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The subject of this paper is the stratification dynamics of solid-solution films in contact with their
own vapor. It is shown that the spectrum of concentration waves for such films differs
significantly from that of unbounded or isolated thin-film systems, being distinguished by
stability of long-wavelength perturbations and an overall reduction of the size of the instability
region. This has certain implications for the possibility of periodic structures forming in the early
stages of stratification: specifically, that such structures must involve both concentration
distributions and a modulation of the surface profile of the film.

The theory of spinodal decomposition in solid solutions
has been the subject of a large number of papers, a bibliogra-
phy of which can be found in the review Refs. 1 and 2. One of
the most interesting implications of the theory of spinodal
decomposition is the possibility that macroperiodic concen-
tration distributions could form during the intermediate
stages of the decomposition. The authors of Ref. 3 claimed
that when the wave-number dependence of the attenuation
rate of a periodic concentration perturbation is nonmono-
tonic, periodic structures can form even in the early stages of
the stratification. However, in Ref. 4, this conclusion was
shown to be erroneous. The objection raised there was essen-
tially based on the fact that the ratio of the width of the
instability region to the value of the wave number at which
the maximum growth rate is achieved is of order unity, so
that it is not possible to identify a single scale in the linear
stages of the instability. In Ref. 5 it was shown that in the
one-dimensional case macro-periodic concentration distri-
butions correspond to metastable states, which may be en-
countered when a solid solution with appreciable anisotropy
in its elastic constants undergoes decomposition.®

In the past, mechanisms for the formation of modulated
structures have always applied to bulk samples. The study of
spinodal decomposition in bounded samples raises addi-
tional questions related to surface segregation”® and inter-
action of the solution that is undergoing stratification with
the surrounding medium.®'° Crystallization of stratified al-
loys was investigated in Refs. 9 and 10; however, solid-state
diffusion was not taken into account in these papers. The
subject of this paper is the kinetics of spinodal decomposi-
tion of a thin film in contact with its own saturated vapor.

1.DESCRIPTION OF THE MODEL AND FORMULATION OF
THE BASIC EQUATIONS

Let us consider a substitutional solid solution consist-
ing of two types of atoms 4 and B and having an original
concentration ¢, (where ¢, is the fraction of type-4 atoms).
We will further assume that for this composition the solution
is unstable at some temperature, i.e.,

of

<0
act | .,

(where fis the free-energy density of the solution). It is well-
known that small perturbations will grow in this case, result-

685 Sov. Phys. JETP 72 (4), April 1991

0038-5646/91/040685-04$03.00

ingin a local concentration ¢ of the solution that differs from
the average concentration ¢, . If the solution is placed in con-
tact with saturated vapor whose concentration corresponds
to the average concentration of the solution c,, then under
stratification conditions the vapor is no longer in equilibri-
um and the shape of the surface of the solid solution will
change. On the other hand, the appearance of uncompensat-
ed fluxes at the surface will change the form of the boundary
conditions for the diffusion equation and, as we show below,
can have a considerable effect on the spectrum of unstable
concentration waves.
The free energy of the solid solution has the form

13
F={ov.er+] o)+ /ey (Ve ldahdp. (1)

where p is the radius vector in the plane of the film and
V, =3/dp; z=0 and z = £(p) are the equations for the
film-substrate boundary and the film-vapor boundary re-
spectively. The first term in (1) is the contribution from the
surface energy of the film-vapor boundary. We ignore sur-
face segregation and assume that o is independent of the
solution concentration. Then Eq. (1) implies the following
relations for the chemical potentials of atoms of type 4 and
B:

6 _ _ _df < 2

—6? = Uha— U= de YAC, A\g. ( )

oF ' 2

32 = et (1=c) s ims=—0A &+ [f(c)+"/2¥(Ve)*] |
©

(3)

In deriving Eq. (2) we have taken into account the fact that
the difference in chemical potentials must be continuous. A
consequence of the condition of continuity is the vanishing
of the derivatives of the concentrations at the film boundary:
2 (nvc)|z=:-,=0. 4)
dz |,
where n is a unit vector for the outward normal to the surface
z = £. Relations (2) and (3) determine the chemical poten-
tial of the atoms located at the surface of the solid solution:

=0,

d
Mali==f(c)+ (1—0)% +12x(Ve)*—y(1—c) Ac—0A L&, (5)
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By means of linear nonequilibrium thermodynamics we find
for the diffusion current of atoms of type 4:

jAD:_DV(H;\_MB)~ (7)

where D is the kinetic diffusion coefficient. The partial cur-
rents from the vapor equal

ja=walpaled) —wale) o=z (8)

jn=(08[ILB(Co)—MB(C) H:= (9)

Herew, j are the kinetic coefficients, which will be set equal,
i, w, = wy = w. In writing down (8) and (9) we have
built in the fact that the vapor is saturated for a solution with
concentrations c.

Condition (4) constitutes the first pair of boundary
conditions for the diffusion equation

gc (?i_ _ )

5 QDA( ot YAc ). ) (10)
where () is the specific volume of the solid solution. Here and
in what follows we will assume the specific volumes of the
components are equal, 1, = (1, = (). We obtain the equa-
tions for the surface profile £ and the second pair of bound-
ary conditions for Eq. (10) from the condition for conserva-
tion of the number of particles of types 4 and B at the
boundaries of the film. At the boundary with the vapor these
conditions have the form'’

Ve=Q (jA—jA(I;) ) lz=E, ( ! 1)

V(1—¢)=Q(s—jsp ) | st (12)

Herej{?) pp are the z components of the diffusion currents of
A and B atoms, respectively, and Vis the translation velocity
of the boundary along the z-axis. Conditions (11) and (12)
express the law of conservation of the number of particles 4
and B, taking into account diffusion and exchange of parti-
cles between the vapor and the solution. Combining Eqgs.
(11) and (12), we obtain the following equation for the sur-
face profile:

98 _ i s 1
at—Q(]A+]B)- ( 3)

Assuming the absence of diffusion at the boundary with the
substrate, we have

jap |ime=0. (14)

In order to determine the explicit dependence of the particle
currents on the concentration of the solution we will assume
that the concentration dependence of the free energy density
for temperatures below the critical stratification tempera-
ture has the form

f(c) =f(co) _‘/za(c_co)z'*"/kﬁ(c_co) 5

where a and f3 are positive coefficients.

(15)

2.DYNAMICS OF SMALL PERTURBATIONS

Let us investigate small departures of the concentration
from its average. Introducing the Fourier transform of the
surface profile and the concentration
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5= j E(p)e™dp, M= j (c—co)e~®* dp

we find after linearizing (in what follows the label p will be
omitted) that

d 9’ 2

‘a%= 1Q® (1—2¢) [ (k*=p*)n + ()z:] ]| z=h—29wﬁp's,
(16)

) a’'n , o'n

—=- QD[ H(pr—k2) N+ (k2—2p)—) ]

primie 0 A0 In+( 2p)6z2+az‘ ,
(17)

where k 2 = a/y. The boundary conditions in this approxi-
mation acquire the form

*n

T=h azs =0

on
(7}

)

z=0 az

=0,
(18)

9 g 9* ® 2

Thus the equations for % and £ are decoupled. Solving Eq.
(17) with the boundary conditions (18) and substituting the
solution we find into (16) allows us to determine the law of
variation of the surface profile £. The solution to Eq. (17)
can be sought in the form

n= Ze"‘"‘R,. (z).

n

After standard procedures we obtain the dispersion relation

v (v*—p?) [vi (v*—p?)sh (uh) sh(vh)
— (u@y sh(ph)ch (vh) —ve, sh(vk)ch(puk)) 1=0, (19)

where

k.’ 2
“’2=pz -+ Qy VZ=P2 - k2° - 01

kcz k“ A b
Q v=u( +0Q), =[; n ]

The solution of the dispersion relation we obtain is difficult
to work with in its general form; therefore, we will analyze
the dependence of the decay rate 4, on the longitudinal wave
number qualitatively. We can show that the roots of Eq.
(19), which are determined by the relations v = 4 = 0 and
v? = u?, correspond to the trivial solution 7 = 0. The equa-
tion for the roots that give the decay rate 4, has the form

sh(vh) [psh(uh)—x» ch(ph)]=0, (20)
vi=p*—kZ?, p=p.

From (20) it follows that there exist two series of roots. The
roots of the first series satisfy the relation

b1
n=—"n,

pi.zn=kc2_qnzy h

n=0,x1,+2.... (21)

The roots of the second series are imaginary for n£0 and
their absolute values satisfy the equation

P t8(Panh)=—x.
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For the zero mode (n = 0) there exists a real root

D20 th(pz,oh)=%, (22)
such that
{ (x/R)*,  hx<{,
Pao %, hx>1.

Let us write the decay rate in the form

A="QD (P*—pi'n) (P*—Parn)- (23)

If the solid-solution film is sufficiently thick (4k. > 1), there
exists an unstable perturbation of arbitrarily long wave-
length. For thin films (kk. < 1) the situation is qualitatively
different: only the zero mode is unstable in the range of
wavelengths k. <p<p,, or p,o <p<k. (see Fig. 1). We
note that when the film is not in contact with its vapor
(x=0), as h—- o Eq. (23) reduces to the well-known
expression for the decay rate in a bulk sample

A=yQD (K —k2) K,

where k is the three-dimensional wave number.

3.DISCUSSION OF RESULTS

From the analysis given here it follows that the spec-
trum of unstable concentration waves in a thin (hk, <1)
film in contact with its own vapor is quite different from
spectra of unbounded samples or isolated thin films. The
salient feature of this spectrum is the stability of long-wave-
length perturbations. Consider the case where k. > p,, or
x<hk?. In this case for small values of the longitudinal
wave number we can neglect the nonlocal terms in the ex-
pressions for the chemical potentials (2) and (3), and in
particular for p = 0 we obtain the following equations for the
concentration

a1 ' on Al

=—ql , =V, =%"n.
at 072" 8zl . oz L,

Itis easy to see that the zero mode is stable in this case. As the
inhomogeneity appears along the film, a diffusive flux begins
to flow, which increases the nonuniformity; the value of this
current is proportional to the wave number p. As we pass
through the value p>~x/h, the concentration distribution
loses its stability. For further increases in p we reach a value
p~k,. at which the perturbation under discussion once more

/\l A 0
/ o /
N/
/

. //Pz,a\/‘c P

FIG. 1. Qualitative dependence on the longitudinal wave number of the
decay rate for the zero-order (solid curves) and first-order (dashed
curves) modes: a—hk_ > 1, b—hk, <1
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becomes stable. This dependence of the decay rate on the
longitudinal wave number coincides with the dependence
determined by Eq. (23) for 4,. It follows from Eq. (16) that
the decay rates of harmonics of the surface profile coincide
with the decay rate for concentration waves. Consequently,
the shape of the surface is “tuned” as the concentration dis-
tribution is formed.

An important feature of the spectrum under discussion
here is the dependence of the decay-rate roots on the external
parameters. In fact, the root p, , depends on the thickness of
the film and the temperature, while the root p, , = k. de-
pends only on the ratio of the sample temperature to the
critical stratification temperature. When the condition
|P1o — P2o| €Dy, is satisfied, harmonics with longitudinal
wave vector magnitudes of order &, are unstable. This reduc-
tion in size of the region of instability leads to the possibility
of macroperiodic structures forming at early stages of the
stratification. Analysis of the system in linear approxima-
tion suggests that two-dimensional perturbations with cer-
tain wave vector magnitudes will be singled out. In order to
determine the symmetry of the possible periodic structures
we investigate the first nonlinear correction to the solutions
we have obtained by perturbation theory. Analysis of the
general system of equations shows that the nonlinear correc-
tions are quadratic in 7. Representing the solution in the
form

n=1ntm+...,

we obtain the following equation for 7,:

_Qan_t’ =—yQDA (kS0 +An,),

oM
0z

_ on,

2=0 0z
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= 03
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2 An=n(kinckAn)+-5 (et

X (Bketno +H4m0AN0t (V110)?) [ 2. (24)

From Eq. (24) it follows that two concentration waves with
wave vectors p’ and p — p’ will excite a concentration wave
with wave vector p. For the case of a sufficiently narrow
range of instabilities, waves with the same wave vector mod-
ulus [p|=|p — p’| = |p’| = k. will have the maximum rate of
growth. This implies that the squared nonlinearity leads to
the formation of a hexagonal lattice with dimensions of the
unit cell =~ 1/k,.

Thus, it is possible for macroperiodic structures to form
at the surface of a stratifying solid-solution film in contact
with its own vapor during the early stages of stratification.
The structures are combined concentration distributions
and modulations of the profile of the film surface; for the
case of an isotropic solution they have hexagonal symmetry.
In order for such periodic structures to arise it is necessary to
fulfill at least two conditions. First of all the film must be
sufficiently thin (kk,. < 1), and secondly the region of insta-
bility for concentration waves must be small
(|kc — P20 I <kc)

I am grateful to V. M. Genkin and M. G. Tetel’man for
useful comments and discussions of the results of this work.
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