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We discuss the statistical properties of coherently excited polaritons, including the phenomenon 
of induced Bose-Einstein condensation, in crystals of various dimensionalities from OD to 30. 
Our model system is a crystallite of finite volume which is embedded in a glassy matrix located in 
an optical resonator. External laser radiation with afrequency w, and energy flux S, directly 
excites a single polariton mode of this crystallite with wave vector k, ; the bare frequency w (k, ) of 
this polariton is detuned from resonance by an amount Aw = w (k, ) - w, .The polariton- 
polariton interaction leads to the removal of two quasiparticles from the mode k, and the creation 
of two scattered polaritons with wave vectors k, _+ x; this process in turn influences the original 
induced mode k, in a self-consistent fashion. We find self-consistent steady-state solutions to the 
Fokker-Planck equation for the k,,-mode polaritons and kinetic equations for the scattered 
quasiparticles belonging to the lower polariton branch. The nonequilibrium distribution function 
of the latter possesses a smeared-out threshold for stimulated Raman scattering. In this case, the 
coherently excited polaritons exhibit properties such as bunching, anti-bunching, and 
compressed states. These effects occur at small values of the product SL V (where Vis the volume 
of the crystallite) and at different detunings from resonance. As S, V increases, the coherently 
excited polaritons become completely coherent; in the limit of a bulk crystal they acquire the 
properties of a macroscopically-occupied Bose-condensate. Among these properties is optical 
bistability, which is observed as a function of S, . 

1. INTRODUCTION 

The first self-consistent investigations of condensed 
modes of excitons and photons combined with kinetic equa- 
tions to describe exciton-phonon scattering appear in the 
papers of Ivanov, Keldysh, and Tikhodeev. These authors 
noted the appearance of energy spectra of the "phonoriton" 
type, along with the phenomenon of stimulated Brillouin 
scattering. In contrast to the Bogolyubov model4 of a weakly 
nonideal Bose gas, Bose-Einstein condensation (BEC) of 
dipole-active excitons and photons5 or polaritons6 leads to 
both absolute and convective instabilities in the spectra of 
the elementary excitations that lie outside the condensate.ss6 
The generation and amplification of new types of waves un- 
der steady-state conditions results in new condensed modes, 
a process that is equivalent to stimulated Raman scattering 
and is analogous to the processes that accompany laser oscil- 
lation on band-to-band transitions.' 

In this paper we discuss the physical processes that oc- 
cur during coherent excitation of a specific polariton mode 
by external laser radiation in crystals of various dimension- 
ality, including bulk samples and crystallites embedded in a 
glassy matrix placed in a resonator. The glassy matrix serves 
as a heat bath; for the proper choice of the linear dimension d 
of the crystallite, the resonator allows a single coherent 
mode with wave vector k, and bare frequency w ( k, to be 
selectively excited. Assume that the laser radiation has a 
frequency wL and a power flux S, in the vacuum; in general, 
we will also assume that the detuning Aw = w(k,) - w, 
from resonance with the laser is different from zero. The 
processes that occur in the course of establishing BEC de- 
pend on the quantities S, , Aw, the polariton-polariton inter- 
action constant g, and the crystal volume V = d 3. 

As the dimensionality of the crystal changes from 3 0  to 

OD there is a nontrivial alteration in the role played by quan- 
tum fluctuations in the number of quasiparticles, along with 
changes in the corresponding diffusion terms of the Fokker- 
Planck equation (FPE) for the reduced density matrix of the 
selected mode. When the volume of the mode k, is large, i.e., 
V-  CQ, even small coherent pumping amplitudes can give 
rise to a macroscopically occupied state; this suppresses the 
diffusion term in the FPE and favors a drift, i.e., determinis- 
tic, description of the induced Bose condensate. For small 
finite volumes V a certain intensity of pumping is necessary 
to suppress the fluctuations. Under these conditions, new 
states and processes appear, which will be described below. 

In place of a deterministic description of the condensed 
mode, which is valid for bulk crystals,'-2 we will use a more 
general quantum-statistical description which is also correct 
when the approximation of a specified field is not applicable. 
We start with the master equation for the reduced density 
matr i~j3,~ ( t )  of the mode k,, or more specifically with the 
corresponding FPE. Following Ref. 6 ,  we will investigate 
polariton-polariton scattering, along with the process of sti- 
mulated Raman scattering whereby two quasiparticles are 
simultaneously created out of the coherently excited con- 
densed mode k,; we will assume that the condensed-mode 
polaritons belong to the lower polariton branch, and that 
they are converted into two scattered quasiparticles on the 
same branch. For simplicity we will not include the upper 
polariton branch. 

Polaritons in OD systems can exist only when their wave 
vectors k and frequencies w satisfy the inequality 
k = wn (w) /c>2~/d ,  where n (w) is the index of refraction. 
For the lower polariton band n(w) increases rapidly when 
the frequency approaches w, from below, i.e., from within 
the polariton gap. Size quantization of polaritons is ob- 
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in thin films of CdS and GaAs with thicknesses d 
equal to 1000 and 990-2010 A, respectively. We expect that 
there is a cutoff frequency w ,  for the lower-branch polari- 
tons in crystallites with these values of d. For smaller values 
of energy and wave vector it is possible to speak of the con- 
stituent parts of the polariton individually, i.e., excitons 
whose centers of gravity execute a size-quantized motion 
and photons with a continuous energy spectrum. 

Thus, we are dealing here with quasiparticles of a single 
type that have a mixed discrete-continuous energy spec- 
trum. Since we are primarily interested in crystals having 
dimensions d z  600-2000 A, we will not take the discrete- 
ness of the spectrum into account in explicit form. It is im- 
portant primarily in the region of values of d smaller than 
500 A down to sample thicknesses on the order of the exciton 
diameter. In this range of d the polariton description is en- 
tirely replaced by the exciton-photon description." 

Strictly speaking, the law of conservation of momentum 
does not hold in crystallites; it only serves to indicate the 
most probable quantum transitions. In the next section we 
will build this fact explicitly into the polariton interaction 
Hamiltonian. Our results contradict Ref. 12, in that they 
indicate an additional inhomogeneous broadening of the 
two-quasiparticle quantum transitions involved in the scat- 
tering process. Thus, e.g., in Fig. 1 we use the two pairs of 
points 1-2 and 3-4 to illustrate the production of two quasi- 
particles from the coherently excited mode k, in the crystal 
bulk.6 If we do not include homogeneous broadening of the 
polariton spectrum, the constraints imposed by conserva- 
tion of energy and momentum imply that real production is 
possible only when the states 1-4 are discrete. This leads to 
singularities in the kinetic equations of Ref. 12. In crystals 
there is an additional inhomogeneous broadening because 
states 2 and 4 (Fig. 1 ) are located in the continuous photon- 
like portion of the lower polariton band, and states 1 and 3 
are not coupled to 2 and 4 through the law of conservation of 
momentum but only that of conservation of energy. 

Our work is based on a quantum-statistical description 
of the process by which an induced coherent state is estab- 
lished in macroscopic systems with various dimensionless 
volumes N- V and numbers Nko - V of coherently excited 
quasiparticles of the special mode k,. The quantity Nb de- 
pends not only on N but also on the dimensionless power flux 
Y-S,  of the laser radiation and the distribution function of 

scattered quasiparticles. Although our system is more com- 
plicated than the model investigated in Ref. 13, in which a 
single nonlinear oscillator interacts with a heat bath, the two 
models are nevertheless very close with regard to the state of 
the individual mode. The difference between them arises be- 
cause in Ref. 13 the volume of the mode is fixed (N = 1 ), 
whereas in our model we can track the way N influences the 
processes occurring in the system as it varies from 1 to m. By 
describing in detail the nonequilibrium distribution function 
of the scattered polaritons on an equal footing with the po- 
laritons of the special mode, we can track how the real exci- 
tation of the mode k, takes place under conditions where the 
detuning from resonance Aw is different from zero. The exis- 
tence of nonequilibrium scattered quasiparticles under 
steady-state conditions ensures that the law of conservation 
of energy is fulfilled for each microscopic quantum transi- 
tion event, leading to the classical picture of forced oscilla- 
tions of a damped oscillator under the action of an external 
periodic force. 

Our work shows that the mode volume N and the aver- 
age number of coherently excited particles Nb affect the 
evolution of the statistical properties of the k, mode in var- 
ious ways. Thus, for example, the diffusion terms in the FPE 
are proportional to N - ' while the statistical properties of 
the coherently excited polaritons depend on the product NY. 
For small values of NY the phenomena ofbunching and anti- 
bunching are possible, as well as the appearance of com- 
pressed states. We can show that there are internal similari- 
ties between the way quantum fluctuations affect the 
statistical properties of the polaritons in the selectively-ex- 
cited mode and the way many-body quantum transitions af- 
fect the creation of exciton absorption bands for various de- 
tunings AW from resonance and small intensities of 
excitation light. As NY+ co a macroscopically large coher- 
ent state is formed, which is in fact an induced Bose conden- 
sate. We will describe the basic features of the phenomenon 
of optical bistability which occurs under these conditions. 

Coherent pumping can be introduced into the equation 
of motion for the average value ( a k o )  of the annihilation 
operator a,, for polaritons. To do this we must relate the 
intensity of the external laser radiation field to the photon 
component of the polariton mode 16, using the Maxwell- 
Fresnel boundary conditions at the surface of the resonator 
mirror.I4.l5 We will introduce this source of pumping into 

FIG. 1. Dispersion law for the lower polariton band in crystallites 
and distribution function of scattered polaritons. 
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the Hamiltonian in a way that is equivalent to the boundary 
conditions. 

2. MODEL HAMILTONIAN, FOKKER-PLANCK EQUATION, 
AND KINETIC EQUATIONS 

The system consisting of the polaritons ( S ) ,  the heat 
bath ( T), and the source of coherent laser radiation (L)  are 
described by the following Hamiltonian, which is written in 
the rotating-wave approximation using a coordinate system 
rotating with frequency w,: 

The free-polariton Hamiltonian Rso has the form 

where a:, a, are creation and annihilation operators. The 
Hamiltonians for the interaction of polaritons of the k, 
mode with the external laser radiation RsL and among 
themselves Rs,,,, are as follows: 

%,,=i[ (dE,)ak,+- (dE,)'ak,l, ( 3 )  

where Eo is the amplitude of the forcing field within the 
resonator. Its relation to the external laser radiation will be 
identified by following Refs. 14 and 15; here d is the dipole 
moment of the transition. The interaction parameter is cho- 
sen to be a constant g for values of the wave vector that do 
not exceed the inverse exciton radius a& ', and to vanish for 
all other ranges of wave vector. The function @(k,u) takes 
into account the the deviation from the law of momentum 
conservation; as V-+ co it reduces to a Kronecker S symbol. 
For simplicity we will assume that the smeared-out function 
+(k,u) retains the property @(k,u) = +(p - u,p - k) .  It 
is expedient to write out those parts of the Hamiltonian 
RS,,,, that correspond to the processes that are most inter- 
esting: 

h h 

The operators F + and F describe the conversion of two 
quasiparticles belonging to the mode k, into two scattered 
quasiparticles with momenta k, + x and k, - x. According 
to Ref. 6,  for a bulk crystal the points I and 2 shown in Fig. 1 
are located at a distance on the order of k, from the point k,, 
while points 3 and dAare at %distance on the order of 2k0 
away. The operators P + and P describe scattering processes 
with the participation of one quasiparticle of the mode k,. 
The explicit form of the terms Z, and ZsT is not presented 
here. They are included in the standard way and give rise to 

phenomenological constants in the master and kinetic equa- 
tion~. '~"'  

The quantum Liouville equation for the density matrix 
of the entire system ( 1) is solved by perturbation-theoretic 
methods in the Markov approximation that parallel the the- 
ory of quantum fluctuations in l a ~ e r s . 2 ' ~ ~ ~  :sing first-order 
perturbation theory for the o/peratoLs UA+ L a%d second-or- 
der theory for the operators F + + F + P + + P, we find the 
master equation for the reduced density matrix lj,(, ( t )  of po- 
laritons in the mode k, : 

-- d^p"(t' - [ (dEo /h )  akOf-  (dE J h )  'ak8. ^pb ( t )  ] 
at 

The coefficients 1, A, g , ,  pi, and q, depend on the average 
occupation numbers E,,, + , of scattered polaritons; we will 
present a kinetic equation for these quantities in what fol- 
lows. The quantities m (k, ), yi (k, ) are determined by inter- 
actions with the heat bath and do not depend on the state of 
the system S. Explicit expressions for the coefficients f, , g,, 
pi, and q, will be given only in those combinations that will 
be encountered in the FPE. The latter is obtained by using 
the nondiagonal P-representation based on the Glauber co- 
herent states2' la) and 10 ), as proposed by Drummond and 
Gardiner:*' 

Here a andoare assumed to be independent variables which 
vary along the contours C and C' .  In our case a and P are 
macroscopic variables, and we will indicate their depen- 
dence on volume explicitly: 

The dimensionless volume N can be introduced in various 
ways. We use the concentration n,, which will appear below 
in the course of finding E,,, + , . Finally, after a few simplifica- 
tions, we find the following FPE: 

678 Sov. Phys. JETP 72 (4), April 1991 Mis'ko et al. 678 



The basis of our simplified approach is the approxima- 
tion that the density of scattered quasiparticles n ,  is small 
compared to the density of coherently excited polaritons no 
(i.e., n ,  < no ), where 

and the limitation to values N>1. This latter condition 
bounds the size of the crystallites from below. These argu- 
ments allow us to discard nondiagonal diffusion terms and 
terms containing products of higher order. The square 
brackets on the right side of the FPE contain drift terms, 
which specify the degree of deterministic behavior of the ko- 
mode polaritons. The remaining two terms are diagonal dif- 
fusion terms, which describe quantum fluctuations of the 
polaritons of this mode. The coefficients K and ,y that enter 
into the FPE are connected with the previously defined coef- 
ficients by the relations 

where 
- 1 
A o = A o  + - + (pi-q,) -t-m(ko), 

t2 

The coefficients 1, f, - g, , and p, - q ,  that enter into Eq. 
( 1 1 ) have the following form when the deviation from mo- 
mentum conservation is taken into account: 

2 
~ ( t ) = T ~ g @ ( 0 7 0 ) z k o + p ( t ) 3  

P + Q  

where 

When cP2(p,q) = S,, ,  Eqs. (12) and (13) reduce to Eq. (4)  
of Ref. 12, where R(p)  -fl(p,p) and O(p,q) =O(p,q,q). 
Expressions for f2 - g, and p, - q, are obtained from the 
expressions for f, - g, and p, - q ,  by replacing the princi- 
ple values involving the functions R - '(p,q) and 
O-'(p,q,x) by vS(R(p,q)) and vtj[O(p,q,x)], respective- 
ly. 

The average occupation number of scattered polaritons 
is found by solving the following system of kinetic equations: 

The first term on the right side of system (14) contains 
damping constants y(k,  + x )  of the same type as y(k, ). 
The second term describes the conversion of two polaritons 
of the k, mode into two scattered polaritons. The last two 
terms correspond to scattering processes in which only one 
out of the four quasiparticles involved in the scattering-two 
in the initial state and the two in the final state-belongs to 
the k, mode. 

To conclude this section, we specify the relation 
between the constant dg, / f i  for the source of coherent 
pumping and the power flux of the laser radiation S,, using 
the example of a ring resonator with two semitransparent 
mirrors with reflection coefficients R and two opaque mir- 
rors. In the space between the first two mirrors we place a 
glassy matrix in the form of a film of thickness L containing 
microc~ystallites. Following Ref. 14, we then write bound- 
ary conditions that relate the electromagnetic field outside 
the resonator to the field inside it. We depart from Ref. 14 
only in our replacement of the field within the resonator by 
the photon component of the mode-k, polaritons. The rela- 
tion we are looking for is the following: 

Here ye, has the sense of an effective attenuation for the 
polariton level and the following notation is introduced: 

The factor <indicates the fraction of photon component that 
enters into a polariton of frequency w(k, ); o,, (k, ) is the 
exciton frequency, E ,  is the high-frequency dielectric con- 
stant of the crystallite, and c is the velocity of light in vacu- 
um. Let us now turn to an investigation of the stationary 
states of this system. 

3. STATIONARY SELF-CONSISTENT SOLUTION 

Integrodifferential equations like ( 14) can only be 
solved approximately. In Eq. ( 14) we have explicitly taken 
into account the inhomogeneous broadening of the energy 
spectrum of scattered quasiparticles associated with the loss 
of quasimomentum conservation in finite-volume crystal- 
lites. We have also investigated a variant of Eq. (14) that 
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takes into account homogeneous broadening of the polariton 
energy due to two-particle losses from the mode k,, in a phe- 
nomenological way; our treatment of this equation is de- 
scribed in full in Ref. 12. Despite the differences in the two 
approaches, the qualitative properties of the solutions ob- 
tained and the conclusions that follow from them coincide. 

The stationary solution to Eq. (14), i.e., for which the 
left-hand part equals zero, is given by the expression 

We have introduced the following notation and approxima- 
tions: 

4n ( 2 < R k , > + l )  
0,' (x) = 

AzV2 
P 

X g2@' (q, a) 6 (0 (x. q, a)) fik,+q+xfik4. 

q'J 

The smoothing function &(a( x)  ) approximates the result 
of integrating the product of the singular function S [ a  (q) ] 
and a weight function Q2(x,q). We Tsume that 8 [fl (x)  ] is 
Lorentzian in form. Tke quaztity 4N, + 2 is the difference 
between the operators Cand B. The total attenuation 7 ( x )  
consists of three terms caused by the heat bath, two-particle 
losses, and one-particle losses of polaritons from the con- 
densed k, -mode respectively: 

The function r ( x )  has the form 

8n 
~ ( ~ k . + p + q  - + - R2V2 PP g2b2 (q. - x )  

The functions G(x) and r ( x )  are supplied with subscripts 
indicating that the quantities under the integral sign are in- 
dependent, depend linearly, or depend quadratically, on the 
average occupation number E,,, + , of scattered quasiparti- 
cles, respectively. Equation ( 17) contains the terms Do (x  1 
and G(x) in the numerator, corresponding to spontaneous 
two-particle and one-particle losses of polaritons from the 
mode k,. The single-particle loss G(x) involves the partici- 
pation of a scattered quasiparticle in the initial state and the 
formation of two quasiparticles in the final state. The first 
term leads to a peak-like structure in the nonequilibrium k- 
space distribution function, while the second leads to a con- 
tinuous background. The difference between them is the 
same as the difference between the shapes of exciton absorp- 
tion bands for direct-gap and indirect-gap semiconductors. 
For the case of strong size quantization, the quantity Do (x)  
may in fact be smaller than GI (x)  on the upper portion of 
the lower polariton band. On the other hand, within a rather 
small range of x (x  < k, ), GI (x)  can have a peak-like struc- 
ture of the form (8~g~/f i~)n,n,  . S [ ~ ( X ) ] .  These cases re- 
quire a special investigation. The denominator of Eq. ( 17) is 
a difference of two terms, each of which depends on Y ( x )  
and varies with increasing density of scattered polaritons. 
However, the first term is a product Y ( x ) Y (  - x) ,  and 
therefore will change more rapidly than the sum 
7 ( x )  + 9-( - x) .  

For qualitative estimates let us choose the smoothing 
function &(fl(x))  in the form of a Lorentzian 

The quantity q(x) is determined by inhomogeneous broad- 
ening in this variant or homogeneous broadening ye,(%) in 
Ref. 12. In practice it is necessary to choose the larger of the 
two. Let us replace the function 8 ( ~ [ x ]  ) by its maximum 
value l / ~ q ( x )  in the denominator of Eq. (17) ,  and retain 
terms of zeroth and first order in the density of scattered 
polaritons n,  inclusively. We write 

and note that r, (x)  - n l ,  Dl (x)  - E  ,,,-,. If we rem0ve.a 
common factor 4g2/q( x)  fi2, the remaining portion of the 
denominator has the form 

T ,  ( i )  + .Tt(-x))- + F ~ ( X ) + ~ I ( - X )  
.To ( x )  + . T o  (-%I 

where nf (x )  is the square of the critical concentration: 
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Equation (22) equals n f  ( x )  - b if F ,  ( + x )  = 0. In this 
case it is possible for the nonequilibrium distribution func- 
tion iih + , to exhibit a threshold dependence on the value of 
b averaged over the state of the coherently excited mode. A 
dependence of this sort is analogous to the threshold depen- 
dence encountered in stimulated Brillouin scattering as de- 
scribed in Refs. 2 and 3. 

In our case the increase in b is accompanied by simulta- 
neous increases in the quantities no and n: (x ) .  Further- 
more, for positive values of Yo ( + x )  and F,  ( + x )  the 
correction to nf ( x )  that is linear in n,  is larger than the 
corresponding correction to the quantity b for arbitrary de- 
pendences on x. The pure shift of the threshold value with 
increasing n , equals 

9 -  ( x )  + 9 -  - 8 1  (*) +9-( ( - x )  I,,,, - 
n 2 ( X )  [.o To(--*) 8 o ( x ) + 9 - .  ( - x )  

Thus, the effective threshold value, which increases with in- 
creasing n,, b, and n , ,  is smeared out to the point of being 
inaccessible in practice. The system is continuous at the 
point b = n f  ( x )  because the denominator is finite there and 
equals (24). 

Even when these approximations are made, Eq. ( 17) is 
nonlinear with respect to the average occupation numbers - nko + , , because the latter enters into D ; ( + x )  in the follow- 
ing way: 

It is easy to see that this ratio is smaller than unity for 
no < n,, N )  1, i i , ,  + , < 1, i.e., when we impose the same limi- 
tations that we used to derive the FPE. Let us linearize Eq. 
( 17) with respect to E,., + , as follows: we will neglect the 
expressions D ; ( + x )  in the denominator of (22), and omit 
various x-dependences, specifically setting To ( x )  
= q( x ) = ye,. Furthermore, we will replace the portions of 
the functions r , ( x )  and G(x)  that are proportional to no by 
expressions of the type n,n,, and the rest of the function 
r, (x )  by m c n r  /N. Making these simplifications, we find 
that the peak part of the nonequilibrium distribution func- 
tion for scattered quasiparticles that rises above the contin- 
uous background is the following: 

where 

nc=Ay.,/2 lg I, (27) 

while the unknown constants a and E are positive. The term 
en,n, / N  has an additional dependence on 1/N, and in Ref. 
12 it was omitted. 

In order to determine the average values no and b that 
enter into Eqs. (9)  and ( la) ,  we must find a stationary solu- 

tion to the FPE. For the special case N = 1 such a solution 
was found in Ref. 13. By generalizing this solution to arbi- 
trary finite values of N we are led to the following expression 
for the stationary quasiprobability Pss (g ,~ ) :  

1 N z  Nz* P - ( L  q ) =  I ( c ,  z ,  N )  ~ N ~ - ' ~ " ' * - '  exp(, + -- + 2 ~ g ~ ) .  
5 11 

The normalization constant entering into (28) has the form 

I ( c ,  Z ,  N )  =-4n2 ( N z )  Nc ( N z * )  *'c' 
oF2(Nc, Nc', 2N I z N (  ') 

] A': 1 'r (.Yc) I? ( N c ' )  
' 

By using (28) and (29) we can find the average values 
( U < ~ U ~ ~ )  from the operators for the coherently excited 
mode. These quantities can be expressed in terms of the gen- 
eralized hypergeometric series ,F, (a,b,x) and the gamma 
function r ( x )  in the following way: 

r (Nc)I' ( N c ' )  OF2 (Nc+q, N c ' S p ,  2N 1 ~h'(') 
X r ( N c f q )  I' ( N c * f p )  ,F2 ( N c ,  Nc', 2N ( zN I ') ' 

The second-order correlation function gC2' ( t )  at the instant 
of time t = 0 equals 

This function determines the required statistical properties 
of the coherently excited polaritons for various values of the 
dimensionless volume of the crystallite N. Expression (3 1 ) 
depends on the coefficients c and z. It follows from ( 1 1 ) and 
(28) that these in turn depend on the nonequilibrium distri- 
bution function ii,., + , . Thus, the problem is selfconsistent, 
and can in principle be solved using Eqs. ( 1 1 ), ( 12) and 
( 17)-(30). 

Further analysis is not possible without a number of 
simplifications and approximations. We have already men- 
tioned some of these; the others are presented below: 

Here we have used the dimensionless polariton density and 
introduced the notation 
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Within the framework of the approximations we have made 
we find the following regular dependence of v on u and w: 

Likewise, the quantities u and w themselves depend on (v, 
W )  and (u, v )  respectively. The constants p, q, a are un- 
known parameters of the theory and can be estimated using a 
series expansion of the function w(k, + x )  for x < k, or 
some other simplification of the dispersion law for the exci- 
ton-like and photon-like portions of the polariton curve. For 
simplicity, E will be set equal to zero. 

The coefficients Ic12, c + c*, and 121 2, which determine 
the values of the correlation function g ' 2 ' ( ~ ) ,  have the form 

L (u, v, w )  c+c' K (u, v, w) 
I c I 2 =  -= 

M(u ,v ,w) '  2 M(u,v,w)'  
Y 

(35) 
1zI2= laa,lz y = ------ 

M(u, v, w) ' ( f z ~ e f ) ~  ' 

where K, L, Mare the following functions: 

To summarize, we can write down two transcendental equa- 
tions for u and w using the general expression (30). The 
third equation for v is given by (34). For a given N these 
three equations determine the three quantities u, v, w we 
require as functions of the parameter Yof the external pump, 
which is connected with the energy flux of the external laser 
radiation S, by relation ( 15). There are still three unknown 
parametersp, q, a i n  the theory whose values can be estimat- 
ed from various models. 

4. STATISTICAL PROPERTIES OF COHERENTLY EXCITED 
POLARlTONS 

Analytic expressions for the functions ,F2 (a,b,x) can 
be used in two limiting cases: for x < ab and x -. w (Ref. 22). 
The case x < ab, where 

is the most interesting. Since x = 2N IzN I and one of the 
values ab equals Icl 2, we can find a bound on the product NY 
of the two dimensionless quantities-the volume of the crys- 
tallite and the density of power from the coherent pump Y- 
in the form 

NY<'12 L(u, v, w ) .  (38 

As v-0 the expression for L(u ,  u, w) takes the form 
(Aw/yef ) + +. Based on this bound we can obtain an ana- 
lytic result within a rather small region of Y, for which the 
maximum value Y,,, is inversely proportional to N. 

In the region of values of NY that satisfy Eq. (38 ), the 
quantities u, w, and g'2'(0) are as follows: 

Analysis shows that for ( c  + c*)N + 1 > 0 the correlation 
f~nc t iong '~ '  (0) < 1 and the polaritons of the mode k, exhib- 
it the property of anti-bunching. When the further inequali- 
ty (c + c* ) N  + 3 < 0 is fulfilled we have g'2' (0)  > 1, which 
is a sign that the coherently excited polaritons are bunched 
when condition (38) holds.23 Using (20), it is e2sy to ca&u- 
late the mean-square deviation (LAXi)*) = (Xf)  - (Xi)2 
of the quadrature phase operator Xi in the form 

The meac-square d~viation is subject to the uncertainty rela- 
tion ((AX, I2)((AX2 12)>1. 

In single-ph~ton~quantum optics the minimum noise 
moment satisfies ( (AX, )') = 1. This moment, which is re- 
ferred to as the zero point, is achieved in a coherent state. In 
two-photon quantum optics compressed states are possible, 
in which the noise moment in one of the quadrgure phases is 
smaller than the zero-point noise, e.g., ((AX, )2)  < 1, be- 
causz of the increased moment in the conjugate operator 
((AX, )2)  > 1 (Ref. 24). Analogous states of coherently ex- 
cited polaritons are possible because the two-particle loss 
from the k, mode behaves like to a two-photon transition in 
the case of degenerate modes. Analysis shows that com- 
pressed states occur in the presence of both bunching and 
anti-bunching when certain relations between the phases O, 
and $ of the complex quantities c and z are satisfied. These 
novel statistical properties of polaritons in crystallites have 
not been discussed previously in the literature. They are sen- 
sitive to increases in Nand Y, and disappear as NY -+ w when 
the condition (38) is violated. 

Numerical estimates based on Eq. (39) were made for 
three values N = 1, 10,50, and five values Aw/y,, = 0, + 3, 
+ S,forp,q= 10W1,a= 1 0 - 5 - 1 0 - 4 , a n d ~ = ~ .  Wechose 

the constant g = 10 - 32 erg.cm3, ye, = 10" sec - I ,  and 
n, = 5-10" cm - 3, which are close to the crystal CdS. These 
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particular values of N and n, correspond to crystallite di- 
mensions d-600-2200 A, which fall within the bounds pre- 
sented earlier. The calculation shows that for N = 1 the ef- 
fects of bunching and antibunching are such that g(2)(0)  
deviates from 1 by 20-50%. For N =  10 the difference 
comes to 2-3%, while for N = 50 it is only 0 . 3 4 6 %  in all. 
For N> 100 the effect under discussion is vanishingly small 
and polaritons of the ko mode are found to be in a purely 
coherent state. At the boundaries of the crystallite the polar- 
itons are converted into light, which is subject to analysis by 
the method of photon counting. The extent of its bunching 
and anti-bunching can be evaluated following Ref. 25. The 
degree gf compression of the fluctuations, i.e., the departure 
of ((AX, )2) from 1 for N = 1 comes to 10% under condi- 
tions of anti-bunching and 26% under bunching conditions. 
For N = 10 the degree of compression decreases by an order 
of magnitude and comes to 2.4-2.6%. 

The connection between these effects and detuning 
from resonance is the following. Let us assume that the fre- 
quency of the laser radiation w, is larger than the bare fre- 
quency of the polariton mode w(ko)  such that 
Aw/yef = - 3, - 5, and that its intensity is small and 
bounded by condition (38). Under these conditions the co- 
herent pumping is not capable of creating a purely coherent 
polariton mode in a crystallite of finite volume. The fre- 
quency excess of the photons above the frequency of the po- 
laritons w (k,  ) causes a partial randomization of the latter, 
whose statistical properties are now reminiscent of the prop- 
erties of thermal radiation and a tendency towards bunching 
is observed. When the excitation frequency of the radiation 
does not exceed the bare frequency of the mode w (k, ), there 
arises a deficit of photon energy below that required to excite 
the ko polaritons. Therefore, when Aw/y,, = 0, 3, 5 the 
quantum effects of the forced oscillations are more evident. 
As we noted previously, this rather low-intensity excitation 
radiation cannot excite a purely coherent polariton mode k,; 
however, in this case the polaritons are observed to exhibit 
the phenomenon of anti-bunching, which is a characteristic 
of quantum states of Fock type.23 The different behavior of 
coherently excited polaritons as a function of the sign of the 
detuning from resonance Aw for rather small pumping in- 
tensities correlates with the properties of an exciton absorp- 

FIG. 2. Density of coherent polaritons u as a function of pump intensity Y 
for a detuning from resonance of Ao/y, ,  = - 3. 

tion band when the fundamental mechanism for energy dis- 
sipation is exciton-exciton  interaction^.^^ 

Let us now estimate the laser radiation energy S, re- 
quired to observe these phenomena. According to (38), Y 
varies in the interval (0, Y,,,), where Y,,, 
--, ( 1/2N) [ (Aw/yef 12$ ] as v-0. For all the cases that we 
investigated Y< 10 holds. We chose the following param- 
eters: for the photons, w, = 3-10'' sec - '; for the resonator, 
L = 1 p m  and R = 0.5; for the excitons, polaritons, and exci- 
ton-photon interactions, we, = ck, , we, (k,  ) - w (k ,  ) 

= 3lpk,/fil, yef = 10'' sec-', and n, = 5.10" ~ m - ~ .  Ac- 
cording to Eqs. ( 15) and ( 16) we find that Q:e,/ye, = lo6, 
S, = 1015 erg/cm2.sec and f = 0.2. The maximum laser ra- 
diation power needed to observe these effects came to 5 
kW/cm2 for resonance excitation of crystallites of CdS type. 

Let us briefly discuss the case of a bulk crystal, i.e., 
V -  W .  The asymptotic expressions of Ref. 22 do not apply 
to the case of a bulk crystal for low coherent pump intensi- 
ties. A more general solution to the FPE as N- w in steady 
state is 

where 6, and satisfy the equations 

Using the expressions for c + c* and Icl from Eqs. (35) and 
(36), along with Eq. (34) for v in which we replace w by u2, 
we find the function u(Y) shown in Fig. 2. The coherent 
macroscopic state possesses the property of optical bistabi- 
lity, with a hysteresis loop that is not very pronounced; the 
curve u ( Y) increases slowly in the quasithreshold region 
u =  1. 

In conclusion, we the authors are deeply grateful to L. 
V. Keldysh and the participation of the Moscow State Uni- 
versity Seminar, to V. F. Eselin, I. B. Levinson, G. E. Pikus, 
and E. I. Rashba, as well as colleagues in the Institute of 
Applied Physics of the Moldavian SSR Academy of Sci- 
ences, for discussions of the work and for their comments. 
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