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A model of the orientation effect is developed for an orthorhombic nematic subjected to crossed 
electric arid magnetic fields. The conditions are found for the existence of a threshold transition 
and the limiting orientation of an orthorhombic nematic in high fields is determined. It is shown 
that two consecutive structural transitions can take place in different external fields and this may 
be used as a criterion of the biaxial nature of the phase when nematic liquid crystals are identified. 
A study is made of the feasibility of finding experimentally the elastic constants of an 
orthorhombic nematic from measurements of the critical field at the primary and secondary 
bifurcation points in the course of the Frkedericksz transitions. 

INTRODUCTION 

A class of nematic liquid crystals (NLC) which repre- 
sents mesophases with a biaxial breakdown of the total rota- 
tional symmetry 0 ( 3 ) ,  typical of an isotropic liquid, has 
recently been identified and is being actively investigated. 
Phases of this kind, labeled NLC,, had been observed firstJ 
in lyotropic liquid crystals and later2 in thermotropic liquid 
crystals. These NLC, phases can have arbitrary point sym- 
metry groups which are subgroups of 0 ( 3 ) ,  including the 
groups which are forbidden in the crystal lattice. The sym- 
metry of the majority of the biaxial nematic phases encoun- 
tered in practice has not yet been determined. 

Investigations of the NLC, phases have included the 
development of a continuum theory of elasticity,' hydro- 
d y n a m i c ~ , ~ . ~ . ~  a theory of phase transitions,' flexoelectri- 
city,%nd classification of disclinations "The great variety of 
the forms of symmetry of biaxial nematic phases car1 give rise 
to familiar difficulties in their identification by calorimetric 
measurements in the vicinity of a phase transition from a 
uniaxial (NLC, ) to a biaxial (NLC, ) nematic in the absence 
of x-ray diffraction methods. It is therefore important to in- 
vestigate the behavior of biaxial nen~atics in external electric 
E and magnetic H fields. This point is discussed in Ref. 10 
from the point of view of changes in the thermodynamic 
state of an NLC, phase or, more exactly, changes in the tem- 
perature and nature of the NLC,--NLC, phase transition. 

The orientational instability of a biaxial nematic in an 
external electric field (known as the FrCedericksz structural 
transition) has been considered already for the cubic' ' and 
hexagonal'' nematic phases: The investigation reported in 
Ref. 12 was limited to finding the critical values E, of the 
fields, but did not extend to a study of the stability of inho- 
mogeneous nematic structures that appeared in fields above 
Ec (or, using the language of bifurcation theory. it was limii- 
ed to the task of finding the primary bifurcation points). It is 
known" that the high symmetry of a system permits a whole 
series of stable stationary states separated along the Eaxis by 
what are known as the secondary bifurcation points Such 
points can be expected, for example, in the case of the FrCe- 
dericksz transition in a hexagonal NLC under special condi- 
tions imposed on the elastic moduli and the permittivity ten- 
sor of a liquid crystal. 

The interest in the FrCedericksz transition in the NLC, 
phases is also due to the opportunity of obtaining the still 

missing information on the elastic constants of the biaxial 
phases14 and determining the limiting orientation of an 
NLC, phase in high external fields, as well as the nontrivial, 
in contrast to NLC,, behavior under such conditions. 

We shall limit our treatment to a study of the FrCeder- 
icksz structural transitions in an orthorhombic nematic with 
the D,, symmetry. We selected an NLC, phase with this 
symmetry because of the relatively small number ( 15 ) of the 
elastic (in the case of a monoclinic nematic the 
number of such constants is 25, whereas for a triclinic NLC 
it is 45). On the other hand, the symmetry is fairly low, so 
that degeneracy of the interaction of the NLC, phase with 
the vector fields, which is quadratic in E, is avoided13 in 
contrast to the degeneracy which occurs in cubic liquid crys- 
tals" and in NLC, phases of intermediate symmetries.'* 

Our task was to describe possible structures and types 
of transitions which may occur between these structures in a 
plane-parallel layer of a biaxial nematic with the point sym- 
metry group D, ,  subjected to external electric and magnetic 
fields when strong coupling obtains at the boundary of the 
liquid crystal. 

FORMULATION OFTHE PROBLEM 

The orthorhombic symmetry makes it impossible to 
transfer the concepts of the "planar" ( p )  and "homeotro- 
pic" ( h ) orientations from a uniaxial to a biaxial nematic 
phase and, as a consequence, to separate the main types 
(splay, bend, and twist) of strains typical of the Frkeder- 
icksz transition in the NLC, phase. 

We consider only the situatiorn when one of the vectors 
of the unperturbed triplet of the unit vectors nf has the h 
orientation at the boundaries of the NIX, layer I n  the ab- 
sence of external E and H fields, the vectors fields np(r) are 
homogeneous and throughout the layer and the boundary 
conditions at the upper and lower surfaces of the layer are 
symmetric The orientations of the fields E and H can genex 
ally be arbitrary It  follows from the symmetry consider- 
ations that it is sufficient to investigate a structural transi- 
tion in a phase with the h orientation for just one of the 
vectors of the triplet n:, fox example n;, as is done below 
Then, the FrCedericksz transitions in an orthorhombic ne 
matic with the h orientation of the vectors ny (or n!: ) can be 
described by a suitable substitution of the elastic constants, 
and of the conlponents of the tensors describing the dielec- 
tric E:' and diamagnetic x:' anisotropies in the final ex- 
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pressions for the threshold fields E and Hand in the depen- 
dence of the scalar order parameters of the deformed NLC, 
phase on the external E and H fields. We consider the initial 
orientation of the vector triplet np shown in Fig. 1 and as- 
sume that the orientations of the fields E and H are arbitrary. 

The expression for the density of the free energy of an 
elastically deformed orthorhombic nematic is5 

where the three surface xi  and twelve volume (bulk) Ki and 
Kv constants of a biaxial nematic are related by sixteen in- 
equalities of thermodynamic origin: 

Ki,+xj+xk> xi, (Ki+K,k) (Kj+Ku) 2 (2xd-Ki) ', 
Ki+Kj,2O, (Kj,+xi+xh-xj) ( K w f  ~ i + ~ j - ~ b )  ax? ,  

The expressions for the orientational part of the density 
Wof the energy of the interaction between an orthorhombic 
nematic and the external E and H fields, considered in an 
approximation quadratic in the field, are 

where and X I " )  are related to the diagonal values of the 
trace-free tensors E:) and x:', respectively. The following 
orthogonality relationships are retained in the deformed 
NLC, phase: 

The free energy of the deformed NLC, phase in the 
fields E and H, calculated per unit area of the surface of the 
plane-parallel liquid crystal layer, is described by the func- 
tional 

L 

where F, is the volume (bulk) part of the density of the free 
energy F and 2L is the thickness of the NLC, layer. The 
boundary conditions for stronger coupling to the liquid crys- 
tal are 

Derivation of the appropriate Euler-Lagrange equations for 
the variational problem with the functional J and the holon- 
omic relationship (4)  leads to a system of nonseparable non- 
linear differential equations for the functions ni (z). An 
analysis of the system, makes it possible to identify the na- 
ture of the functions that minimize J and satisfy the condi- 
tions (4) and (6),  which is equivalent to application of the 
direct Ritz variational method. This gives rise to a certain 
algebraic polynomial with several variables, which can be 
investigated by simple analytic methods. This approach is in 
full agreement with the view expressed by Guyon16 on the 
Frtedericksz structural transition in a liquid crystal regard- 
ed as an analog of a phase transition. 

FREE-ENERGY FUNCTIONAL 

Going over to a spherical coordinate system (Fig. 2) 

?&=sin Bi cos cpi, ni,,=sin Oi sin cpi, ni,=COS oi, 

introducing the angular coordinates 8, , p, and 8,, pH,  for 
the vectors E and H, respectively, and using the orthogona- 
lity of the vectors of Eq. (4)  : 

(n,, n,)=cos 0, cos O2+sin 8, sin 0, cos(cp,--cp2) =0, (7) 

we find that Eqs. ( 1 ) and (3) can be reduced to a form (see 
Appendix A)  which allows us to consider the angular tilts 
8, (2) and pi (z) or the vectors n,, related by Eq. (7),  as 
independent single-component order parameters interacting 
with one another. The order parameters introduced in this 
way are of nonthermodynamic nature, in contrast to the ten- 
sor parameters of the orientational order Qu , Ruk,, ... for a 
liquid crystal." 

It is now convenient to go over from 8, , pi to new vari- 
ables T,, z,hi (Fig. 2) using the relationships 

3t n 
7 . 5 - -  
' 2 

ei, qt=cpt, $2 = -- 9 2 .  
2 (8)  

If we regard the state of the NLC, phase with 
7,. = z,hi = 0 as unperturbed, we can find a power series ex- 

FIG. 1. Orthorhombic nematic in external electric and magnetic fields. FIG. 2. Perturbed molecular "hedgehog" of an orthorhombic nematic. 
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pansion for F, and Win terms of ri and +hi and their deriva- 
tives in the vicinity of this unperturbed value. The term in 
the power series at which the expansion can be terminated 
should be of even order in order to guarantee the stability of 
the stationary solution6 and is determined by the nontrivial 
nature of the behavior of a biaxial nematic in external E and 
H fields. The leading term of the power-series expansion 
determines the number of the trial functions used to approxi- 
mate the exact solution which minimizes the functional J. In 
investigations of the structural of the structural transitions 
in the NLC, phase we shall select the v4 model describing 
first-and second-order transitions.I8 

Expanding the orthogonality relationship (7)  as a se- 
ries in ri and +hi, we obtain 

where P,, (r1,r2) is a homogeneous polynomial of the 2k th 
degree in r, and 7,. Equation (9)  is related to a familiar 
geometric fact: Small variations of the orthogonal triplet of 
the vectors ni oriented along the axes of an octane in the 
coordinate space displace at least one vector of the triplet 
outside of the octane. If in Eq. (5 )  we ignore terms higher 
than of the fourth order in ri and +hi, we find that the power 
expansions for I;; and W suitable for our model are 

where 

( ) E sin 20, 
g1(') 4n ( ::(a) 'a'c0s sin lpz qE 

('I- EZ 
g, - - ~ i ' ~ $ i n ~  0, sin ~ ( P E + H ~ ~ : ~ )  sinz OH sin 2qa, 

4n 

(0) ( g:::) ) = 'sin 20. ( " (.) dn qz ) 
g4 4n ez cos VE 

+H' sin 20a ( ':::) Sin ' H  ) 
x z  cos (PH 

Going back to the Euler-Lagrange equations for the 
functional J of Eq. ( 5 ) ,  we can show19 that the conditions 
for the existence of nontrivial solutions of these equations 
are 

g,(i)=g2(i)=g,(i)=o, (13) 

which eliminates from Eq. ( 11 ) the terms of low symmetry 
that destroy the threshold nature of the structural transition. 

We consider in greater detail the conditions for orienta- 
tion of the E and H fields which guarantee a nonzero thresh- 
old ( E .  #O, H. # O )  for the Friedericksz transition in an 
orthorhombic nematic. Nontrivial solutions (6, ,He ) of the 
system of equations ( 13) obtained allowing for Eq. ( 12) are 
ensured by 

sin 20s sin 20a 

X ( E ~ ( ~ ) x ~ ( " )  sin q~ cos (PE-E~'"'X,("' sin qe cos (P,) =0, 

sinPBE sinz OH sin 2qE sin 2qH (et(a)X,'a)-E,(a)XI(a)) =0, 

(14) 
sin 20E sin 2 0 ~  

x (et(')xz(") sin CPE cos q a - ~ ~ ( " ) ~ , ( ~ )  sin rpx cos cpE) =O. 

The simultaneous solution of the system of equations ( 14) 
gives the conditions for orientation of the external fields: 
The fields E and H should be directed along the rotation axes 
C, of an orthorhombic nematic. 

If these conditions are not satisfied, the Friedericksz 
transition threshold disappears; more exactly, for any values 
(no matter how low) of the fields E and H, the NLC, phase 
may be in a state with a perturbed orientation. This phenom- 
enon is analogous to the threshold-free Friedericksz transi- 
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tion in a uniaxial n e m a t i ~ ~ ~ ' ~ ~  and is usually characterized 
by a quadratic dependence of the structural order param- 
eters on the applied fields. We confine ourselves to the Frte- 
dericksz transition with a threshold. 

We now turn to the problem of minimizing the free- 
energy functional. In constructing the trial functions r, (z) 
and $, ( z )  that minimize the functional J and satisfy the 
boundary conditions ( 6 ) ,  we shall use a system of orthogo- 
nal (in the interval [ - 2L, 2L] ) functions" {cosnqz), 
where q = 77/2L. It follows from the orthogonality condi- 
tion (4)  that the coefficients in the Fourier expansion are 
related. It should be noted that among them there are no 
more than three independent coefficients (one-dimensional 
order parameters) in accordance with the three rotational 
degrees of freedom of an orthorhombic molecular "hedge- 
hog." 

Using the structural periodic solutions of a system of 
nonlinear differential equations of sufficiently general na- 
ture with one small parameter, demonstrated in Ref. 23, and 
generalizing this system to a system of the Euler-Lagrange 
equations for the functional J with several small parameters, 
we can showI9 that the Fourier coefficient with index n is 
represented by a Maclaurin series of the following form: 

where T, ({ ,f ,v) is a homogeneous polynomial of the nth 
degree, while 6, f ,  7  are one-dimensional order parameters. 

In the v4 model it is sufficient to consider the first two 
harmonics in the Fourier expansion. An analysis of the 
Euler-Lagrange equations leads to the following forms of 
the functions T, ( 2 )  and $, (2) : 

[ + Y E C ) 1 {pa (a* 5 9  I }  
q [ I  + Y8 (El 61 q) cos qz + 2 P3 (Et 5, rl) 

where the orthogonality relationships (6)  impose the fol- 
lowing constraints on Pi and yi : 

Bi (6,9,77), y, ( 6 . 9 , ~ ) .  where i = 1,2,3, and 4, are quadratic 
functions of the type 

and ( (cv  ) ) is a 4X 3 matrix. The coefficients b, and cv can 
be found'' by substituting the expressions from the system 
( 15 ) into the Euler-Lagrange equations and using the rela- 
tionships in Eq. ( 16).  Next, integrating Eq. ( 5 )  subject to 
Eqs. ( 10) and ( 1 1  1 ,  and using the trial functions given by 
the system ( 15) ,  we obtain the following expression for the 
polynomial J ( { , c , q )  : 

where the coefficients A,, B,, C, , and D are found in Ref. 19 
and are given in the Appendix B. 

We note that Eq. ( 17) for J can be obtained bearing in 
mind that in the case of the orthorhombic point symmetry 
groups the minimum integral rational basis of the invariants, 
derived using the components of the axial vector (g,C,q), 
includes the following four  invariant^:'^ 

Then, in the v4 model the functional J assumes the form 
given by Eq. (17): 

This approach relying on the integral rational basis of the 
invariants for the relevant point symmetry group is univer- 
sal, but its shortcoming is the physical indeterminacy of the 
coefficients a,, d,, and I , ,  in contrast to Eq. ( 17). 

STATIONARY STATES AND STRUCTURAL TRANSITIONS 

The stationary states of an orthorhombic nematic in 
fields E and H are determined by the set of critical points of 
the polynomial J, whereas the positive definite nature of the 
Hessian matrix ( ( d  'J) ) defines the regions of parametric 
space (qZK, , qZKii , gj j ' )  where the stationary states are sta- 
ble. 

The critical points {., c., and 7. of the polynomial 
(17) are given by the following system of equations: 

which has the following solutions that are locally stable in 
the relevant parts of the parametric space: 

( 0 )  trivial 

la)  primary 

l b )  primary 

lc)  primary 
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2)  secondary 

The nonzero solutions are the points of intersection of 
threesecond-order surfaces in the space (6 2,< 2,v2). The ana- 
lytic forms of such solutions are cumbersome. We can use 
the symmetry considerations to show quite readily that there 
may be eight such solutions [two series with four solutions in 
each corresponding to transpositions of the signs of 8, <, 17: 
a )  ( + + + I ,  ( +  - -1, ( -  + -1, ( -  - + ) ; b )  
( -  - - I , ( -  + + I , ( +  - + I , ( +  + - ) l o r f o u r  
solutions (one of these series). We can also have a situation 
when there are no solutions whatever. Furthermore, degen- 
erate situations can occur when there are continuous sets of 
solutions lying on curves in the space ({,<,v). The stability 
of the structures is governed by the positive definite nature of 
the corresponding Hessian matrix.19 

This pattern of alternation of critical points of the poly- 
nomial (17), which are locally stable in different regions of 
the parametric space, is typical of the bifurcation tree in a 
( 3  + m)-dimensional space25 ( m  is the number of control- 
ling parameters of the system) with a trivial core of Eq. 
(21), and with the primary (23) and secondary (25) bifur- 
cation, governed by the conditions A,  = 0 accompanied by 
the appearance of locally stable states (23) as a result of a 
second-order structural transition. This corresponds to rota- 
tion of the molecular NLC, "hedgehog" round one of the 
nonpolar twofold axes (Fig. 3). At the points of a secondary 
bifurcation the states (23) become unstable and new states 
(25) appear as a result of a structural transition of the first or 
second order. This results in a new rotation of the molecular 
"hedgehog" around the second of the twofold axes. 

The first fairly complete treatment of secondary bifur- 
cations in a system with two interacting order parameters 
and one control parameter for the case of reflection symme- 
try was solved in Ref. 26. This symmetry of the functional J 
appears on transition from the orthorhombic D,, to the te- 
tragonal D,, point symmetry group ofa nematic when the E 
and H fields are directed along a fourfold rotation axis. The 
polynomial of Eq. ( 17) then implies19 because of the con- 
straints 

g,("=O, g,(1'=g,(2)=g,, A L- -A  n_, 

B,=B,, c,=c,, c.-n-o. 

FIG. 3. Primary bifurcation in the Friedericksz transition: a) Eq. (23a); 
b) Eq. (23b); c)  Eq. ( 2 3 ~ ) .  

FIG. 4. Bifurcation tree of the Frkedericksz transition for a tetragonal 
nematic: s, and s, are the primary and secondary bifurcation points, re- 
spectively. 

The primary and secondary branches of the bifurcation tree 
are shown for this case in Fig. 4. It should also be noted that 
there is a degenerate family of the critical points of the poly- 
nomial (17), which corresponds from the physical point of 
view to precession of the molecular "hedgehog" around the 
E and H fields coinciding in direction (the vector n, forms a 
conical surface as a result of precission). In the vicinity of 
the degenerate critical state the polynomial of Eq. ( 17) con- 
sidered in the quadratic approximation is degenerate in one 
variable, and the state itself is locally unstable. 

LIMITING ORIENTATION OF AN ORTHORHOMBIC NEMATIC 
IN HIGH FIELDS 

A direct variational method for minimization of the 
functional J used in the present study provides a fairly com- 
plete description of the behavior of the nematic phase of a 
liquid crystal in the vicinity of the bifurcation points of the 
Frkedericksz transition. However, this method does not 
work in high fields (Es  E. , H s  5H. ). The question of the 
limiting orientation of an orthorhombic nematic in such 
fields is not trivial, in contrast to the behavior of a uniaxial 
nematic under similar conditions. 

Turning to the Euler-Lagrange equations and using the 
continuous dependence of the solutions on the parameters 
occurring in these equations,19 we can find a system of trigo- 
nometric equations for the limiting angular tilts 8 and e, by 
going to the limit E, H+ cc in the Euler-Lagrange equa- 
tions. Introducing dimensionless ratios 

we can reduce the system of equations for 8, and pi to the 
form 

[ T i ,  sin 20E cos (pi-cpE) +sin 2 0 ~  cos (~ i -cp~)  lcos 20% 
+[pi (sin2 @ E  cos2 ((pi-cpE) -cos2 0x1 +sin2 O H  cos2 (cpi-(PHI 

-cosL O H ]  sin 20,+ [cos 81 sin Oj cos (qi-cp,) 

-sin Oi cos ej] 2Xi=0, (26a 

663 Sov. Phys. JETP 72 (4), April 1991 L. G. Fel 663 



where i# j  = 1,2; 

[cos Oi  cos &+sin Oi sin cos (cp,-cps) ] 

x p, sin 0, sin og sin (cpi-qx) 

+ [ C O ~  0i C O S  &+sin 0i sin 0a cos (9'-cpH) ] 

x sin 0, sin 0~ sin (cpi-cpa) 

+ (- 1 )  '+'Xi sin 0,  sin 0, sin (q,-cp,) =0, (26b) 

whereXi lim (A /X(a'H '), andA (E,H) is an undetermined 
E,H- m 

Lagrange multiplier. The four equations in the system (26) 
should be supplemented by the orthogonality condition (4).  

Consider now a simple orientation of external fields 
characterized by 9, = 9, = 0. The system of equations 
(26) then reduces to the two equations 

- - sin 20,[sin 0 ,  cos 8, - sin O2 cos 0 ,  cos (cp , -cp , )  ] 
sin 20,[sin 0,  cos 0 ,  - sin 0 ,  cos 0? cos (cp,-9,) 1 

sin 0 ,  sin O2 sin(cp,-cp,) =0, 

which have the obvious solutions 

and also the degenerate solutions p, =p, and 
(9, -9,l =~r/2when 

This last solution can be interpreted physically as the precis- 
sion of the molecular "hedgehog" of an orthorhombic nema- 
tic around the directions of the external fields. 

CONCLUSIONS 

A phenomenological theory of the elasticity of a biaxial 
nematic has been used to develop a theory of the FrCeder- 
icksz structural transition in an orthorhombic nematic sub- 
jected to electric and magnetic fields simultaneously. 

Such a structural transition has a threshold if the exter- 
nal fields are directed along the twofold rotation axes of an 
NLC in its unperturbed state. A specific feature of the FrCe- 
dericksz effect in an orthorhombic nematic, which distin- 
guishes it from a uniaxial nematic, is the possible occurrence 
of two consecutive structural transitions induced by differ- 
ent external fields, which corresponds to a gradual reduction 
in the symmetry of the physical phenomena in a liquid crys- 
tal cell along the orthorhombic-monoclinic-triclinic series. 
This feature may be the decisive criterion of the biaxial na- 
ture of the phase used to identify nematic liquid crystals in 
polarized light. 

In high fields, in addition to the obvious limiting orien- 
tations of the molecular "hedgehog" along two rotation axes 
there is a nontrivial limiting orientation which appears in the 
case of the special balance between the electric and magnetic 
fields [see Eq. (27) 1. Such an orientation may be interpret- 
ed as the precission of the molecular "hedgehog" of an or- 
thorhombic nematic around the directions of the external 
fields. 

We now consider the possibility of finding the elastic 
constants of an orthorhombic nematic by measuring the 
critical fields E. and H* at the primary and secondary bifur- 
cation points of the FrCedericksz structural transition. We 
can easily show that for the homeotropic orientation of the 
director n; we can vary the directions and the values of the 
fields E and H to reduce our system to each of the three 
primary bifurcation points s,, which gives the following 
three relationships: 

The fourth relationship, which links all the elastic constants, 
can be found by reducing this system to the secondary bifur- 
cation points s,. Next, selecting the experimental geometry 
with the homeotropic orientation of the directors ny and ni ,  
respectively, and applying the above procedure we obtain 
eight additional relationships. Therefore, we can derive nine 
linear and three nonlinear equations for twelve elastic con- 
stants of an orthorhombic nematic. 

The author regards it as his pleasant duty to thank E. I. 
Kats and S. A. Pikin for their interest in this investigation 
and valuable comments. 

APPENDIX A 

In this appendix we give the expression for the density 
of the volume part I;; of the free energy of an elastically 
deformed orthorhombic nematic: 

dql + ( )  sin4 Q+K.[('% dz sin 0 ,  cos 0,  

d0, + - sin 0,  cos &)s in  ( q , - w )  
dz 

d'3i d02 + K.. [ 2  (- dz sin Q cos 0,  - - dz sin 0 ,  cos 0 ,  )sin (cp,-%) 

( dcp2 ** cos2 0 ,  cos2 0,  - - cos2 0 ,  sin ea -(=+XI dz 

dcpi + - cos2 0,  sin2 0 ,  ) ]I + K,,  [$ sin 0 ,  sin (cp,-cp,) 
dz 

+ ACOS dz 0 ,  ]'cos2 0 , + ~ , ,  [* dz sin 0, sin (q , -q , )  

*l + - m 0,  1' cosz OZ+K,. [%sin 0 ,  sin (9,-cp,) 
dz 

dB, dcpi 1' + K,. [-sin 0, sin (q2-cp,) + aos b - 
dz dz 
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+ K,, [z sin 0, cos 81 sin (ql-qz) 

-- do, cos (91-9.) la sin2 e, 
dz 

+ K,, [$ sin 0, cos €4 sin (qz-9,) 

APPENDIX B 

In this appendix we give the expressions for the coeffi- 
cients A, ,  B,,  C , ,  and D which occur in the polynomial de- 
scribing the free energy J [Eq. ( 17) 1 : 

' Inclusion of the functions sin nqzin the Fourier expansion suppresses an 
extremum of the functions 7, (z) and $i ( 2 )  in the middle of a liquid crystal 

layer (z = 0) .  Such a solution usually does not correspond to a deformed 
state of a nematic with a minimum free energy.22 It should be noted that a 
similar Fourier expansion for the FrCedericksz effect in a uniaxial nematic 
contains only the odd harmonics cos(2n + 1 )qz. 
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