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In the calculation of thermodynamic quantities by quantum-field methods the Matsubara 
integration contour can be deformed in the complex-time plane. The admissible deformations are 
limited by the singularities of the Hamiltonian as a function of time. They correspond to the 
change of the parameters of the system as the interaction is switched on. The real-time technique 
must be constructed over the true thermodynamic vacuum with allowance for the interaction. 

The thermodynamic approach to quantum field theory 
is attracting great attention at the present time. The proper- 
ties of a quark-gluon plasma are important for an under- 
standing of the physics of the hot universe and of collisions of 
heavy ions. The theory of superstrings at high temperatures 
promises to become no less of a "hot spot." It is interesting to 
understand not only the thermodynamic properties but also 
the kinetic characteristics such as the viscosity, thermal con- 
ductivity, etc. An intermediate stage on the route to this is 
the real-time formalism (RTF), which permits one to find 
the thermodynamic functions by means of a Feynman-dia- 
gram technique in a specially defined thermal vacuum that 
takes into account the Gibbs distribution over the ener- 
gies. 

In Ref. 2 it was shown that this technique can be related 
to the standard Matsubara approach. For this, in the com- 
plex plane one must deform the contour of integration in the 
exponent in the functional integral for the thermodynamic 
generating function (see Fig. 1). This leads to a doubling 
(familiar in the kinetics of quantum systems) of the number 
of degrees of freedom: The integral along CII generates the 
distinctive "ghosts" of the RTF. It is assumed that the inte- 
grals along the vertical parts C,,, and CIv lead, in the limit 
T-+ W ,  only to multiplicative renormalization of the gener- 
ating functional. 

In the present paper it is shown that in the complex- 
time plane the Hamiltonian of a system with an interaction 
has singularities ( t  :,t z )  that obstruct the passage to the 
limit T-. W .  Their appearance is related to the adiabatic 
switching-off of the interaction as It I -* W .  After the singu- 
larities have been taken into account it is found that the RTF 
must be constructed over the true thermodynamic vacuum 
of the interacting system, and the vertical parts correspond 
to the restructuring of the vacuum under the influence of the 
interaction. In ordinary quantum field theory the question of 
the adiabatic switching-on of the perturbation is not so im- 
portant in principle, since the ground state is assumed to be 
nondegenerate and can be changed only by a phase factor. 
Statistical physics differs in that, first, the thermal vacuum is 
not the ground state, and second, there may be no energy gap 
in the excitation spectrum, making the system sensitive even 
to slow switching on of the perturbation. 

The significance of this is particularly clear when the 
simple thermodynamic vacuum is unstable against the inter- 
action. For example, in the theory of superconductivity an 
arbitrarily weak attraction between electrons leads to a 
change of the spectrum near the Fermi surface and to the 

formation of Cooper pairs. The starting point for study of 
the properties of the system should be the true vacuum with 
allowance for the condensate. 

Let us indicate the obstacles that may be encountered 
upon deformation of the integration contour in the complex 
plane. The physical characteristics are completely deter- 
mined by the density matrixp(q,t,ql,t ') of the system, where 
q are the generalized coordinates and t is the time. Values of 
the density matrix at different times are conne'cted by the 
relation 

Here, S(q,t,qf,t ') is the evolution operator: 
1' 

The evolution occurs in ordinary time, q and q' are the coor- 
dinate of the initial and final states, respectively, H i s  the free 
Hamiltonian, and V(t) is the terms corresponding to the 
interaction. 

Equation ( 1 ) in the limit t, = t, -+ - w makes it possi- 
ble to develop the diagram technique of Ref. 3, which is well 
known in physical kinetics and works for arbitrary, not nec- 
essarily equilibrium initial density matrices p ( - w ) . Here 
too the number of degrees of freedom undergoes doubling, 
associated with the presence of the factor S -  ' ( t  ', - co ) in 
the formula. 

The density matrix of the equilibrium thermal distribu- 
tion can be expressed by a formula analogous to (2),  but 
with a purely imaginary quantity in the role of the time: 

FIG. 1 .  Integration contour used in the derivation of the real-time tech- 
nique; t y  and t :  are singularities bounding the physical region. 
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where f l  is the inverse temperature and t, is the real time, 
which, for now, is simply a parameter of the interaction. 

Substituting the expression for pM into the definition 
(1 ), we see that the matrix p(q,t,ql,t ') can be expressed in 
the form of a functional integral, in which the integration 
contour in the exponent of the exponential runs along the 
contour C in the complex plane (see Fig. 2).  The contour C 
consists of three pieces, for each of which the procedure of 
functional integration is well defined. The question arises: 
Are deformation of the contour C admissible? 

Werecall that thedensity matrixp( ...) given by Eq. ( 1 ) 
is, for real t, a solution of the equations 

Therefore, if H and Vare defined for complex values oft, the 
matrixp can be analytically continued. When the problem of 
the thermodynamics of a system with a constant Hamilto- 
nian is reformulated in field-theoretical real-time terms it is 
no longer possible, generally speaking, to regard V as time- 
independent. However, certain restrictions must be imposed 
on the operator-valued function V. 

First, it is necessary that Vbe an analytic function, real 
on the real axis. Under complex conjugation, v(?) = p ( t ) .  
Second, the standard formulation of the problem in quan- 
tum field theory assumes that the interaction is absent at 
t =  * m: 

and is switched on adiabatically in the physical region. Then 
pF( - CQ ) is the usual thermal density matrix of the free 
fields. 

Finally, in thermal equilibrium we must impose on the 
function V the Kubo-Martin-Schwinger condition,lv2 i.e., 
periodicity in imaginary time: 

V ( t + i p ) = V ( t ) .  (6) 

Since the equilibrium wave functions of Fermi (Bose) fields 
are antiperiodic (periodic), (6)  implies that the tempera- 
tures of the perturbation and of the system coincide. 

Although the conditions listed do not fix the depend- 
ence V( t ) ,  it necessarily follows from them that in the strip 
- P<lm t c0  the function V has at least two simple poles (or 

one second-order pole). In fact, according to (6),  the lines 
Im t = 0 and Im t = - f l  can be identified, and the domain 
of definition of V turns out to be topologically equivalent to a 
sphere with two punctures t = f m ,  at which its definition 
can be supplemented by ( 5 ) . 

From the theory of analytic functions on Riemann sur- 
faces it is known that on a sphere the number of zeros coin- 
cides with the number of poles, when allowance is made for 
the multiplicity. '' We confine ourselves to the simplest case, 
when V has two simple poles at the points t 7 and t ,*. The 
quantity 1 t t - t f I is the characteristic time for switching on 
the interaction. The physical region lies between 
the poles: Re t :<Re t(Re t ,*. From the periodicity 
V(t) = V(t - $1, since v(?) = F( t ) ,  it follows that the 
poles lie symmetrically about the line Im t = - P/2. In our 
ca se , ImtT=Imt ,*=  -P/2. 

The singular points of the function V(t) are branch 
points of the solutions of Eqs. (4). Depending on the phys- 
ical formulation of the problem, one must draw cuts through 
them and fix the lower branch. 

The choice of cuts shown in Fig. 3a makes it possible to 
find the response of the equilibrium free system to the 
switching-on of the interaction. We have 

@(q, t ,  ql, t r )  - J dqi dqz S(q, t, qs, 

The characteristics of the thermodynamic equilibrium 
system with interaction must be calculated with the cuts 
drawn as in Fig. 3b, since the initial Matsubara contour lies 
in the physical region. In Eq. (1)  we must substitute the 
thermal density matrix with interaction 

x pvM(qr, to, 9 2 ,  t0)S-'(q', t', q2, to), 

Re ti*<to<Re t,'. (7b) 

If we attempt to deform the integration contour in Eq. 
(7b), as shown in Fig. 1, in order to obtain the RTF, the 
poles of the function V( t) prevent one from taking the verti- 
cal parts of the contour outside the physical region. Thus, 
the true vacuum is the thermal vacuum with allowance for 
the interaction. 

FIG. 2. Contour determining the evolution of the density matrix. 
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FIG. 3. Two variants of the choice of cuts. 
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In order to understand the essence of the difference be- 
tween the two solutionsp, and pb , let us calculate the den- 
sity matrixp~(q,q',t) at t = Re t * + 0, wherep, andp, dif- 
fer only in the way of going round the pole t = t *. Near the 
pole the operator function Vcan be represented in the form 

W(t') + 0 (1). v w =  - t-t* 
where W(t *)  = Res, = ,. V(t) is the residue at the point t *. 
Therefore, the solutions of Eq. (4a) in this neighborhood 
look like 

p(t, q, t', 9 ' )  =(t-t')-iW""cp(t, q, t', q'), (9: 

where g, is a function that is regular at the point t *. The 
solut ionsp~(t  * + 0)  and p?(t * - 0)  differ by a "half-cir- 
cuit" around the singularity: 

It is remarkable that, to within quantities that are small in 
/ ( t  : - t 7 ), the residues W( t ) can be expressed in terms 

of the value of V in the physical region: 

-. 
i (t) dt 

2ni 
W(t i )=  (-1y J- =(-l)h+l- 

2n 

It is easy to convince oneself of this by integrating V(t) 
over the contours C,  and C, of Fig. 4. It is obvious that 

Cx 

By virtue of the periodicity of V(t), the integrals along 
the straight lines Im t = 0 and Im t = - iP cancel each oth- 
er, V( + w ) = 0, and a nonzero contribution is given only 
by the part from 0 to - iP." Substituting ( 1 1 ) into Eq. 
( lo) ,  we see that the passage around the pole introduces into 
p? the operator factor e P B V .  Contractingp?(t + 0)  with 
p?(t 7 - 0)  - ' , we obtain 

Tr [pvx (Re tIW+O) (pvx (Re ti'-0) )-I] =Tr exp (-BV) . ( 13 ) 

The right-hand side is equal to e c B A n ,  where AR is the 
correction to the thermodynamic potential R as a conse- 
quence of the switching on of the intera~tion:~ 

1 
A Q -  --lnTrexp(-BV), 

B (14) 

FIG. 4. Calculation o f  the residuesof the function V ( t ) ;  C, is the Matsu- 
bara contour. 

and is a sum of closed loop graphs in the Matsubara tech- 
nique. 

In conclusion, we enumerate again the main results. 
The path of the functional integration can be deformed with- 
in the physical region (bounded by the singular points of the 
Hamiltonian) in the complex-time plane. The residues at the 
poles correspond to vacuum loops in the Matsubara tech- 
nique. In the construction of the real-time technique for the 
investigation of kinetic properties it is necessary to take into 
account the true structure of the thermal vacuum. The re- 
structuring of the vacuum is especially important when 
there is no gap in the energy spectrum or if the unperturbed 
vacuum is unstable against the switching on of the interac- 
tion. 
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discussions. 

" The generalization to operator-valued functions appears to be admissi- 
ble for physical interactions V ( t ) .  This is obvious for a homogeneous 
dependence V ( t )  = V f ( t )  and for matrix elements V,,, in any basis. It 
hardly makes sense to consider specially complicated analytic proper- 
ties o f  V ( t ) ,  since this will lead to a decrease of  the radius o f  convergence 
o f  the perturbation-theory series. 

* ' A s  an example, we may consider the function V ( t )  = V ( 0 )  
[ l  + ch(2t *TIP) 1 .  [ch(2rrt/P) + ch(2rt * /P)  I - ' ,  with poles at the 
points * t * - iP/2. For this function, ( 1 1 )  is fulfilled to within 
o(exp( - 27it * /P)  ). 
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