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We obtain a finite-dimensional set of Hamiltonian equations for the dynamics of point 
quadrupole vortices-infinitesimally small elliptical vortices with an inhomogeneous 
nonstationary vorticity distribution corresponding to an exact weak nonstationary solution of the 
two-dimensional Helmholtz equation for the vortex field. We show that merging (convergence) 
to a single point after a finite time is possible for two identical point quadrupole vortices when the 
initial distance between them is less than some critical value I,, = 2 (3p/?c) independent of the 
size of the corresponding elliptical vortices and determined solely by the ratio of the intensity of 
the quadrupole componentp and the magnitude x of the circulation of the quadrupole vortex. We 
find stable stationary regimes in a system consisting of a single point quadrupole vortex and a 
single point vortex withp = 0 interacting with it. We obtain a generalization of the equations for 
the dynamics of quadrupole vortices taking into account the effect of molecular viscosity and 
Ekman friction and we estimate the degree to which these dissipative factors affect the dynamics 
and the collapse of these vortex objects. 

The phenomenon of the collapse of individual localized 
vortices, observed in experiments1-' and in Nature8, which 
leads to a vorticity cascade in two-dimensional and quasi- 
two-dimensional turbulence, has also stimulated a corre- 
sponding theoretical study of strong vortex interactions.'-l4 
In particular, it was shown in Refs. 10 to 13 that two identi- 
cal finite-size elliptical vortices with uniform vorticity in a 
plane can merge if the initial distance between their centers is 
less than a critical value I,, =:3.4(A /a) 'I2 connected only 
with the fact that the vortices have a finite size and with their 
area A. At first sight the merging effect itself is in general 
caused only by the fact that the elliptical vortices have a 
finite size. Indeed, it is even impossible in principle for two 
point vortices in a plane to merge into a single point because 
of the well known invariance of their separation distance 
when there are no dissipative factors.I5 However, in con- 
trast, it was noted in a recent paper'4 that in the plane two 
vortex objects can merge, even though they are point objects, 
namely, point vortex dipoles each of which may be in the 
form of two point vortices of different signs and strengths, 
separated by an arbitrarily small distance from one an- 
other." Therefore the decisive factor for the enabling local- 
ized vortices to merge may be not so much the size of these 
vortices, as the nature of the symmetry of the vorticity distri- 
bution in them. 

We formulate in the present paper a Hamiltonian dy- 
namical description and we obtain the conditions for col- 
lapse for arbitrarily small elliptical vortices with an inhomo- 
geneous vorticity distribution inside the vortex core: point 
quadrupole vortices (PQV), for which, in contrast to ellipti- 
cal Kirchhoff vortices with uniformly distributed vorticity 
(EKV)" or finite area vortex regions (FAVORS),"-'~ the 
kind of symmetry of the external stream function is scale 
invariant, i.e., independent of the size of the vortices, how- 
ever small they are. In fact, when a Kirchhoff vortex with 
uniform vorticity goes over into a vortex of arbitrarily small 
size, it degenerates simply into a point vortex, whereas a 
PQV can also occur in the form of a vortex cluster, consisting 
of two point dipole vortices and one point vortex which are 
positioned arbitrarily close to one another in the plane. The 

new localized multipole-typeI6 vortex objects (PQV) intro- 
duced in the present paper may facilitate the widening of 
possibilities for studying strong nonlinear interactions in 
two-dimensional turbulence, the simulation of which is nec- 
essary in many problems of physical, geophysical, and mag- 
neto-hydrodynamics, and also in plasma physics. 

1. The vortex field distribution in a plane for a single 
point quadrupole vortex (i.e., a point vortex second-rank 
m~l t i po l e '~  ), positioned at the origin, has the form 

a" (x) 
o (x) =xS  ( x )  +ai j  ---- 

dxi d x j  ' 

where there is a summation from 1 to 2 over repeated indices 
(x, EX, x2 ~ y ) ,  S is a delta-function, ag is the symmetric 
tensor of the quadrupole component of the strength of the 
PQV, and x is the scalar strength of its monopole compo- 
nent. For ag  GO, Eq. (1)  describes the vorticity of a point 
vortex with strength %.I5  The stream functionI5 

corresponding to ( 1 ) has the form (in a reference frame for 
which the matrix ag is diagonal, i.e., where we have a,, = 0) 

X p cos 2 9  
Y (x) =-a2,6 (x) - - ln r - - 

2n 2nr2 ' 

where we have put p = a,, - a, ,  and where we use polar 
coordinates: 1x1 = r, x = r cos p,  y = r sin p .  

We show in Fig. 1 the iso-level lines of the function (2)  
in a frame of reference rotated over an angle a/4, when 
cos 2p in (2)  is replaced by - sin 29. The quantity \V is here 
expressed in units x/2a and x and y in units of the length 
scale I, = (p/x) 'I2. We note that neither the first singular 
term, nor the remaining terms in (2)  correspond to a self- 
induced shift of the PQV from the origin, in contrast to point 
dipole vortices for which a singular directed self-induced 
velocity can be eliminated only as the result of the appropri- 
ate reg~lar izat ion. '~ , '~  In that respect the PQV are more 
convenient and are similar to point dipoles in a plane for 
which there is also no a priori directed self-induced motion. 
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The term with a,, in (2) therefore affects neither the dy- 
namics of the fluid particles surrounding the PQV, nor the 
PQV itself. 

We note that for a solid elliptical cylinder (uniform and 
infinite along the z-axis and with an ellipse with semiaxes a, b 
with a > b as transverse cross-section) rotating in a fluid 
with a frequency n when there is a circulation of the liquid 
around the cylinder which is independent of n and has a 
cyclic constant x the flow outside the cylinder is described 
by a stream function which differs from (2) only by the sign 
[when we have a,, = 0 in (2)  1,  provided in (2)  we have 

for a + b%c- (a2 - b (see Ref. 17, Ch. IV and Ref. 
18 1. We have the same stream function in the exterior region 
(relative to the localization boundary of the vortex field) 
and for an elliptical Kirchhoff vortex with uniform vorticity 
w, rotating rigidly with a frequency n which is now rigorous- 
ly connected with w and x = ~ a b w  through the relation 
m (a  + b), = x (Ref. 17, Ch. VII) provided we have the 
same relation ( 3  ) between p and n. 

The relation given above between n and x for a Kirch- 
hoff EKV means that if we take the limit as a - 0, b - 0 for 
constant circulation x the quantity p z x ( a 2  - b ,) in (2) 
tends to 0 and, in fact, in that limit the elliptical Kirchhoff 
vortex degenerates simply into a point vortex with a strength 
x and a stream function = - (4277) In r. Therefore the 
PQV ( 1 ) withp # 0 does not correspond to an infinitesimally 
small Kirchhoff EKV since for a PQVp and x are, generally 
speaking, independent. 

FIG. 1. 

However, one can show easily that the PQV ( 1 ) with 
p#O can still correspond to an infinitesimally small ellipti- 
cal vortex, but with a nonuniform vorticity distribution in its 
core, in contrast to a Kirchhoff vortex with uniform vorti- 
city. Such a nonuniform elliptical vortex can exist, using the 
distribution ( 1 ), if we replace in ( 1 ) the 6-function by its 
regularized "smeared-out" formI4 6 inside a finite elliptical 
region with semiaxes a and b (a  > 6).  For instance, 6 may 
have the form 

where 6' is the Heaviside function [ 6 ' ( x )  = 1 for x>O and 
6(x)  = 0 forx < 01, we have c2 = a2 - b 2, and the necessary 
conditions 6({) = d6( l ) /dc  = 0 on the boundary of the el- 
liptical region l = In [ (a  + b ) / c  ] and for { = 0 are satisfied. 
We use elliptical coordinates in (4)  for which we have 
x = c cosh 6 cos p, y = c sinh { sin p (on the boundary of 
the elliptical region we have x = a cos p, y = b sin p) and 
the quantity a, is determined from the normalization condi- 
tion 

2n I n p  

i= j d2z8 (x) =aoc2 5 dq 5 da (sh2 1+sin2 q) sh2 1 (p-ek)', 
0 0 

where we h a v e p ~  ( a  + b)/c. 
In thelimit of weak ellipticity,p> 1, we construct in the 

Appendix an exact stationary solution for the vorticity dis- 
tribution ( 1 1, replacing S by 8 with 6 from (4),  satisfying the 
rigidity condition for the stationary rotation of the elliptical 
boundary (and only the boundary) with a frequency n with 
unchanged a and b, and also the matching conditions on that 
boundary for the stream function and its first derivatives in 
the interior and exterior regions for (2)  corresponding to the 
stream function in the exterior region. The quantitiesp and n 
are then related through the same Eq. ( 3 )  as for a Kirchhoff 
EKV, but for a nonuniform elliptical vortex the exterior 
stream function is now, in contrast to the EKV, scale invar- 
iant since there is no relation whatever between x and n orp; 
this enables us to consider the PQV ( 1 ) as an infinitesimally 
small nonuniform elliptical vortex for a -, 0, b - 0, n - co and 
finite, independent magnitudes ofp and x .  

We note that a rigid rotation of the boundary with fre- 
quency n does, in fact, not make a finite contribution to the 
total circulation of a nonuniform elliptical vortex which is 
equal to x. One can verify this directly by integrating the 
vorticity distribution [after replacing in (1)  the 6-function 
by its smeared-out form 6 from (4) ] over the plane, bearing 
in mind that for the 6 from (4) we have 8 = d8/d{ = 0 on 
the boundary of the ellipse and for l = 0. 

2. For a system consisting of N PQV the vortex field 
distribution has the form 

co (x, I ) =  [%a8 (X-X~)+U~P ( t )  
a28 (x-xa) ] , 

( 5 )  
a=i dxi dx, 

where the xu (t) are the coordinates in the plane of the PQV 
of number a for which xu and a: correspond to the mono- 
pole and quadrupole components of its strength, in accord 
with the definition ( 1 ). The stream function of the fluid par- 
ticles, corresponding to the vortex field ( 5 ) ,  has the form 
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where ZB = at, - afl , hB = af, + afl = 2~7, .  In ( 6 )  we 
have dropped the singular terms af2S(x - xB) because, as 
mentioned earlier, it does not affect the dynamics of the fluid 
particles or the PQV themselves (see Appendix I) .  Expres- 
sion (6) is the same as the stream function of the far field for 
a system of N FAVORs from Ref. 12, if the relations 

are satisfied, where DB is the elliptical region of number P, 
J y '  is its area, and wg is the constant vorticity at each of its 
points. Bearing in mind what we said in the preceding sub- 
section, the parameters xB and Zp, hB for the PQV in (6)  are 
completely independent, which produces a difference be- 
tween the PQV and the FAVORs of Refs. 12 and 13 and the 
Kirchhoff vortices. 

The parameters x,, x, ( t ) ,  and aQI in (5)  and (6)  are 
determined in terms of the exact weak solution of the two- 
dimensional Helmholtz equation (A7) obtained by substi- 
tuting in that equation the vorticity distribution (5 )  and in- 
tegrating the expression obtained, multiplied by a 
quadratically nonlinear weight function (see Appendix 11), 
over the plane. In the general case, taking into account the 
effect of the Ekman (or Stokes) friction and the molecular 
viscosity, the evolution of these parameters of (5)  and (6)  is 
then described by the finite-dimensional set of dynamical 
equations (A9) to (A 1 1 ) . 

3. For an ideal fluid the dynamical set (A9) to (A1 1) 
can be written in Hamiltonian form 

where the dot indicates differentiation with respect to the 
time. Here we have a = 1,2 ,..., N, x, = const, E~ is the anti- 
symmetric second rank unit pseudotensor (&,, = 1, 
E ~ ,  = - 1, E ,  = E~~ = 0),  summation proceeds from 1 to 2 
over repeated indices, and we have - 
qa,y - a - - arctan (b,/Z, ), - 2 I/, - - q;=(p:+C,) 9 

p i  =z + b i , C :  -p2,ii, =a:' +az2 .For(7) , (8)  
we have ea = const and 

for from (6).  Since in (5)  we have w = ZE= , wa , the 
quantity 5, is related to the magnitude of the intrinsic angu- 
lar momentum 

for the PQV of number a, shifted to the origin (i.e., we have 
x, = 0)  since we find M," = 25,. For the finite nonuniform 
elliptical vortex corresponding to this PQV we have now 

for p, )1 and c, -0, while we have 
pa = ( ~ n , / 8 )  (a, + b, )'c; with c i  = a: - b 2, 
pa = (a, + b, )/c,; a, and b, are the semiaxes of the vor- 
tex and n, is the rotational frequency of the boundary of the 
vortex of number a [see (3)  1. The quantityHa in (7) ,  (8)  is 
related to the invariant interaction energy of the system of 
PQV defined in the form15 

N 

T f  = -P. j d2x j d 2 x f o  (XI o (XI) ln 1 x-xf 1 = kz H., 
8n a-i 

wherep, is the density of the incompressible fluid, while the 
prime on T means that we have dropped the singular inter- 
action energy of the PQV from the total energy of the set of N 
PQV of (5).  The other hydrodynamical invariants,I5 the to- 
tal momentum 

and the total angular momentum 

M - p .  { d 2 x o  ( x ) x z  . 
are also conserved for the dynamical system (7) ,  (8 ), as one 
can check directly. For w from (5)  we have 

Using the interpretation of the parameters of the func- 
tion (6) ,  noted in the preceding subsection, in the terms of 
Ref. 12 the quantity 26, is given by 27, = (w, / 4 ~ )  ( J y' ) 
and Eqs. (7)  are exactly the same as Eqs. (3.9) from that 
paper, while (8)  differs from Eqs. (3.10) to (3.12) given in 
Ref. 12 only through the absence of the interaction terms 
describing the rigid self-induced rotation of the FAVORs 
with uniform vorticity. We note, however, that making the 
transition to infinitesimally small sizes of the FAVORs Eqs. 
(3.9) to (3.12) in Ref. 12 degenerate simply into the set of 
equations for N point vortices, which even qualitatively 
differs from the set (7)  and (8)  for the PQV corresponding 
to infinitesimally small nonuniform elliptical vortices (see 
Appendix I ) .  

4. The case of two interacting EKV was considered in 
quite some detail in Refs. 10 to 13. We shall therefore restrict 
ourselves in what follows to a study of the interaction of two 
PQVwhenweputN= 2in (7) ,  (8)  and (A9) to ( A l l ) . T o  
describe the relative dynamics of the PQV for N = 2 we in- 
troduce new variables x' - x2 = I cos p, y' - y2 = I sin p, 
where I is the distance between the two PQV with numbers 
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a = 1 and a = 2, while g, is the polar angle which character- 
izes the orientation of the straight line passing through these 
PQV relative to some fixed frame of reference. The absolute 
dynamics of the PQV can if necessary easily be established 
from the given functions I(t) and p ( t )  taking into account 
the invariance of the two momentum components in ( 10). It 
is also convenient to use for the internal variables La and &, - 
the representation introduced earlier, 6, =pa sin Y, , 
Za =pa  cos Y, [see (8 )  1 ,  i.e., the interaction of the PQV 
leads to the rotation of the stream lines of each PQV (see Fig. 
1) as a whole with a frequency Y,. If we take into account 
the action of the dissipative factors, the general set (A9) to 
( A l l )  thenhastheform (A12) to (A19) (seeApendixI1). 

For an ideal fluid x, = const and ea = const. Let us 
haveZ6. = 0; we first consider the case of two identical PQV, 
the more because in Refs. 10 and 12, 13 the main attention 
was also focused on just the symmetric case (two identical 
EKV). In that case we have x, = x2 = x, Y, = Y, = $, 
p,  =p, = p  and the set (A12) to (A19) has the form 

with j = @ + 2q7, while the corresponding equations for & 
and g, have the form 

The closed dynamical set ( 12) to ( 14) corresponds to two 
invariants: the interaction energy, 

and the angular momentum 

For all the identical FAVORS or EKV in Ref. 13 in the limit 
of EKV sizes small compared to the distance 1 between them 
we have p/xl 4 1 for the quantity p/xl and the terms of 
order O(p/xl 2, inside the brackets in ( 12) and ( 13) are not 
present in the corresponding equations for 1 and p. At the 
same time, for the PQV corresponding to infinitesimally 
small nonuniform elliptical vortices (but not EKV) these 
terms are no longer small and may substantially determine 
the dynamics of the PQV according to ( 12) to ( 14). 

For an analysis of the set ( 12) to ( 14) it is convenient to 
use its phase portrait in the plane of the dimensionless vari- 
ables 

FIG. 2. 

(Fig. 2)  where we have I, = ( 2 1 ~ / p , ~ I ) ~ / ~  and where 
we have used the invariance of M and ( 18) to eliminate p 
from ( 12) and ( 14). We show in Fig. 2 the isolevel lines of 
the invariant energy h = - T'1r/p0x2 from ( 17) for the 
case M /x > 0. The set ( 12), ( 14) has two unstable stationary 
saddle-point type regimes which are symmetric with respect 
to the z-axis (or for J = 0)  for 

21.2/lP2 
y= yc-*arc cos l=lc=lp (105%-3p)"/4, 

3 (p-lc2/l , ,2) ' 

wherewehavep= l fo rM/x>Oandp=  - lforM/x<O. 
The phase portrait of the system forp = - 1 is qualitatively 
the same as Fig. 2. It is clear from Fig. 2 that for sufficiently 
small initial values of 

i.e., for (p, =p(t  = 0 ) )  

the two identical PQV merge (I(t) + O )  into a single point 
after a finite time while for 1, > 1, ., they rotate around one 
another without significantly changing the distance between 
them, like two point vortices of the same sign. 

Moreover, for the set ( 12) to ( 14) there exist for 
sin j = 0 and j = rim, m = 0, + 1, + 2 ,... turning points in 
which I = p = 0, while jY#0. Thus, if for t = 0 we take 
j = n-m and I =  I,,p =p, we have from (14) 

and we get from (12) and (13) p =  --ix1,/4 for m = 0  
where 
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4t pox 
1=- n o  ( ( I  42p0 

- + 2p0 ) 48poZ (20) 

Thus, for p,x>O the change in sign of I occurs for 
I, = I,, = 2(3p/x)"' and for 

1, < I , ,  =3,4 (polx) " (21) 

the PQV tend to approach since we have l<O, while for 
I, > I,, , on the other hand, there is a tendency for them to 
separate since we have 1 > 0. For pox < 0 the tendency for an 
approach (i < 0 )  of the PQV is observed for all I,. 

We note that for passive fluid particles there exists in 
Fig. 1, in accordance of the shape of the stream function of a 
single PQV, a separatrix which separates the regions of 
"free" and "trapped" particles; it lies at a distance 
I = I, ,, ~ 2 . 1  (p,/x) from the origin. For I,, < I, ., the flu- 
id particles fall into the vortex center, i.e., they are trapped 
by the PQV. It is therefore not surprising that the critical 
scales I, ., and I,, in ( 19) and (21 ) are of approximately the 
same magnitude as I, ,, . Moreover, one obtains better quan- 
titative agreement of the criterion (2 1 ) and the condition for 
merging for two identical circular vortices of radius R, with 
uniform vorticity obtained in Ref. 10 and having the form 
I, < 3.4R0, if in (21) we have I,. = ( p d x )  " 2 ~ ~ o  for the 
quantity I,, . We emphasize, however, that in contrast to Ref. 
10 the merger under the conditions (21 ) or ( 19) occurs just 
for infinitesimally small nonuniform elliptical vortices, i.e., 
for point vortex objects-the PQV. 

Using the invariants ( 17) and ( 18) we can integrate the 
set ( 12) to ( 14) in quadratures since using ( 17) and ( 18) to 
eliminate the variables p and j we get for I the equation 

where 

B=1+18L2-12 h-ln - . ( I) 
In that case 

l*B'" 
cos g = - 

6L ' (23) 

and the "plus" sign in (23) corresponds to the "minus" sign 
in (22) and vice versa. It follows from (22) that for M = 0 
and L = - $ the system performs periodic oscillations be- 
tween I = I,, and I = I,,, where the values of lmin and I,,, 
are determined from the condition that the expression under 
the radical sign in (22) vanishes. For M #O  we have from 
(22) and (23) in the limit as I--0 

where the "minus" sign, corresponding to merger of two 
identical PQV after a finite time to = n-lxlpi1i/9M2 (for 
M >  0) corresponds to the value cos j = 2-I"; For 
cos j = - 2 - we have the plus sign and the PQV have a 

tendency to separate. For sufficiently small values of the dis- 
tances I,, between the PQV, when we have 
S = x Z / M / o l ,  the collapse time is 
to = TI ;S2/x g r b ,  where rb = TI ;/x is the rotational peri- 
od of two identical point vortices. We note also that by virtue 
of the invariance ofMin the merger (1-0) the magnitude of 
p must increase, which may correspond to an amplification 
of the deformation of the elliptical vortices which is, in fact, 
observed in numerical experiments1° in the collapse of two 
circular vortices. 

5. We now consider the case of two different PQV when 
the invariant interaction energy (9) has the form 

**p, cos (2cp+Y,) +%pi cos (2cp+Yi) 
= - "[xi%, ln 1 + 

ax l2 

while the angular momentum (1 1) [for P, = P, = 0 in 
(lo)] is for x, + x, #O equal to 

For the sake of simplicity, instead of PQV number 2 let 
us take a point vortex of strength x, with p, = q, = 0. We 
then have from (A12) to (A14) and (A16) for the relative 
motion of the point vortex and the PQV 

(xi+x2) pi sin jJi 
1=  

nx1z3 9 

wherej, = 249 + ql while the equations for q, and have 
the form 

FIG. 3. 
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The main difference2' (see Fig. 3) between the closed set 
(27) to (29) and the case of two identical PQV in ( 12) to 
( 14) is the presence in (27) to (29) ofstable, relat,ively small 
perturbations of stationary center-type regimes under the 
condition [in (27) and (29) we eliminate the variable p ,  by 
using the invariance of M in (26) ] 

where k is an even number for M/x ,  > 0 and k is odd for 
M/xl  <O. 

The state (3 1 ) is stable for even k for x, / (x ,  + x, ) > 1 
and p, /x,  =i:x1/2(x, + x , ) < O  and for odd k for 
x 2 / ( x I + x 2 ) < - 1  and p , / x , =  - i f ( x , + 2 x 2 ) /  
2(x, + x, ) > 0. The first case with even k and M/x ,  > 0 is 
realized either for x ,  <O and x, > Ix, I, or for x, <O and 
0 < x ,  < 21 x, I, and the second case for x, < 0 and 
O<x, <21x21 or for x,  <O and lx, I <2x2.  We note that a 
system consisting of different kinds of vortex objects-a sys- 
tem of point vortices and nonuniform finite length vortex 
sections (with a nonuniform vorticity distribution along the 
length) which simulates the interaction between localized 
vortices and vortex sheets, or of atmospheric fronts-was 
also considered in Refs. 19 and 20. In that case the possibility 
was noted in Ref. 20 for the existence of a stationary regime 
for a system of one nonuniform vortex section (which is an 
elliptical vortex degenerated in one of the two directions) 
and only two point vortices. At the same time for one PQV 
just one point vortex is sufficient for the realization of the 
stable stationary state (3  1 ), which definitely broadens the 
possibility for simulating real natural vortex interactions 
since two-particle interactions are significantly more prob- 
able and wide-spread than three-particle ones. 

We note that the vortex sections in Refs. 19 and 20 can 
be the limiting case of nonuniform elliptical vortices which is 
the opposite to the one considered in the present paper (see 
Appendix I )  since here we study the limit of weak ellipticity 
with p = (a + b)/c$l, whereas in Refs. 19 and 20, in con- 
trast, a finite vortex section with a nonuniform vorticity dis- 
tribution along its length is obtained in thep* 1 limit. 

The motion in the field of the PQV proceeds for passive 
fluid particles with zero vortex charge, x, = 0, along the 
isolines of the stream function (2) (here we have I= r, 
x = x,  , p ~ p ,  = const) and only two unstable stationary 
saddlepoint-type regimes (see Fig. 1 ) are admissible which 
are at a distance from the origin (i.e., from the PQV) equal 
to 1 = (21p, /x, 1 ) ~ 2 ' / ~ 1 , ,  in accordance with (3 1 ). 

The solution of the set (27) to (29), if we use the invar- 
iants (25) and (26) (forp, = O), can be written in the form 
of quadratures 

J d l l { Q -  [h-ln(l / l . )  1') -.I2 = I +  Q ; el ,  
n IQI  

while C, is an integration constant. Hence we get, in particu- 
lar, for I -. 0 and M # 0 

Thus, after a finite time 

merging of the point vortex and the PQV can occur for 
(x, + x2 )M/x ,  <O. In particular, for x ,  = x, = x this 
merger occurs later than for the case of identical PQV since 
in that case we have 

in the limit considered of small initial distances I, between 
the vortex objects. 

As in the case of identical PQV, I(t) can change for 
M = 0 only within a finite range between lmin > 0 and I,,, 
which is determined from the condition 

in the given quadrature. For x, -0 the oscillation period has 
then the form [see (A20) 1 

where T' is the energy of the interaction for p, = 0 between 
the point vortex and the PQV from (25). 

6. We now estimate the effect of dissipative factors on 
the PQV interaction process. Of course, when molecular vis- 
cosity is present even the consideration of point vortex ob- 
jects itself is limited to the characteristic times over which 
they smear out to finite dimensions, 1, =: (vt) 'I2. However, 
as long as the distance I between separate isolated PQV satis- 
fies the condition I)I, the use of a vorticity distribution of 
the form (5)  and the corresponding exact weak solution 
(A9) to ( A l l )  [or (A12) to (A19)] of the Helmholtz 
equation ( A7 ) for the vortex field in the presence of viscous 
dissipation is completely admissible. We note that the mo- 
lecular viscosity coefficient v occurs only in the equation for c. In Ref. 13 the effect of the molecular viscosity was taken 
into account in fact in the same way as for our system (A9) 
to (A1 1). 

In addition to taking Y # O  in (A7) we consider, in con- 
trast to Ref. 13, also the case of Ekman (or Stokes) friction 
with a parameter y which occurs not only in Eq. (A18) for c, but also in (A14) and ( A  15) for pa.  To obtain solutions 
of (A9) to (A1 1 ) and (A12) to (A19), corresponding to 
the y # 0 case (characteristic for real conditions of laborato- 
ry experiments and also for vortex processes occurring in the 
limits of the atmospheric boundary layer) it is sufficient to 
replace t in the solutions with y = 0 by .r = ( 1 - e-Y')/y 
and add a factor e - Y' to e a ,  x, , and pa. For instance, for the 
solution (32) this leads to the fact that the point vortex and 
the PQV for (x ,  + x, )M/x,  < 0 do not collapse into a sin- 
gle point with I = 0 even as t+ a, but only approach to a 
finite distance 
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lor sufii~ently large y, i . ~ . ,  for 

The action of the molecular viscos~ty can then be neglected, 
provided L,,, $ I ,  =: ( v / y )  I". Thus, for sufficiently large 
Reynolds numbers, 

the viscous dissipation can only have a small effect on the 
approach process of PQV type localized vortices. 

In conclusion we stress once again that the system (A9) 
to (A1 1 )  studied above is a regular finite-dimensional dy- 
namical system which describes the interaction between sin- 
gular vortices corresponding to infinitesimal small nonuni- 
form vortices and the exact weak solutions of the 
hydrodynamical equations corresponding to them. A  
further study of this system for N)2 and a more detailed 
analysis of the effect of molecular viscosity is of interest in 
connection with the well known problems of the spectral 
transformation of the energy and the entrophy in the theory 
of two-dimensional geophysical and MHD turbulence. 
Moreover, in three-dimensional hydrodynamics where there 
are definite difficulties in correctly introducing the dynam- 
ics of monopole-type point vortices2' one can also consider 
the dynamics of quadrupole point vortices, but now with a 
monopole component of zero strength. Like the dynamical 
systems introduced in Kefs. 14 and 16 for dipole point vorti- 
ces the system (A9)  to ( A  11 ) is adapted for a development 
of gridless algorithms for a numerical simulation of complex 
turbulent processes in hydro- and aerodynamics. 

I am grateful to A. M. Yaglom for his interest in this 
work and also to N. Zahusky for opportunely sent reprints. I 
also express my appreciation to A.  I. Tevs for his help in the 
computer preparation of the graphic matter of this paper. 

APPENDIX l 

The vortlclty dlstr~but~on c o (  x in a plane corresponds 
to a stream functlon \k sat~sfylng the dlfferentral equation15 
A = - 19 where A 1s the two-dimens~onal Laplace opera- 
tor. We shall cons~der as id the dlstrlbution ( 1 ) In which we 
have &(&) from ( 4 ) ,  i e., the function describing a speclal 
"smear" (the reguldrlzatlon of Ref 14) of the b-function in 
a finite elliptical reglon alth semlaxes cr and b ( a >  b ) ,  in- 
stead of the b-functlon Let us have * -- *,,, lr~slde the ellipse 
and Y  = Ye,  in the outslde reglon, I e., 

In ( 4 )  we have 8(  j) -= b,, ( c ) # ( p  - &) where 

Sinceh,, ( 5 )  - db,, ({)/(I; = 0 on the boundary of the ellipse 

for 5 - 111 p we have tor Y , ,  an equatlon in elliptical coordi- 
nates: 

d6o sh E, ch g[ (ZScos 2cp)sin"-sh2 cos 2 q ]  
t-- 

dg c2 (sh2 g+sin2 9)' 

In what follows we shall consider solely the case of a weakly 
elliptical localization boundary of the vorticity when we 
havep) 1, a, =:480/m2p6 and Eq. (A1 ) near the boundary 
of the elliptical region, i.e., for 6% 1, takes the form 

where Y,, = - a,, 6,, + p&/2 + GI,. For p )  1 the stream 
function ( 2 )  expressed in elliptical coordinates satisfies the 
equation A*,, = O and has the form 

wh~ch differs only in slgn from the external stream function 
given in Ref. 17, Ch. IV of an elliptical cylinder rotating with 
a frequency n when there is a nonzero circulation, x #O,  and 
under condition ( 4 ) .  

We look for the solution of Eq. (A2)  in the form 
GI,, - @, (6) + qr ( 5 )  cos 2p. Substitution of this expres- 
sion into (A2)  and integration of the equations 

arid 

for g$ I ,  p% I glves for Y , ,  the expression 

where i', ~ lnd  C2 are Integration constants of rhe equation 
for G ,  and C', and (7, lntegratlon t onstants of the equation 
tor 'p,. Therefore, ( A4) iiescribes the str earn function Inside 
the ellipse 5% In p only near its boundary where we have 6% 1 
j in the lrrnlt ot weak ~ l l l p t l i l t ~ ,  V &  1 ) while (A2)  describes 
the stream tunctlorr outs~de the tllipse, {/In p. The match- 
Ing ~ o n d ~ t i o n  at the botrr~dary of 1 he elltpse J' ( when we have 
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1 = lnp)  of the functions Tin and You, from (A4) and (A2) 
(i.e., Ti,, 1, = You, I,) and their derivatives 

determine the integration constants C, , C,, C,,  and C, 
uniquely; they have the form 

From the condition for the time-independence of the solu- 
tion (A4) fort- lnp we have at the boundary the condition 
AY, 1, = - kYin 1, from which it follows that 

Moreover, from the condition for the time-independence of 
the rigid rotation of the boundary of the elliptical region, 

with frequency n, i.e., from the equation 

on the boundary F i t  follows that we also must satisfy the 
equation 

nc' =--sin2q. 1 2 

In turn, it follows necessarily from (A6) that we have the 
interrelation between p and n in the form ( 3 ) ,  mentioned 
earlier. In contrast to a Kirchhoff vortex with uniform vorti- 
city now neither n nor p depends on the magnitude of the 
circulation x .  We note also that the regularization of the 
term - a,,S(x) -Y, in (2)  in the form of the substitution 
6-8 with S from (4) gives only a contribution to the azi- 
muthal velocity 

,$=- 
1 a y e  

c2 (sh' E+sin2 cp) d g  

which at the boundary of the ellipse, = lnp, vanishes any- 
way while 

for 8 from (4).  The self-induced rotation of the interior 
structure of a nonuniform elliptical vortex therefore does 
not affect the interaction of several vortices in the small size 
limit when they correspond to PQV. 

APPENDIX II 

1. The Helmholtz equation for the two-dimensional 
vortex field w of an incompressible fluid has in the presence 
of multiple dissipative factors the form 

where v is the molecular viscosity coefficient, y the Ekman 
or Stokes friction coefficient, and u the velocity field which 
corresponds to the vorticity distribution w, i.e., we have 
ui = E~ (dY/dxj ) for Y from (6) ,  if w satisfies (5) .  

We substitute the distribution w from (5)  into (A7), 
multiply the left- and right-hand sides of (A7) by an arbi- 
trary, sufficiently smooth weight function p ,  and integrate 
over the whole of the plane using the properties of the S- 
function. We then have 

It follows from (A8) that only for a function p which is 
quadratic in x can one self-consistently and non-trivially sat- 
isfy this equation with the coefficients of p ,  dq,/dx,, and 
d 2p /dxidx, vanishing; this leads to the equations 

where in the expression for ui ( x u )  in terms of Y from (6) in 
the sum over p we must drop the term with a = fl, i.e., ex- 
clude the singular self-interaction. 

The system (A9) to (A1 1 ) is an exact weak solution of 
(A7) for the distribution w from (5)-a solution in the nar- 
row sense, in contrast to the weak solutions given in Ref. 14 
for point dipole vortices obtained for arbitrary, and not just 
quadratic, weight functions. 

2. For the N = 2 case we have from (A9) to (A 1 1 ), 
using the notation for the variables introduced in the main 
text, 

t =  (xi+Xa) [ xip2 sin (2q+V2) +%.PI sin (2q+Y I) 
nxIx21a 
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3. To determine the oscillation period To in the point 
vortex-PQV system for 

nT' h=-- 1 
and - 1- (>h>" 

P o y . 1 ~ 2  2 xl+xz 

we have for M = 0 (Q = - x2/2(xI + x2 ) )  for the limits 
of the range of values of I:  

Z,,,,,=I, exp h - - - ( ;lx,'L21). 

For I  = I , ,  and I = I the expression 
Q - [ h - ln ( I  / I c  ) 1 under the radical sign which occurs 
in the quadrature vanishes. Integration over I  between these 
limits determines To in the form 

  OX 

where I, is a zeroth-order modified Bessel function. 

" The possibility of two identical point dipole vortices merging was noted 
in Ref. 16 also for the three-dimensional case, where each of them may 
correspond to an infinitesimally small vortex ring or spherical Hill vor- 
tex. 

, 'In Fig. 3 for f = ( l / i c ) c o s y l ,  j = ( l / i , ) s i n y , ,  M/x l>O,  and 
x, (x ,  + x2 ) = 2 we have drawn the isolevel lines of the energy invar- 
iant, h= - aT1/pOxl x,, for the system (27) to (29) and 1, from (31). 
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