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We have calculated the distribution function with respect to momentum and spin of photoexcited 
electrons in a quantum well with infinitely high walls pumped by polarized light incident normal 
to the plane of the heterostructure. When the ratio of light- to heavy-hole masses is small, an 
anomalously rapid increase in the momentum alignment takes place along with a decrease in the 
orientation of electron spins with increasing energy of electron motion in the plane of the well. We 
find the dependence on excitation photon energy of the linear and circularly-polarized hot 
luminescence in the direction of pumping near its short-wavelength edge. 

In bulk semiconductors of GaAs type, electrons that 
are created via interband absorption of linearly polarized 
light are aligned with respect to momentum,'-3 while excita- 
tion by circularly polarized light results in orientation of the 
electron spins., Optical spin orientation of the electrons 
leads to circularly polarized recombination radiation, while 
alignment of their momenta is manifest in linear polariza- 
tion of the hot photoluminescence. Circular polarization of 
edge luminescence from optically-pumped quantum wells 
has been observed as The corresponding theory was 
developed in Refs. 4-6, while orientation and alignment ef- 
fects in the polarization of hot luminescence from quantum 
wells were recently seen in experiments.' 

In this paper we find the distribution function for pho- 
toexcited electrons in a quantum well with respect to mo- 
mentum and spin. In order to reveal the fundamental regu- 
larities of the alignment and orientation effects, we will 
discuss the simplest case of an infinitely deep symmetric 
well, ignoring the absence of a center of inversion in crystals 
of GaAs type. The degree of anisotropy in the distribution 
function of the photoexcited electrons depends considerably 
on the energy of the excitation photons. This dependence is 
quite abrupt compared to the three-dimensional case, espe- 
cially when the ratio of the masses of light and heavy holes 
(m,/m, ) is small, and is associated with an abrupt restruc- 
turing of the hole wave function for values of the two-dimen- 
sional wave vector k- (m,/m, ) '/2/L, where L is the width 
of the well. This change in the wave function also affects the 
spectral functions for linearly- and circularly-polarized hot 
photoluminescence. We note that structure in the absorp- 
tion coefficient of superlattices based on GaAs was observed 
at anomalously small wave vector values of the photoexcited 
electrons in the numerical calculations described in Ref. 8. 

1. The four Bloch states of an electron in the heavy and 
light hole bands are described by the wave functions 

where 

and y, , y2 , y, are the Luttinger parameters. Equation (2)  is 
satisfied by two values of q2 which correspond to heavy and 
light holes in the spherical approximation. When warping of 
the energy surfaces is taken into account it can turn out that 
both values of q2 correspond to heavy holes.'' Nevertheless, 
we will use the notation q, = q, = q,, q, = q, = q, 
(qi > 9:). The Bloch amplitudes u,, can be written in the 
form 

where up are the four degenerate states of the top of the 
valence band: 

heres, are spin functions corresponding to directions along 
the z-axis and opposite to it. 

The components ( ~ 3 / 2  ,x l /~ ,X - ,X - 3/2 can be 
found by the Hopfield method: 

x(')= (ql,a*, bh, 0, C)  , f 2 ) =  (-c*, 0, -bh, qha), 
~ ( ~ ) = ( q , a * ,  b,, 0, c), %'I)=(-c*, 0, -b,, q,a), 

& I -  
$,, - exp (ikp)exp (iqMz) d:~ (r) . (1 b~,=(y,+y~)k~+ (y1-2y2)q,~-e, 

Here ukyd ( r )  is the Bloch amplitude; M labels the four states 
(in the spherical model M can denote helicity ). Thez-axis is In the calculations that follow it is convenient to introduce 
directed along the normal to the plane of the well; in what the notation 
follows, we will assume that it coincides with the direction 

bh/ (3"l cl ) =$, cl (qha) =E. [001 1. k is the wave vector in the plane of the well. If the 
values of energy E and wave vector k are fixed, then the value 2. Let us construct the states of the symmetric quantum 
of q must satisfy the equation well out of combinations of the functions ( 1 ) that are sym- 
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metric or antisymmetric with respect to the plane z = 0, 
which is assumed to pass through the center of the well. The 
symmetric combination can be written in the form 

h 

where rI is the operator fcr reflection in the plane z = 0; 
yhen spin is included, rI is defined by the equation 
rI*(z) = Cz*( - 2). 

In a symmetric well two states belong to each energy 
level: a symmetric state and an antisymmetric state. It is 
natural to seek the symmetric functions in the form of linear 
combinations of the functions (4): 

The antisymmetric function can be obtained by applying 
spcessively the operations of inversion J and time reversal 
K to (5)  (where K$ = - iCy$*; see Ref. 9): 

The Bloch amplitudes u,,, , u  - ,,, are symmetric, while 
u,,, , u^_ ,,, are antisymmetric with respect to the oper- 
ation II; therefore, the symmetric functions (4)  (which are 
unnormalized) have the form 

3. For an infinitely deep rectangular well the boundary 
conditions for the functions Y, consist of setting the enve- 
lopes equal to zero at the walls of the well (i.e., z = + L /2; 
in what follows the quantity L /2 will be taken to have unit 
length). This condition is conveniently written in the form 

where Cp = ch/c, for p = 3/2, - 1/2 and ( p  = s,/s, for 
p = 1/2, - 3/2. Here and in what follows we use the nota- 
tion 

Introducing the explicit form of x'~', using Eq. (8 )  we can 
express A,  and A, in terms of A ,  and A,  and obtain the ratio 
between A ,  and A,  : 

shbh A s = - - -  chbh A, ,  A , = = - -  A ,  
"2' -&' 

sIb1 clbl 
vb*, (9)  

where v is a real quantity; using either of the two equations 

v can be expressed in terms of the variable 

z=ql tg qhlqh tg ql. (11) 

The second of Eqs. ( 10) leads to a quadratic equation for T :  

Equations ( 1 1 ) and ( 12) together with Eq. ( 2 )  deter- 
mine the values of q, and q, for a given k and thereby the 
energy spectrum in the size quantization band. The equa- 
tions for the spectrum were obtained previously by Nedore- 
z0v.I0 

The wave function can be written in the following form, 
which is convenient for further calculations: 

where 

c ( 2 )  =COS (qhz)- (ch/cl) COS (qlz) 7 

S ( z )  =sin(qhz) - ( s ~ / s ! )  sin (qlz) ,  

W+= W+ exp (2icpr), W-= W- exp ( - 2 i ( p k ) ,  

B w+=-  
1-v ' 

The angle p, is determined by the relation 
c = I c I  exp(2ip, ). 

Let us note the following fact: Eq. ( 12) has two solu- 
tions 

Solution 7, [the upper sign in Eq. ( 15 ) ] corresponds to sub- 
bands of heavy holes with odd indices and light holes with 
even indices, while solution T, is associated with the remain- 
ing subbands. (The enumeration and terminology of the 
subbands is based on energy values at k = 0.) The values of 
r ,  and T, are connected by the ratio r ,  r, = q:/q:. From Eq. 
( lo) ,  which expresses v in terms of r, for fixed k and q, we 
can obtain 

From this and from Eq. ( 14) we find the following relations 
(for fixed k, q, , q, 

The constant Nis determined from the normalization condi- 
tions: 

N= [ ( l +3W+z)P ,+~q~~ l+3W-~9 , ] - ' ,  

4. All these expressions simplify greatly in the spher~cal 
approximation ( y, = y, ). For this case /3 - 1, 
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6 = (k  /2qh exp (247, ), and qk reduces to the angle 
between the vector k and the x-axis. From Eq. (2)  it now 
follows that 

where m, and mh are the effective masses of light and heavy 
holes, and Eqs. ( 12) and ( 15) coincide with the equations 
obtained previously by D'yakonov and Khaetskii;' ' in these 
equations, 

Here we have introduced the variable t = k '/(k + q; ) and 
the notation v = m,/mh. We note that fort  > v the quantity 
q, is pure imaginary. 

The parameters W +  , 171 *, and T are completely deter- 
mined by the value of the variable t. For these quantities we 
obtain the following expressions: 

v+I ( w ~ ) ~ = ( w * ) ~ = ~ { ( I - + ) *  [ ( I  -A) '+L] '~} ,  t  
I+v 

states, symmetric and antisymmetric, correspond to each 
energy level in the conduction band (just as in the valence 
band). The anJhymmetric states are obtained from (24) by 
the operator JK; although they are characterized by the 
same values of p + and p , the spin direction of the even 
function is "down" while that of the odd function is "up". 

Dipole optical transitions induced by excitation light 
with its electric vector lying in thexy plane are allowed only 
between states of the same symmetry. Therefore, the density 
matrix of photoexcited electrons is diagonal. In the electron 
subband with odd label the distribution functions for elec- 
trons with up and down spin are given by the following 
expression (with a constant factor): 

where p ( k )  is the reduced density of states, 6 is the dipole 
moment operator, and e is the polarization vector of the light 
(where 1 ex 1 ' + ley I * = 1 ) . Because \yo and @, are related to 
\y, and @, through Eq. (6),  we have 

Using the wave functions ( 13) and (24), we can obtain 

l (c~.+lef i ly l ,>  1'='/~lNQ+9)1'1e,(l-W+)+ie,(1+W+) I ' ,  

where 
We note that for small mass ratios the wave functions un- 
dergo abrupt changes in the small-k region ( t  z to ) . .B=<s~D,~x>, 

For t% to (to 4 1 ) the wave functions do not depend on 
2(qh2-qlz) P+ the mass ratio: for states of type 1, I Q+ I 

= I ( q h 2 - p + 2 )  (q12-p+') 
(w+)szI, (w-)i=o, l q l * z z  ( i - t ) / t ,  T t ~ - t / ( $ - t ) ,  

Analogously we can obtain 
(21) 

~ < @ . - \ ~ ~ ~ Y . > ~ ~ = ~ / ~ ~ N Q - ~ ) ~ ' \ ~ + ( I - W - ) - ~ ~ , ( I + W - )  l a ,  
and for states of type 2, 

For energy levels that are not too high, as long as vq, , vq, are 
small the quantities q, and q, themselves, which are deter- Using these relations, let us find an expression for the density 

mined from Eq. ( 1 I ) ,  are independent of V,  since we can set matrix of the photoexcited electrons (at the instant of cre- 
q:=: - q; t /( 1 - t)  in this equation. In this case ation) for arbitrary polarization of the excitation beam inci- 

dent along the z-axis: 
ch2 ShCh 4-2t sh2 ShCh 

S , ,~I+- - ; - - - -  9 a i = 1 + 7 + 2 - ,  
c, qh t  ' @,=F,{I [I+ao\e,2+e,2[ cos (2$)]+ 2s,,ezn,}, (29) 

S L  !?h 

cha ~hch sh' shch 1-2t where CZ and i are the Pauli and unit matrix, Po2=I+--  2 ,  , I + + - - .  
ct2 qh sl qh t n, = - i(e:e, - e,e:) is the angular momentum of 

the photon, and $ = qk - q, is the angle between the plane 

(23) of preferred polarization of the light, where 

5. Let us turn to a calculation of the distribution func- 
tion for the photoexcited electrons. The wave functions in 
the conduction band that are symmetric with respect to re- 
flection in the plane z = 0 are as follows: 

@.+ =Se"P cos (p+z)s+,  @.-=SeikP sin (p-z)  s-, (24) 

where S is the Bloch amplitude of S type, 
p+  = (2n + l)?r/2, andp - = n?r. The functions @,t and 
Q; possess coordinate parts with different symmetries, but 
when the spin parts are included both are symmetric. Two 

and the vector connected with the direction k (in the spheri- 
cal approximation it coincides with this direction). The 
parameters a, and so determine the degree of alignment of 
the momenta and the average spin of the photoexcited elec- 
trons at the instant of creation for excitation by linearly po- 
larized and circularly polarized light respectively. (For 
plane polarization lef + e: / = 1, n, = 0, and for circular 
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polarization le: + e: 1 = 1 = 0, n, = + 1. ) For these val- 
ues, and for F, as well, we obtain 

where the upper sign refers to electron levels with odd index, 
and the lower sign to the levels with even index. 

The main feature of Eq. (30) consists of the fact that in 
the spherical approximation, for which Eq. (20) is applica- 
ble, the quantities a, and so depend only on the parameter 
t = k 2/(k + q: ), which can be interpreted as the 
squared sine of the angle of incidence of a heavy hole on the 
wall of the well. 

In Figs. 1 and 2 we show the dependence of a, and so on 
t corresponding to the two values of T that are possible ac- 
cording to Eq. ( 15). These functions were calculated in the 
spherical approximation. Curves I on these figures corre- 
spond to the value T, and refer to transitions between heavy- 
hole and electron levels with indices of the same parity or 
light-hole and electron levels with labels of different parity 
(for example, they refer to transitions lhh-le, ..., 2lh-le, ... ). 
Curves 2 correspond to values of T, and refer to transitions 
between heavy-hole and electron levels with labels of differ- 
ent parity or to transitions between light-hole and electron 
levels with labels of the same parity (for example, to transi- 
tions 2hh-le ,..., lhh-2e ,..., llh-le ,... ). It is noteworthy that 
for different values of T (curves 1 , 2 )  the alignment values 
have opposite signs over the entire range of variation of t 
(Fig. 1 ) and orientations fort < 2v/(3 + v) (Fig. 2) .  For all 
the transitions, the alignment disappears as k - 0 ( t  - 0)  and 
the orientation goes to its maximum possible value 
( I S ,  1 -+ 1/2) but with opposite signs for curves 1 and 2. For 

FIG. 2. Dependence of the average electron spin s,, on t .  The notation is 
the same as in Fig. 1 .  

large values of k (t-  1 ) the alignment reaches a maximum 
(a, - 1 ) for T = T, (curve 1) and a small value of oppo- 
site sign (a, -6v/(9 + d) ) for T = r2 (curve 2).  In 
this case the orientation disappears for T = T, (curve I)  and 
goes to a value close to its maximum 
(so -+ - (9 - v2)/2(9 + 2)) for T = r2 (curve 2) .  Let 
us note that for the transitions described by curves 2, the 
alignment reaches a maximum value (a, = + 1) for 
t = 2v/(3 + v), and for this specific value o f t  the orienta- 
tion passes through zero. 

FIG. 1 .  Dependence of the alignment parameter a, on t = k '/( k ' + q:, ). 
We use the spherical approximation with v = 0.18. I-transition between 
heavy-hole levels and electron levels whose labels have the same parity, or 
transitions between light-hole levels and electron levels whose labels have 
different parity; 2-remaining transitions. 

FIG. 3. Dependence of the alignment parameter a,, on k for electrons 
photoexcited to the first size-quantized level. The half-width of the well is 
taken to be the unit of length. We use the spherical approximation with 
v = 0.18. The solid curves are transitions from the heavy-hole subbands, 
the dashed are from the light-hole subbands. The numbers on the curves 
label the hole subbands. 
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There is some practical interest in the k-dependence of 
the degrees of orientation and alignment. In order to obtain 
these dependences by using Figs. 1 and 2 we require a rela- 
tion between the parameter t and the wave vector k. We can 
obtain this relation from Eqs. ( 1 I ) ,  (15) ,  and ( 19). The 
resulting functions are shown in Figs. 3 and 4 for transitions 
to the first electron level. Figure 5 shows the k-dependence 
of the total rate of generation F, of electrons calculated by 
using the last of Eqs. (30). Figure 6 shows the spectrum of 
holes in the size-quantized bands. All the curves on Figs. 1-6 
were calculated for a value of v = m,/m,  = 0. 1K2' 

6. We note that all the characteristics of these transi- 
tions undergo an abrupt change for small values of 
kzvl"/L. This is related to the abrupt reconstruction of the 
wave function for holes that was mentioned in Sec. 4 for 
tz4v/3. This behavior of the wave function is caused by a 
virtual surface state-which becomes real for v < 0 (see Ref. 
11 )-that affects the reflection of holes from the walls of the 
well (see also Ref. 12). For this reason, when v( 1 the be- 
havior of the alignment and orientation in a quantum well 
exhibits a paradoxical departure from the sort of behavior 
that analogies with the three-dimensional case would pre- 
dict. 

In the three-dimensional case, when the excitation 
beam is parallel to the z-axis and polarized along the x-axis 
the angular dependence of the distribution function of elec- 
trons photoexcited from the heavy-hole band has the 
form'-3 9 a (k: + k f ). This is because the selection rules 
forbid the excitation of electrons with k directed along x in 
this case. Expressing this function in terms of the angle p, 
which the two-dimensional vector (k,, k,) makes with the 
x-axis, by analogy with Eq. (29) we obtain 
a, = - k 2 / ( k Z + 2 k ~ ) , w h e r e k 2 =  k: +k:.Itwouldbe 
natural to assume that k, can be identified with the value 
?r/L, which is a quantity on the order of the z-component of 
the momentum in the first size-quantized subband of an elec- 

F,, arb. units 

FIG. 5. Dependenceof the generation rate F, for electrons to the first size- 
quantized level on k '. The notation is the same as in Fig. 3. 

tron; this formula should then give a correct description of 
the k-dependence of a, for this subband. These simple con- 
siderations were in fact used to estimate the degree of align- 
ment in Ref. 7, resulting in a correct description of the over- 
all form of the function a, (k) ,  i.e., zero alignment as k + 0 
and complete alignment a sk+  CO. However, a, (k )  does not 
contain any dependence on v and predicts a smooth increase 
of la, 1 from zero up to unity as k increases. However, the 
calculations we have presented above indicate that for v g  1 
the alignment increases rapidly to its maximum value even 
when kL =: v"'. 

L 
FIG. 6.  Spectrum of holes in the size-quantized bands. We use the spheri- 
cal approximation with v = 0.18. The solid curves are heavy holes, the 

FIG. 4. Dependence of the average spin so on k for electrons photoexcit- dashed curves are light holes. The labels on the curves correspond to labels 
ed to the first size-quantized level. The notation is the same as in Fig. 3. of the subbands. 
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7. Orientation and alignment of electrons are usually 
detected by looking for circular and linear polarization of 
the recombination radiation. The intensity J,, of radiation 
with polarization el  is given by the formula 

where Cis  a function of the frequency of light and is deter- 
mined by the reduced density of states and the number of 
holes for the state f, (p  is an index that enumerates the 
degenerate states of the holes; we assume that the holes are 
neither aligned nor oriented). F,,, is the density matrix of 
the recombining electrons (which in the present case is diag- 
onal), and is determined by using expressions that differ 
from (29) only by the replacement of a, and so by a and s, 
taking into account the relaxation processes. When the re- 
combination radiation propagates along the z-axis, the ma- 
trix of observation (with respect to the indices mm') whose 
elements are contained in the circular brackets of Eq. (3  1 ) is 
also analogous to Eq. (29). This matrix differs from (29) 
only by the replacement of the parameters a, and so by a, 
and s, , which depend on the final states of the recombining 
electrons. From Eq. (31) it follows that for linearly polar- 
ized excitations the recombination luminescence will also be 
linearly polarized; the degree of polarization (with respect 
to the polarization of the excitation) is determined by the 
expression 

For a circularly polarized pump the radiation will have a 
circular polarization PC, where 

If free holes belonging to one of the size-quantized levels 
participate in the recombination, then s,  ( k )  =so  (k) ,  
a , ( k ) = a , ( k ) .  In this case a , (k)  and s,(k) should 
be calculated for transitions between subbands that partici- 
pate in the recombination luminescence. Figure 7 shows the 
dependence of the degrees of polarization PI and PC for radi- 
ation emitted during the recombination of electrons excited 
in lhh-le transitions with nonoriented and nonaligned holes 
in levels lhh (the process lhh-le-lhh). The calculation is 
shown for luminescence quantum energies that are close to 
the energies of the excitation quanta, so that relaxation pro- 
cesses are unimportant (a = a,, s = s, ). Let us recall that 
the signs of the parameters a can be opposite for excitation 
and recombination (e.g., for the process 
llh-le-lhh). In this case P, will be negative. The same ap- 
plies for PC as well. 

8. Let us now discuss the role of cubic (not spherical) 
symmetry of the crystal. As is well in the three- 
dimensional case this leads to a dependence of the degree of 
linear polarization of the hot luminescence on the orienta- 
tion of the plane of polarization of the excitation with respect 
to the crystallographic axes. An analogous effect also occurs 
in quantum wells. For its description we will use an approxi- 
mation analogous to that used in Ref. 1 for the three-dimen- 
sional case. That is, we will assume that the primary contri- 
bution to the recombination radiation comes from carriers 

FIG. 7. Dependence of the linear (PI )  and circular (PC ) polarizations of 
the luminescence on k 2  for the process lhh-le-lhh. The dashed curves 
are the spherical approximation, v = 0.18. The solid curves are the diag- 
onal approximation with y ,  = 6.79, y, = 1.924, y, = 2.681 (GaAs, Ref. 
13) .  I-P,, PI,,, , 2-PC. 

for which the wave vector k points in the direction that mini- 
mizes the energy of the holes for a given value of k. This 
approximation is correct for hot luminescence at low tem- 
peratures when the number of holes that participate in the 
recombination decreases rapidly with increasing energy. In 
the three-dimensional case this direction coincides with the 
direction {I l l ) .  For the case under discussion here, i.e., 
quantum wells parallel to the plane (OOl), the correspond- 
ing direction of the two-dimensional vector k is along one of 
the two axes [ 1101 and [ 1701 (see, e.g., Ref. 5) .  

For recombination of holes on an acceptor we also may 
assume that this direction plays a fundamental role (in anal- 
ogy with the three-dimensional ). In this diagonal 
approximation, if the polarization vector e of the excitation 
light is parallel to the [ 1001 or [OlO] axis, then linear polar- 
ization of the luminescence is absent (PI = O), sin- 
ce the occupations of the directions [ I  101 and [ I ~ o ]  are 
the same in this case from symmetry considerations. We 
should expect the maximum polarization of the lumines- 
cence when the vector e is parallel to one of the directions 
[I101 or [ 1701. For the process lhh-le-lhh at the short- 
wavelength edge of the hot-luminescence spectrum we find 
that PI ,,, = a:, where a, should be determined from the 
first of Eqs. (30) by calculating W +  from ( 14) and (3)  for 
k : = k : = k 2/2. In Fig. 7 the solid curves give values of 
PI,,, and PC calculated in this way for the process lhh-le- 
lhh (PC was calculated using Eqs. (33) and (30) under the 
assumption that s, = s = so with the same values of W +  ). 
Let us note that for these processes PI ,,, + PC = 1 holds in 
the diagonal approximation, while 2P1 + PC = 1 holds in the 
spherical approximation. 

9. The linear and circular polarization of hot photolu- 
minescence from quantum wells was investigated in Refs. 7 
and 1 5.3' The observed dependence of PI and PC on energy of 
the exciting photons Irw,,, agrees qualitatively with the cal- 
culations described above. Specifically, PI increases with in- 
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creasing ~,,, while PC decreases. These authors also ob- 
served a strong anisotropy in the linear polarization. The 
maximum value of P, corresponds to polarization of the ex- 
citation along the [ 1 101 -axis. However, there is a significant 
quantitative disagreement between theory and experiment: 
the linear polarization in the experiment is very much 
smaller, while the circular is very much larger, than is pre- 
dicted by theory. Furthermore, the experimental depen- 
dence of P, and PC on he,, is found to be too smooth. These 
disagreements are possibly related to the fact that in the ex- 
periments the observed radiation is due to band-to-acceptor 
rather than band-to-band recombination, as was assumed 
above. In addition, the finiteness of the depth of the quantum 
well may affect the result, as well as strain in the gallium 
arsenide layer of the heterostructure. 

The authors are grateful to M. I. D'yakonov and D. N. 
Mirlin for discussions of the results and stimulating com- 
ments, and also to P. L. Roskin for his assistance in the cal- 
culations. 

I '  This circumstance was called to our attention by A. V. Subashiev and L. 
G. Gerchikov. 

"This value corresponds to the spherical approximation for GaAs. The 
spherical approximation is apparently a poor description with regard to 
finding the location of the levels for k = 0.' However, it is useful for 
clarifying the general regularities in the behavior of orientation and 
alignment. 

"In this paper we will not touch on experimental and theoretical investi- 
gations of the polarization characteristics of luminescence that propa- 
gates in the plane of the well (see, e.g., Refs. 16 and 17). In this case the 
polarization of the luminescence is due not to the polarization of the 
excitation but to the presence of a preferred axis, i.e., the normal to the 
plane of the heterostructure (see also Ref. 18). 
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