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An analysis is made of resonant modification of the emission spectrum of an atom of hydrogen 
subjected to a static electric field For  a magnetic field H,  as well as a superposition of hf 
noncollinear out-of-phase harmonic electric fields of frequency close to the Stark (in the field F) 
or the Zeeman (in the field H )  splitting of an arbitrary energy level (upper or lower) of the 
hydrogen atom. A full set of quasi-energies and wave functions of the quasi-energy states of an 
atomic level is found and the results are used to calculate the splitting of an arbitrary spectral line 
of hydrogen. It is shown that in the case of inhomogeneous broadening of the hydrogen spectral 
lines in quasistatic internal plasma fields (electric or magnetic) the influence of such a 
superposition of hf noncollinear harmonic electric fields gives rise to singularities at certain points 
of the profiles of the spectral lines of hydrogen. Experimental detection of these singularities 
should make it possible to determine not only the characteristic intensity of the hf fields, but also 
their angular distribution, as well as the direction of rotation of the projection of the vector of the 
combined hf electric field on a plane perpendicular to the magnetic field. 

1. INTRODUCTION 

One of the most commonly used methods for diagnos- 
tics of hf oscillating electric fields in a plasma is spectroscopy 
based on modification of the emission spectra of atomic hy- 
drogen under the influence of these fields (see Refs. 1-3 and 
the literature cited there). Such electric fields may exist in a 
plasma, for example, when it interacts with electromagnetic 
radiation, when large currents are passing, when a beam of 
charged particles is crossing a plasma, or when magnetic 
field lines become closed. At present, the most thoroughly 
investigated case is the modification of the emission spec- 
trum of hydrogen in a plasma under the influence of a linear- 
ly polarized harmonic electric field of the form 

Calculations reported in Refs. 4 and 5 deal with the intensi- 
ties of the satellites of a hydrogen spectral line that appear in 
the emission spectrum under the influence of the field ( 1 ) at 
frequencies + w, LfI 2w, ... measured relative to the unper- 
turbed position of the spectral line of hydrogen. The concept 
of quasi-energy is introduced in Ref. 6 and the shifts and 
splittings of the quasi-energy levels in the field ( 1 ) are found 
for an atom of hydrogen. The transformation of the spectra 
of hydrogen under the influence of a superposition of the 
field ( 1 ) and a quasistatic electric field F is considered in 
Refs. 7-1 5, while superposition of the field ( 1 ) and a quasi- 
static magnetic field H is discussed in Refs. 13 and 16. In 
experimental situations a quasistatic field F may be in the 
form of ionic microfields of a plasma or it may be the field of 
an If plasma turbulence, whereas a quasistatic field H may be 
used to confine a plasma. 

A method for determining the intensity of oscillating 
electric fields in a plasma suggested in Ref. 17 is based on 
recording of the resonance "relief' exhibited by quasistatic 
Stark profiles of the spectral lines of hydrogen. Such relief is 
due to an appearance of a resonance between the frequency 
of the oscillating electric fields and the Stark splitting of the 
upper (or lower) atomic level under the influence of the 

quasistatic field F. A detailed investigation of the structure 
of such a resonance relief is made in Refs. 11, 12, 14, and 15 
for some spectral lines of hydrogen subjected to a linearly 
polarized field of the kind described by Eq. ( 1 ) . General 
expressions are obtained in Ref. 13 for the wave functions of 
the quasi-energy states of an atom of hydrogen which experi- 
ences a resonance between the frequency of the hf field ( 1 ) 
and the splitting (Stark or Zeeman) of an arbitrary level n in 
an electric field F or a magnetic field H; these expressions 
can be used to calculate the resonance relief for any spectral 
line of hydrogen. 

However, in many experimental situations the oscillat- 
ing electric fields acting on an atom of hydrogen in a plasma 
are not linearly polarized but represent a superposition of 
noncollinear out-of-phase oscillations of the type 

E (1) = Eh cos ( w t + R h ) ,  

where the vectors E, and E,, are not parallel. The field (2)  
may represent an elliptically polarized wave (for example, 
many types of waves in a magnetically active plasma have 
elliptical polarizationla ) or it may be the field of hf plasma 
turbulence representing a set of a large number of noncollin- 
ear oscillations with random phases. We shall investigate 
resonance effects in the emission spectrum of the atomic hy- 
drogen subjected simultaneously by an hf field of the type 
described by Eq. (2 )  and one of two types of quasistatic 
fields: electric F or magnetic H. Consider a situation defined 
by the inequality 

(tilm,e)n21E ( t )  I @-'<I, ( 3 )  

which ensures the existence of a one-photon resonance be- 
tween the frequency of the field (2) and the splitting of the 
level whose principal quantum number is n; we assume the 
presence of a quasistatic field Fo r  H. It  follows from Eq. (3) 
that in calculating the parameters of such resonant effects it 
is sufficient to include in Eq. (2) only the terms orthogonal 
to the direction of the quasistatic field. It is these compo- 
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nents that can induce nonadiabatic resonant transitions be- 
tween the Stark or Zeeman sublevels of the hydrogen atom 
which appear in the quasistatic field. Therefore, we concen- 
trate our attention on calculations of the resonant modifica- 
tion of the hydrogen spectra under the influence of a super- 
position of an elliptically polarized electric field Eel ( t )  and a 
field F (Sec. 2) or H (Sec. 3) orthogonal to the elliptically 
polarized field. The most important results reported in the 
present paper are the quasi-energies and the wave functions 
of the quasi-energy states of the hydrogen atom for an arbi- 
trary level n. The results obtained and their diagnostic appli- 
cations are discussed in Sec. 4. 

We assume that the frequency w and the characteristic 
splitting of the level n of the hydrogen atom in fields F, H, 
and Eel ( t )  considerably exceed the fine-structure splitting, 
but are much smaller than the separation between the level n 
and the next level n + 1. 

2. RESONANT EFFECTS IN THE STARK SPECTRUM OF 
HYDROGEN 

Consider a hydrogen atom subjected to a superposition 
of a quasistatic electric field F =Fez and an hf elliptically 
polarized electric field 

where ex, e,,, and e, are the unit vectors along the x, y,  and z 
axes. 

The wave function of the hydrogen atom satisfies the 
Schrodinger equation1) 

with the Hamiltonian 

where ,Fa is the unperturbed Hamiltonian. 
We seek the solution of Eq. (5)  for the level n in the 

basis of wave functions described using parabolic coordi- 
nates pnlnz,  ( r )  with the z quantization axis:,' 

where %', is the energy of the unperturbed level n; 
k n , n , m ) ;  u = ( p k  Iu lpk . ) ;  u = X ,  y,  Z. Substituting 
Eq. (7)  into Eq. (5) ,  we obtain 

iC,=2-' z { [ r k p E x + y k p E ,  exp ( i 6 )  ] e r p  ( i o t  ) 
P 

+ [xkPEx+ ykPEY esp  (- is)  ] exp ( - - i d )  )exp ( iAzkpFt)  C,, 

where Azkp -zkk - zpp. The matrix elements xkp and ykp 
may differ from zero only between the adjacent Stark states 
separated by I Azkp IF = 3nF/2. Hence, we obtain the condi- 
tion for a resonance in the interaction of the field Eel ( t )  with 
an atom of hydrogen which is in the quasistatic field F: 

,. where A is the frequency offset I A I <w. If the condition (9)  
is obeyed, we can simplify the system (8) by ignoring in the 

resonance approximation the terms oscillating rapidly (at 
the frequency - 20). The result is 

+ i ( - l ) ( a ~ - ' ) ' Z y  k p  E sin 6 ] C p  e x p ( - i s p A t ) ,  (10) 

where 

Using the relationships (given in the Appendix) between the 
matrix elements ykp and (Ix ) ,, , where I, is the projection 
operator of the orbital momentum of an electron along the u 
axis, we can rewrite the system ( 10) in the form 

-3/2 ( lx)kPEY sin 61 C p  exp ( - i s p A t ) ,  

where 

( l r ) k P ~ ( ~ k l ~ x l q p ) .  

We can easily see that the system ( 11) describes evolution of 
a hydrogen atom in the state with the principal quantum 
number n under the influence of superposition of two effec- 
tive static fields: an electric field 

2e,A 
f=2-'Exex+2-'E, cos tie, 4 - 

3n 

and a magnetic field 

h = -  3nE, sin 6ex 

 PO 
9 

wherep, is the Bohr magneton. The solution of this problem 
is well known.,' According to Ref. 20, the splitting of the 
level n in the crossed fields f and h is given by the expression 

h , , , ~ , , ~ ~ = ~ ~ ~ , ~ n ' + ~ m ~ ~ n " ,  
(14) 

n', no=-j ,  - j + l ,  . . . , j ;  j = ( n - 1 ) / 2 ,  

where the vectors a, and w, are of the form 

In the case under consideration when the vectors f and h are 
given by Eqs. ( 12) and ( 13), the values of w, and w, are 

Under exact resonance conditions (A = 0) the frequencies 
w, of Eq. (15) have a simple physical meaning. In fact, al- 
lowing for the fact that the major E and minor E '"'"' 
semiaxes of the ellipse describing rotation of the vector 
Eel ( t )  of Eq. (4)  are 
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E("I~~'=~-~[E:+E,Z+ (E:+Ei+2EXZEy2 COS 26) "1 ', I, rel. units 
I 

we find if A = 0, then apart from the factor 3n/4, one of the 
frequencies w, of Eq. ( 15) coincides with E '"""' + E 
and the other with E '"""' - E '"'"'. The wave functions cor- OJE~12 . 7 ~  12 

responding to the frequencies ( 15 can be represented, as in 1 
Ref. 20, by the expression 

Q,,,,.,,, ( r )  = erp[-i(klal+k2a2) ] 
k,kr=-j  

whered (8, and d !,!'L2 ( - P2 are the Wigner functions; 
a, and Pi are the Euler angles3' which describe rotation 
from the coordinate system xyz to the system x'y'z' with its z' 
axis parallel to o, ( i  = 1, 2 ); and the quantum numbers k, 
and k, are in one-to-one relationship with the parabolic 
quantum numbers n, and n, : 

Note that the selection of the signs of the arguments of the 
functions d d :!L2 is matched to the selection of the 
phases of the wave functions pnklk2 (r) .  The Euler angles a , ,  
a,, PI ,  and /3, are described by the following expressions: 

sin a,=-E,cos 6/a,, cos a,=- (E,+E, sin 6)/a,, 
sin az=Ey cos 6/a2, cos a,= (Ex-E, sin 6)/a2, 

B,=arccos(-Ale,), 13z=arccos(Alo2). 

Using Eqs. (7),  (9).  (101, (14), and (17), wecanrepresent 
the wave functions of the hydrogen atom with the Hamilto- 
nian (6) undergoing a resonance described by Eq. (7)  by the 
following wave functions of quasi-energy states: 

(r, t) =exp (-i8nt-ihnn.,,,t) 

where A,,.,. is described by Eqs. ( 14) and ( 15). Using Eq. 
(18), we can readily calculate the emission spectrum for an 
arbitrary transition n, - n, in the hydrogen atom. In partic- 
ular, the emission spectrum of the line La with the polariza- 
tions x, y, and z is described by 

FIG. 1 .  Spectrum of the hydrogen line L, (above the Ao axis) under the 
conditions of an exact resonance of Eq. ( 9 )  (with an offset A = 0) be- 
tween the frequency of an elliptically polarized electric field of Eq. (4)  
and the Stark splitting of the n = 2 level in a static electric field F = Fe,, 
calculated on the assumption that Ex and Ey are, respectively, the major 
and minor semiaxes of the polarization ellipse. The dashed line is the 
spectrum with the x polarization; the chain lines represent the spectrum 
with they polarization; the solid lines give the spectrum with the z polar- 
ization. The frequency Am is measured from the unshifted position of the 
L, line. The intensities of the components in the spectrum of L, are inde- 
pendent of the relationship between Ex and Ey . 

1'') (Ao) =S (Ao) +S(-Am), 

In Eq. ( 19), k = 1 corresponds to v = x, whereas k = 2 cor- 
responds to v = y; the frequencies w, and w, are given by Eq. 
( 15) with n = 2; the argument of the S functions identifies 
the positions of the spectral components; the frequency Aw 
is measured from the unperturbed position of the La line. 
The spectra I '"' ( Aw and I 'Y' ( Aw ) exhibit splitting of the 
central component of the La line, whereas the spectrum 
I Z ( A )  describes a side line. Figure 1 shows, by way of 
example, the spectrum of La with the x, y, and z polariza- 
tions, calculated for the case of exact resonance [A = 0 in 
Eq. (911. 

3. RESONANT EFFECTS IN THE ZEEMAN SPECTRUM OF 
HYDROGEN 

We now consider an atom of hydrogen interacting with 
a superposition of a quasistatic magnetic field H = He, and 
the field E,, ( t )  described by Eq. (4).  In this case the wave 
functions of the hydrogen atom are found by solving the 
Schrodinger equation 

iaYlat= [%.+ xE, cos ot+yE, cos (ot+6) +p,Z,H] Y. 

By analogy with Eq. (7)  we seek the solution of Eq. (2  1 ) for 
the level n in the basis of wave functions described using 
parabolic coordinates with the quantization axis z: 
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where k -  (n, n,m). Substituting Eq. (22) into Eq. (21), we 
obtain 

i ~ ~ = 2 - ' C  { [xUEx+ykpEu exp ( i 6 ) ]  exp ( i o t )  

In Eq. (23) the matrix elements xkp and ykp may differ from 
zero only for the states characterized by Imk - m, I = 1. 
Hence, we obtain the condition for a resonance: 

Applying, subject to the condition (24), the resonance ap- 
proximation to the system (23), we find that 

X cos 6+iykp,E,  sin 6 )  Cp* exp ( - iAt )  

+x (xkp, ,Ez+ykp- ,E,  car 6 - i y k P ~ , E ,  sin 6 ) C p . ,  e r p ( i ~ t ) ]  , 
P" 

where p' represents a set of parabolic quantum numbers 
(n, n,m),, which is characterized by m,. > m,, whereasp" 
is a set of parabolic quantum numbers (n, n,m),.. , which is 
characterized by m,. <mk .  Using Eqs. ( A l )  and (A2) in 
the Appendix, we replace the matrix elements iy,, in the 
system (25) with the matrix elements xkp. The result is 

iCk=2-' [ x m ( E r E ,  s in  6 ) + y k B ,  cos 61 exp ( - ispAt)Cp,  
P 

where 

We can easily see that the system (26) describes the simulta- 
neous Stark-Zeeman effect for the level n under the influ- 
ence of an effective static electric field 

fo=2-' (Ex-E, s in 6 )  e,+2-'E, c,os tie, (27) 

and an effective static magnetic field 

Hence, the splitting of the level n is described by 

~ ~ ~ , ~ - = I ~ , l n ' + l ~ ~ l n " ,  

n', no=-j,  - j + l , .  . . , j ,  j = ( n - 1 ) / 2 ,  (29) 

where 

Substituting Eqs. (27), (28), and (30) into Eq. (29), we 
obtain 

en,, , , ,= (nr+ n") [ A ~ +  ( 3 n / 4 )  20,2] (31) 

where a, is defined by Eq. ( 15). The solutions of Eq. ( 2  1 ) 
can be represented, by analogy with Eq. ( 18), in the form of 
the wave functions of quasi-energy states 

In the system (32) the Euler angles a and P define rotation 
from the coordinate system xyz to the system x'y'z' with the 
z' axis parallel to x ,  . The angles a andP obey the following 
relationships: 

-E,+E, s in  8 -E, cos 8 
cos a = , s i n  a = 

0 2  0 2  

B=arccos{A [A2+ (3n/4)20221 - I h } .  

We can use the wave function of Eq. (32) to find readily the 
emission spectrum of the hydrogen atom for any transition 
n, + n,. We give explicitly the spectrum of the line La with 
the polarizations x, y, and z: 

I, rel. units 

3t 

r,'rel. units 

FIG. 2. Spectrum of the hydrogen line L, with the x and y polarizations 
under the conditions of a resonance described by Eq. ( 2 4 )  between the 
frequency of an elliptically polarized electric field of Eq. ( 4 )  and the 
Zeeman splitting of the level n = 2  in a static magnetic field H = He,. The 
solid vertical lines above the A o  axis represent the spectrum of L, in the 
exact resonance case when A = 0, whereas the spectrum below the A o  
axis represents La when A = 3u2/2; here, a, = ( E :  + E i  
- 2E, E, sin 6) ' I 2 .  The frequency A o  is measured from the unshifted 

position of the L, line. 
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1'") ( A o )  =*Z("(Ao) = S ( A o )  + S ( - A o ) ,  
$ ( A m )  = [902~/8RA~]6  ( A w - o )  4-4-' (1+A/RA)26 (Am-o-RA) 

+ 4 - ' ( 1 - h / R , ) ~ 6  ( A o - m + R A ) ,  RAZ ( A ' + 9 0 2 ~ / 4 ) ' ~ ,  
I ( ' )  ( A m )  =26 ( A m ) ,  (33) 

where the frequency Aw is measured from the unperturbed 
position of the line La. Figure 2 shows, by way of example, 
how the spectrum of La is modified as the offset A changes. 
Note that when the condition for a resonance given by Eq. 
(24) is obeyed, the emission spectrum of hydrogen depends 
strongly on the direction of rotation of the vector E,, ( t )  in 
Eq. (4). This follows even from Eq. (27) where the effective 
static field f,, governing the additional splitting of the spec- 
tral components, depends on the sign of sin S. 

4. DISCUSSION: POSSIBILITY OF DIAGNOSTICS OF 
NONCOLLINEAR hf FIELDS IN A PLASMA 

We found the quasi-energies and the wave functions of 
quasi-energy states for an arbitrary level n of the hydrogen 
atom under the conditions of resonance between the splitting 
of this level in a static field (electric or magnetic) and the 
frequency of an hf oscillating electric field representing a 
superposition of noncollinear quasimonochromatic oscilla- 
tions. This was possible because we were able to reduce the 
problem in hand to the familiar problem of the hydrogen 
atom subjected to a superposition of static electric and mag- 
netic fields. The conditions of validity of our results require 
that the frequencies of the resonant splitting [given by rela- 
tionships ( 14), ( 15), and (3  1 ) ] should be low compared 
with w. If in the investigated plasma the dominant spectral 
line-broadening mechanism of hydrogen is an inhomogen- 
eous broadening in quasistatic internal plasma fields (elec- 
tric or magnetic), then the resonance splitting of the spectral 
components discussed in the present paper should be mani- 
fested as a relief in the spectral line profiles. 

We first consider the resonant singularities in the pro- 
files of the spectral lines of hydrogen in the case when the 
Stark mechanism of the broadening of these spectral lines 
predominates in inhomogeneous quasistatic electric fields F. 
We assume that the condition for a resonance (9)  is satisfied 
for a certain group of the hydrogen atoms which are in the 
upper state n,. Then, the emission spectrum for these atoms 
due to the a-b transition consists of a set of components 
located at frequencies differing by Aw relative to the fre- 
quency of the unperturbed a-  b transition: 

+n," [A2+ ( 3 4 4 )  2022] '12- (n l -n2)  bAnbln., 
n,', n,"=-j., - j . + l , .  . . , j., ja=(n.-1) /2 ,  

(34) 

where the relationships (9) and ( 18) are used and an 
allowance is made for the fact that the wave function of the 
lower level n, outside the resonance is 

A change in the offset A should generally shift the spectral 
components at the frequencies Aw defined by Eq. (34), and 

this should be accompanied by changes in the intensities of 
these components. Consequently, the smooth quasistatic 
Stark profile of a hydrogen spectral line may have a reso- 
nance relief in the vicinity of the frequencies 

Consider first the case ( n , - n, 1, = 0, manifesting most 
clearly the difference between a resonance involving a linear- 
ly polarized field (investigated earlier in Refs. 7, 9, and 11- 
15) and a resonance involving an elliptically polarized field 
of the form described by Eq. (4).  Since the relationship 
E,E, sin S = 0 is satisfied for a linearly polarized field, it 
follows from Eq. (34) that if (n, - n, ), = 0 holds, then 

The relationship (37) demonstrates that the emission spec- 
trum due to the a + b transition in the vicinity of the frequen- 
cies Am=: (n, - n,),w consists of a set of components 
(specified by the quantum numbers ni and n:) and they 
include a component at the frequency Aw = (n , - n ,  ), w 
whose position is independent of the offset A. The intensity 
of this component is the sum of the intensities of the compo- 
nents at the frequency Aw = (n , - n, ) , w in the emission 
spectra, which appear at all possible transitions 
Y(nn,n--,o (r,t) -Ytn,n2,, (r,t), where Y(,,,,m,a is given by 

Eq. (18) and Y( ,,,2,, , is given by Eq. (35), when 
(n, - n, ), = 0 and n: = - n:. Therefore, when a linearly 
polarized field is applied, the resultant profile of the hydro- 
gen spectral lines at frequencies Aw = (n , - n, ), w exhibit 
sharp peaks surrounded by dips on both sides. Such peaks 
are demonstrated, for example, in Fig. 4 of Ref. 12 for 
Aw = w (in the case of the line La ) and in Figs. 3 and 4 of 
Ref. 15 ( 3 ~  components of the line Ha ), as well as in Figs. 5 
and 6 of the same paper (4a  and 8n- components of the line 
Hg ). When an elliptically polarized field (Ex E, sin S #O)  is 
applied, such sharp peaks can appear for ( n , - n, ) , = 0 at 
frequencies Aw = (n, - n, ),w only when the upper state 
Y,,,.,.,, (r,t) is characterized by the quantum numbers 
n: = n: = 0 [see Eq. (34) I .  This is possible only in the case 
of the spectral lines which begin from the levels with odd n, 
(for which j, is an integer). 

Let us assume that (n, - n, ), #O. In this case the re- 
liefs of the resultant Stark profiles of spectral lines of hydro- 
gen do not have sharp peaks at the frequencies described by 
Eq. (36) in the case of linearly and elliptically polarized 
fields, because the presence of the term 
(n,/n, ) (n, - n, ),A in Eq. (34) results in "smearing out" 
into a spectral band when A is varied. We now consider the 
situation when the condition for a resonance (9)  is satisfied 
by a group of hydrogen atoms which are in the lower state n, 
(n, # 1 ). In this case the positions of the components in the 
emission spectrum representing the a - b transition can be 
represented by an analogy with Eq. (34) in the form 

+ (nalnb) ( n i - n ~ ) ~ A - h ( , , , , , ) ~  ( A ) .  (38) 

The results of an analysis of Eq. (38) are similar to those of 
an analysis of Eq. (34). In particular, if the resonance condi- 
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tion (9) is satisfied for the lower level n,, the clearest differ- 
ences in the profile of a spectral line of hydrogen between the 
cases of interaction with linearly elliptically polarized fields 
is observed when (n, - n, ), = 0 holds and the nature of the 
differences is identical with that considered in an analysis of 
the relationship (34). Therefore, recording of the resonant 
relief in the quasistatic Stark profile of the hydrogen spectral 
lines near two groups of frequencies, one of which is given by 
Eq. (36) and the other by 

would have made it possible to estimate not only the intensi- 
ty of the hf electric fields [using the characteristic splitting 
frequencies of the spectral components in the vicinity of the 
frequencies defined by Eqs. (36) and (39), and applying 
Eqs. ( 14) and ( 15) 1,  but also to analyze the spatial angular 
distribution of the hf fields. In considering the angular distri- 
bution of these fields we have to analyze the nature of the 
resonant singularities near the frequencies 
Aw, = (n, - n, ),a and Aw, = - (n, - n, ),a. Natural- 
ly, we must consider the singularities only close to those 
values Aw, ( Y  = a, b ) ,  for which the corresponding spectral 
components (n, n,m), - (n, n,m), are of significant inten- 
sity [bearing in mind that (n, - n,), = 0 for Aw, and 
(n, - n,), = 0 for Aw,]. 

For example, in the case of the line Ha these resonant 
singularities are strongest at the frequencies Aw = f w; for 
the line Hp this is true at frequencies Aw = f w, f 2w; for 
the line H ,  this applies at frequencies Aw = + pw (p = 1,2, 
3); and for the line H, , at frequencies Aw = pw (p = 1,2, 
3, 4).  Observation of sharp peaks at hw = hw, ( Y  = a, b )  
would suggest that the hf oscillating field is predominantly 
linearly polarized, and its absence implies that this field is a 
superposition of noncollinear out-of-phase quasimonochro- 
matic fields. The effect is observed most easily for spectral 
lines with the initial level characterized by an odd value of n 
(for example, the lines Hp and H, ) when the resonance in 
the field of Eq. (4)  results in complete splitting of the spec- 
tral components. 

However, we must bear in mind that in the case of the 
"three-dimensional" angular distribution of the quasistatic 
field F (these may be, for example, the "Holtsmark" micro- 
fields of ions) and the "two-dimensional" angular distribu- 
tion of hf fields (when the vectors of the oscillations com- 
prising the combined hf field lie mainly in one plane) there is 
a relatively small group of hydrogen atoms for which the 
applied field F lies in the plane of the combined hf field. Since 
the resonant effects are governed by the hf field component 
orthogonal to the vector F, the emission spectrum of this 
group of hydrogen atoms is the same as under the influence 
of a linearly polarized hf field. If, however, the hf field has an 
angular distribution close to the three-dimensional isotropic 
case (for example, in the case of isotropic hf plasma turbu- 
lence), then for any direction of F they are noncollinear vec- 
tors of the hf field in a plane orthogonal to F. 

We now consider singularities of the profiles of hydro- 
gen spectral lines in the case of a resonance in a magnetic 
field of Eq. (24). In this case the Zeeman splittings of the 
upper n, and lower n, levels of the hydrogen atom are in 
resonance simultaneously. According to Eq. (32) the emis- 

sion spectrum for the a - b transition then consists of a series 
of components at frequencies 

It follows from the selection rule for the magnetic quantum 
numbers that ma - m, = 0, * 1. Therefore, in the case of 
the resonance described by Eq. (24) the spectral line of hy- 
drogen consists of three groups of closely spaced compo- 
nents: the central component in the vicinity of the frequency 
Aw = 0 and two side components in the vicinity of the fre- 
quencies Aw = f w. Using Eqs. (34) and (40), we can 
readily show that in each group there is a component whose 
position is independent of the offset A (this component cor- 
responds to n; = - n: and n: = - n;). Therefore, in the 
case of inhomogeneous broadening of a spectral line of hy- 
drogen in magnetic fields there should be sharp peaks at the 
frequencies Aw = 0, + w. We analyze the intensity of a side 
peak at the frequency Aw = w for the La line (a  similar re- 
sult is also obtained for a peak at a frequency Aw = - w). 
We assume that the magnetic field H = He, has a constant 
direction but its intensity varies in accordance with the law 
W ( H ) .  It then readily follows from Eq. (33) that for low 
values of R ,  the integral intensity J o f  a peak at a frequency 
Ao = o (for the spectrum with the x or y polarization) is 

where 

At the same time for any value of H the emission of the 
shifted components in the spectrum La at frequencies 
Aw = w + R ,  does not fall within the spectral interval 
I Aw - w I < R,  . In the case when the spectrum of the line La 
is not affected by the hf field, the interval I Aw - w I < R, can 
be characterized at low values of R,  by the total intensity 

(O+%)M-'  

7= j W (H)dH=3po-'u2W (9). (42) 
(o-%)Ib," 

Using Eqs. (41 ) and (42), we conclude that the reso- 
nant influence of the hf field on the La line reduces the total 
intensity of the emitted radiation by about 20% at frequen- 
cies characterized by I Aw - w I < Ro and I Aw + w 1 < R,  . 
Note that the splitting of the spectral components at the 
frequencies Aw = + w can be used to determine the quanti- 
ty 

u2= (E,2+E,2-2E,E, sin 6)'" .  

For sin S <O, it follows from Eq. (16) that 
u2 = E ("lax' 

+ E ("in) whereas for sin S >O, we have 

0, = E ("""' - E '"'"'. Since the sign of sin S is in one-to-one 
correspondence with the direction of rotation of the vector 
Eel ( t )  of Eq. (4),  it should be possible to determine spectro- 
scopically the direction of rotation of the electric field vector 
of an elliptically polarized wave in a magnetically active 
plasma using the known value of E ("""'. However, if we 
know the direction of rotation of the electric field vector and 
the degree of ellipticity of a wave, we can determine the pa- 
rameters E ("""' and E ("'"'. The results of a calculation of 
the resonant modification of a spectral line of hydrogen un- 
der the simultaneous influence of a quasistatic field H and an 
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hf field of the type described by Eq. (4) can be used to moni- 
tor the propagation and absorption of elliptically polarized 
microwaves used to heat a plasma in toroidal devices (see 
Refs. 21 and 22). In particular, it should be mentioned that 
heating of a plasma is often performed by a superposition of 
ordinary and extraordinary electromagnetic waves in the 
range of frequencies corresponding to the electron cyclotron 
resonance and the electric vectors of such waves have oppo- 
site directions of r~ ta t ion .~ '  

APPENDIX 

We shall now give the relationships between the matrix 
elements of the operators x,  y, and I ,  calculated using the 
hydrogen wave functions in parabolic coordinates with the 
quantization axis z. For m>O, we have 

<ninzmJiylnl+l, nz, m-l)=<n,n,mlxln,+I, n,, m-1) 
= , - (3n /2 )<n1n ,m~1 ,~n ,+ l ,  n,, m-l),  

For m < 0, the following relationships apply: 

(n,n,mliyln,+ 1, n,, m+l>=-<n,n,mlxln,+l, n,, m+l> 
=- (3n/2)<ninzmll,ln,+1, n,, m+l>, 

<n,n,mliyln,, n,+l, m+l)=-<n,n,mlxln,, n,+l, m+l) 
=6(3n/2) <n,n,mlZ,l n,, nz+l, m+i>. (A2) 

"Here and below we use atomic units such that Zi = me = e = 1. 
" Here and below the wave functions (P,,,,,~,,, ( r )  expressed in parabolic 

coordinates are identical with the functions defined by Landau and Lif- 
shitz.I9 

-"In the present treatment the Wigner functions d :i'(P) and the Euler 
angles a, and& are the same as those given by Landau and Lifshitz19 in 
$58. 
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