindled strong interest in the Hubbard 
model: 

In particular, many papers have been published on the D- 
dimensional Hubbard model with half-occupancy and also 
in the limit D +  co (Refs. 1 and 2). The Fermi-liquid limit 
U,, g t was considered in the two-dimensional Hubbard mod- 
el near half-oc~upancy~-~ and it was found that the normal 
Fermi system becomes unstable against the superconducting 
transition to a state with singlet d pairing. Here we analyze 
the opposite limit of low occupancy (heavy doping). In this 
case the normal Fermi system is also unstable against the 
superconducting transition (but to a state with the triple 
pairing when D > 2) and a considerable role in the appear- 
ance of the photoconductivity is played by the Kohn singu- 
larity in the polarization operator. 

2. The Hubbard Hamiltonian for a simple D-dimen- 
sional "cubic" lattice considered in the momentum repre- 
sentation is 

where 

ep=f-2t  (cos p,af . . . +cos pDa) -p 

is the electron spectrum, a is the lattice constant, t is the 
energy of a jump, and Uo is the Hubbard repulsion constant 
at one site. Far from half-occupancy we have 

A low occupancy implies that pFa ( 1. We can see that in the 
specified approximation the unrenormalized electron spec- 
trum is identical with the spectrum of a free Fermi gas and 
the Hubbard Hamiltonian is exactly equivalent to the Ham- 
iltonian of a slightly nonideal Fermi gas with repulsion be- 
tween the particles. The corresponding gas parameter is pro- 
portional to the quantity 

In this way the model of a slightly nonideal Fermi gas in- 
cludes the Hubbard case with a weak interaction Uo < t and a 
density of order unity as well as the Hubbard case with a 
strong interaction Uo > t, but with a low density. If D = 3, 
the role of the gas parameter f ~ ,  is played by 

and if D = 2, the gas parameter fa corresponds to 

It was shown in Ref. 6 that, because of the presence of a 
Kohn singularity of the form (q - 2p, )lnlq - 2pF 1 in the 
effective interaction T(q)  of two Fermi particles via the Fer- 
mi background, a three-dimensional slightly nonideal Fermi 
gas with repulsion between the particles is unstable against 
the superconducting transition to a state with triplet p pair- 
ing and the transition takes place at a temperature 

On the other hand, it was pointed out in Ref. 7 that a strong 
two-dimensional Kohn singularity of the form 
Re (q - 2pF) ' I2 in T (q)  (see also Ref. 8 )  does not result in 
the superconducting transition in a two-dimensional slightly 
nonideal Fermi gas with repulsion, since the value of q (com- 
posed of the momenta of the particles entering (p)  and leav- 
ing (p') the Cooper channel when these particles lie on the 
Fermi surface) cannot exceed 2pF. 

3. We now consider the problem of the superconducting 
transition in the D-dimensional Hubbard model with low 
occupancy. The problem of the feasibility of the supercon- 
ducting transition in the Fermi system with repulsion can be 
solved by calculating (in the case of a gas) the effective un- 
renormalized vertex for the Cooper channel T(p,p') to sec- 
ond order in perturbation theory: 

P D  (p, p')=Uo+Uo2@(~, P'). ( 3 )  

It is very important to note that cf,(p,pl) does not represent 
simply a polarization loop, but a set of second-order dia- 
grams which cannot be cut along two fermion lines directed 
to the same side. There are four such diagrams (see Refs. 6 
and 9). After averaging over the spin indices, their sum is 
H(p + p') and not I l (p  - p'), as one would find if an 
allowance were made for just one polarization loop: 
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It should be noted that in the D = 3 case this circumstance 
leads not to the d but to thep pairing (see Ref. 6).  In the case 
of low occupancy p,a< 1 we can confine ourselves to the 
approximation (2)  for the unrenormalized electron spec- 
trum. Then, Eq. (3)  for the unrenormalized vertex of the 
Cooper channel f, (q) becomes 

r D  ( 4 )  ' u O + u 0 2 n D  ( 9 )  

The polarization operator II, (q) was first calculated in Ref. 
10. The following notation is used in Eq. (4):  
a, = 21P/2/r(D/2) is the area of a unit sphere in a D- 
dimensional space; ,F, (a,b;c;z) is the hypergeometric func- 
tion. The results of Fig. 10 determine the following nature of 
Kohn singularity in the limit q-2p,: 

a )  if D # 1, 3, ..., 2n + 1, ... , then II, (q) is a regular 
function when q<2p, and we have 
n,(q)- (2p, - q)(D-')'2 when q > 2p,; 

b) if D = 1, 3, ..., 2n + 1, ..., then II, (q) - (q 
- 2p,)* 1nIq - 2p,l. 

The appearance of the superconductivity is clearly re- 
lated to the presence of a pole in the upper vertex r ( q )  of the 
Cooper channel, which is the solution of the Bethe-Salpeter 
integral equation. Reduction of this equation to algebraic 
form is possible if use is made of the Gegenbauer polynomi- 
als C I D -  2 ) / 2  (COS 0) which are D-dimensional analogs of the 
Legendre polynomials [ (q2 = 2pf- ( 1 + cos 6 )  1. They satis- 
fy the orthogonality relationships 

c , ( D - 2 1 , 2  (cos 0) ~ , i ~ - ~ " ~  (COS 0) (sin 8)  D-' d o -  a,,,. 
0 

The Cooper pairing with the generalized orbital momentum 
I appears if the value of the corresponding partial harmonic 
of the unrenormalized vertex T I  is negative and has the max- - 
imum absolute value, To=: U, > 0, so that there is no s pair- 
ing. The maximum absolute value / T I  1 corresponds to I = 1 
(i.e., to thep pairing): 

The other harmonics with 1>2 are either positive or smaller 
in absolute magnitude. The superconducting transition tem- 
perature is given by 

where 

is the density of states at the chemical potential (Fermi) 

level. If D = 3, then Eqs. (5)  and (6) are identical with the 
results reported in Ref. 6. 

4. We conclude by considering in detail the situation 
when D = 2 (see also Ref. 1 1 ) . In this case it follows from 
Eq. (4)  that in the approximation described by (2)  the un- 
renormalized vertex for the Cooper channel is 

and, as pointed out above, the superconducting transition 
does not occur. Therefore, in the case of the two-dimensional 
model we can expand the spectrum of cosines further 
(through the third term). This gives 

In contrast to Eq. (2)  this spectrum is not isotropic, so that 
rI (q)  may depend not only on q = Iql, but also on the combi- 
nations q, and q,,, which are invariant relative to the trans- 
formations of the symmetry group of the square (isomor- 
phous with D,). Fairly complicated calculations of rI (q),  
involving a singular denominator, lead to the following re- 
sult: 

It is interesting to note that rI (q)  in Eq. (8)  has a root con- 
tribution, which would have been obtained also by expand- 
ing cosines only up to the second term (it was first calculated 
in Ref. 8) as well as a nonroot contribution due to the correc- 
tion a(p: + p l )  to the electron spectrum. 

The complete system of functions factorizing the kernel 
of the integral Bethe-Salpeter equation should be functions 
of the irreducible representations of the symmetry group. In 
the case of the D, group there are five irreducible representa- 
tions: four of which are one-dimensional (A,, A,, B,, and 
B,), corresponding to a singlet state, and one (E) is two- 
dimensional, corresponding to a triplet state. The one-di- 
mensional representations include the following functions: 

1) A, (identical): 1 ,  cos 4cp, cos 8cp, . . . ; 
2) A ,  : sin 4q, sin 8cp, sin 129, . . . ; 

3) Bl : cos 29, cos Gcp, cos IOq, .  . . ; 
4) B2 : sin 29,  sin Brp, sin IOq, . . . . 

The two-dimensional representation E includes the fol- 
lowing set of harmonics: 

cos cp, cos 3cp, cos 5 9 , .  . . ; 
sin cp, -sin 3cp, sin 59,  . . . . 

We consider the vectors p and p' as lying on the Fermi 
surface and rewrite rI (q) from Eq. (8)  in the form of a func- 
tion of the angles p,,p, between the vectors p and p', on the 
one hand, and the x axis, on the other. To lowest order in the 
small parameter p,a 1, we obtain 
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Hence, in this approximation, we have 

T,,, f E 3 0 ,  f A,, PB, ,  f B~=.O,  

where T, is the irreducible unrenormalized vertex for the 
Cooper channel in the case of a harmonic corresponding to 
the irreducible representation a. Therefore, we can say that 
in this low-occupancy limit the singlets pairing and the trip- 
let pairing are impo~sible.~' The precision of the calcula- 
tions reported here is insufficient to analyze the possibility of 
the superconducting pairing for other harmonics and the 
problem of the existence of superconducting phases with the 
order parameters transforming in accordance with the irre- 
ducible representations A,, B, ,  and B,, remains unsolved. 

We should also point out that if the correction to the 
spectrum of free Fermi particles had been, in contrast to Ref. 
7, spherically symmetric 

(this is the nature of the spectrum typical of 3He quasiparti- 
cles in a solution of 4He), then the Fermi system would have 
been unstable against triplet p pairing. 
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