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The subject of this paper is the stratification dynamics of solid-solution films in contact with their 
own vapor. It is shown that the spectrum of concentration waves for such films differs 
significantly from that of unbounded or isolated thin-film systems, being distinguished by 
stability of long-wavelength perturbations and an overall reduction of the size of the instability 
region. This has certain implications for the possibility of periodic structures forming in the early 
stages of stratification: specifically, that such structures must involve both concentration 
distributions and a modulation of the surface profile of the film. 

The theory of spinodal decomposition in solid solutions 
has been the subject of a large number of papers, a bibliogra- 
phy of which can be found in the review Refs. 1 and 2. One of 
the most interesting implications of the theory of spinodal 
decomposition is the possibility that macroperiodic concen- 
tration distributions could form during the intermediate 
stages of the decomposition. The authors of Ref. 3 claimed 
that when the wave-number dependence of the attenuation 
rate of a periodic concentration perturbation is nonmono- 
tonic, periodic structures can form even in the early stages of 
the stratification. However, in Ref. 4, this conclusion was 
shown to be erroneous. The objection raised there was essen- 
tially based on the fact that the ratio of the width of the 
instability region to the value of the wave number at which 
the maximum growth rate is achieved is of order unity, so 
that it is not possible to identify a single scale in the linear 
stages of the instability. In Ref. 5 it was shown that in the 
one-dimensional case macro-periodic concentration distri- 
butions correspond to metastable states, which may be en- 
countered when a solid solution with appreciable anisotropy 
in its elastic constants undergoes decomp~sition.~ 

In the past, mechanisms for the formation of modulated 
structures have always applied to bulk samples. The study of 
spinodal decomposition in bounded samples raises addi- 
tional questions related to surface  segregation'^^ and inter- 
action of the solution that is undergoing stratification with 
the surrounding m e d i ~ m . ~ . ' ~  Crystallization of stratified al- 
loys was investigated in Refs. 9 and 10; however, solid-state 
diffusion was not taken into account in these papers. The 
subject of this paper is the kinetics of spinodal decomposi- 
tion of a thin film in contact with its own saturated vapor. 

1. DESCRIPTION OFTHE MODEL AND FORMULATION OF 
THE BASIC EQUATIONS 

Let us consider a substitutional solid solution consist- 
ing of two types of atoms A and B and having an original 
concentration c, (where c, is the fraction of typed atoms). 
We will further assume that for this composition the solution 
is unstable at some temperature, i.e., 

(where f is the free-energy density of the solution). It is well- 
known that small perturbations will grow in this case, result- 

ing in a local concentration c of the solution that differs from 
the average concentration c,. If the solution is placed in con- 
tact with saturated vapor whose concentration corresponds 
to the average concentration of the solution c,, then under 
stratification conditions the vapor is no longer in equilibri- 
um and the shape of the surface of the solid solution will 
change. On the other hand, the appearance of uncompensat- 
ed fluxes at the surface will change the form of the boundary 
conditions for the diffusion equation and, as we show below, 
can have a considerable effect on the spectrum of unstable 
concentration waves. 

The free energy of the solid solution has the form 

where p is the radius vector in the plane of the film and 
V, = a /ap; z = 0 and z = g( p)  are the equations for the 
film-substrate boundary and the film-vapor boundary re- 
spectively. The first term in ( 1 ) is the contribution from the 
surface energy of the film-vapor boundary. We ignore sur- 
face segregation and assume that o is independent of the 
solution concentration. Then Eq. ( 1 ) implies the following 
relations for the chemical potentials of atoms of type A and 
B: 

In deriving Eq. (2)  we have taken into account the fact that 
the difference in chemical potentials must be continuous. A 
consequence of the condition of continuity is the vanishing 
of the derivatives of the concentrations at the film boundary: 

where n is a unit vector for the outward normal to the surface 
z = {. Relations (2)  and (3)  determine the chemical poten- 
tial of the atoms located at the surface of the solid solution: 
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By means of linear nonequilibrium thermodynamics we find 
for the diffusion current of atoms of type A: 

where D is the kinetic diffusion coefficient. The partial cur- 
rents from the vapor equal 

Here a,,, are the kinetic coefficients, which will be set equal, 
i.e., w, = w, = w. In writing down (8)  and (9) we have 
built in the fact that the vapor is saturated for a solution with 
concentrations c, . 

Condition (4)  constitutes the first pair of boundary 
conditions for the diffusion equation 

where R is the specific volume of the solid solution. Here and 
in what follows we will assume the specific volumes of the 
components are equal, R, = R, = 0. We obtain the equa- 
tions for the surface profile {and the second pair of bound- 
ary conditions for Eq. ( 10) from the condition for conserva- 
tion of the number of particles of types A and B at the 
boundaries of the film. At the boundary with the vapor these 
conditions have the form1' 

Here jyi,,, are thez components of the diffusion currents of 
A and B atoms, respectively, and Vis the translation velocity 
of the boundary along the z-axis. Conditions ( 11) and ( 12) 
express the law of conservation of the number of particles A 
and B, taking into account diffusion and exchange of parti- 
cles between the vapor and the solution. Combining Eqs. 
( 1 1 ) and ( 12), we obtain the following equation for the sur- 
face profile: 

Assuming the absence of diffusion at the boundary with the 
substrate, we have 

In order to determine the explicit dependence of the particle 
currents on the concentration of the solution we will assume 
that the concentration dependence of the free energy density 
for temperatures below the critical stratification tempera- 
ture has the form 

where a and p are positive coefficients. 

2. DYNAMICS OF SMALL PERTURBATIONS 

Let us investigate small departures of the concentration 
from its average. Introducing the Fourier transform of the 
surface profile and the concentration 

we find after linearizing (in what follows the label p will be 
omitted) that 

where k f = a /y .  The boundary conditions in this approxi- 
mation acquire the form 

Thus the equations for q and 6 are decoupled. Solving Eq. 
( 17) with the boundary conditions ( 18) and substituting the 
solution we find into ( 16) allows us to determine the law of 
variation of the surface profile {. The solution to Eq. ( 17) 
can be sought in the form 

After standard procedures we obtain the dispersion relation 

where 

k,Z k pa=p" + Q, vz=p' - 2 - Q,  

kc2 
2 

k.' A, 
q h v = x ( i * ~ ) ,  Q = [ ~ + - ]  . 

79D 

The solution of the dispersion relation we obtain is difficult 
to work with in its general form; therefore, we will analyze 
the dependence of the decay rate A,, on the longitudinal wave 
number qualitatively. We can show that the roots of Eq. 
( 19), which are determined by the relations v = p = 0 and 
2 = p2, correspond to the trivial solution q = 0. The equa- 
tion for the roots that give the decay rate A, has the form 

From (20) it follows that there exist two series of roots. The 
roots of the first series satisfy the relation 

The roots of the second series are imaginary for n#O and 
their absolute values satisfy the equation 
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For the zero mode ( n  = 0) there exists a real root 

such that 

Let us write the decay rate in the form 

If the solid-solution film is sufficiently thick (hk, > I) ,  there 
exists an unstable perturbation of arbitrarily long wave- 
length. For thin films (hk, < 1 ) the situation is qualitatively 
different: only the zero mode is unstable in the range of 
wavelengths kc < p  <p2,, or p2,, < p  < kc (see Fig. 1 ). We 
note that when the film is not in contact with its vapor 
(x  = 0), as h- a, Eq. (23) reduces to the well-known 
expression for the decay rate in a bulk sample 

where k is the three-dimensional wave number. 

3. DISCUSSION OF RESULTS 

From the analysis given here it follows that the spec- 
trum of unstable concentration waves in a thin (hk, < 1) 
film in contact with its own vapor is quite different from 
spectra of unbounded samples or isolated thin films. The 
salient feature of this spectrum is the stability of long-wave- 
length perturbations. Consider the case where kc > p , ,  or 
x < hk f .  In this case for small values of the longitudinal 
wave number we can neglect the nonlocal terms in the ex- 
pressions for the chemical potentials (2)  and ( 3 ) ,  and in 
particular forp = 0 we obtain the following equations for the 
concentration 

It is easy to see that the zero mode is stable in this case. As the 
inhomogeneity appears along the film, a diffusive flux begins 
to flow, which increases the nonuniformity; the value of this 
current is proportional to the wave number p. As we pass 
through the value p2zx/h ,  the concentration distribution 
loses its stability. For further increases inp  we reach a value 
p z kc at which the perturbation under discussion once more 

FIG. 1. Qualitative dependence on the longitudinal wave number of the 
decay rate for the zero-order (solid curves) and first-order (dashed 
curves) modes: a-hk, > 1, b--hk, < 1 

becomes stable. This dependence of the decay rate on the 
longitudinal wave number coincides with the dependence 
determined by Eq. (23) for A,. It follows from Eq. ( 16) that 
the decay rates of harmonics of the surface profile coincide 
with the decay rate for concentration waves. Consequently, 
the shape of the surface is "tuned" as the concentration dis- 
tribution is formed. 

An important feature of the spectrum under discussion 
here is the dependence of the decay-rate roots on the external 
parameters. In fact, the root p , ,  depends on the thickness of 
the film and the temperature, while the root p,,, = kc de- 
pends only on the ratio of the sample temperature to the 
critical stratification temperature. When the condition 
Ipl,, -pz,, I 4plSo is satisfied, harmonics with longitudinal 
wave vector magnitudes of order kc are unstable. This reduc- 
tion in size of the region of instability leads to the possibility 
of macroperiodic structures forming at early stages of the 
stratification. Analysis of the system in linear approxima- 
tion suggests that two-dimensional perturbations with cer- 
tain wave vector magnitudes will be singled out. In order to 
determine the symmetry of the possible periodic structures 
we investigate the first nonlinear correction to the solutions 
we have obtained by perturbation theory. Analysis of the 
general system of equations shows that the nonlinear correc- 
tions are quadratic in 7. Representing the solution in the 
form 

we obtain the following equation for 7 ,  : 

From Eq. (24) it follows that two concentration waves with 
wave vectors p' and p - p' will excite a concentration wave 
with wave vector p. For the case of a sufficiently narrow 
range of instabilities, waves with the same wave vector mod- 
ulus Ipl= I p - p'( = I p ' l z  kc will have the maximum rate of 
growth. This implies that the squared nonlinearity leads to 
the formation of a hexagonal lattice with dimensions of the 
unit cell z l/k,. 

Thus, it is possible for macroperiodic structures to form 
at the surface of a stratifying solid-solution film in contact 
with its own vapor during the early stages of stratification. 
The structures are combined concentration distributions 
and modulations of the profile of the film surface; for the 
case of an isotropic solution they have hexagonal symmetry. 
In order for such periodic structures to arise it is necessary to 
fulfill at least two conditions. First of all the film must be 
sufficiently thin (hk, < I) ,  and secondly the region of insta- 
bility for concentration waves must be small 
(lkc -~z ,oI<kc) .  

I am grateful to V. M. Genkin and M. G. Tetel'man for 
useful comments and discussions of the results of this work. 
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