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Branching bifurcations of stationary vector envelope solitons by solitons with a given polarization 
are analyzed. Both creation and annihilation bifurcations are considered. The relationship 
between bifurcations of this sort and the integrability of the dynamic system with two degrees of 
freedom which arises upon the reduction of the system of nonlinear Schrodinger equations is 
discussed. Branching bifurcations might be utilized to control the structure of soliton signals. 

Current research on optical solitons in optical fibers in i$l,t+ivt$i,=+9i,=f 2 ( R I I  / $ t l Z + R 1 z ~ $ 1 ~ 2 ) $ 1 = 0 ,  , , , , 
situations in which the nonlinear medium has birefringent 11.11 

properties, or in which there is a finite number of waveguide i9z,t+ivz$~,~+1Ciz,~+2 (Rzt  191 I 'f Rzzl $Z 12)$z=0 

modes, requires an analysis of soliton solutions of a system of 
nonlinear Schrodinger equations.' A question which una- 
voidably arises here is whether there can be substantial 
changes in the soliton states (signals) which are related to 
changes in structural parameters (the parameters of the 
nonlinear medium or the phase velocities or frequencies of 
envelope waveguide modes). In birefringent optical fibers, 
for example, both solitons with a given polarization and 
"vector" solitons, in which both polarizations are represent- 
ed, can propagate. 

In the present paper we take up the branching bifurca- 
tions, of the creation and annihilation types, of stationary 
vector envelope solitons by solitons with a given polarization 
which arise when the structural parameters change. 

The dynamic system of equations [Eqs. (1.6) below] 
with two degrees of freedom which arises when the class of 
stationary envelope waves [Eqs. ( 1.5) ] of the original sys- 
tem of nonlinear Schrodinger equations, ( 1.1 ) , is identified 
is generally not integrable. It is integrable only if the struc- 
tural parameters satisfy certain relations. Observations of 
the bifurcation curves of the branchings of complex vector 
solitons from solitons with a given polarization, along with 
the known cases of complete integrability of the dynamic 
system of equations, ( 1.6), indicate that those values of the 
structural parameters for which complete integrability pre- 
vails belong to bifurcation branching curves. This relation- 
ship suggests the unexpected possibility of utilizing data gen- 
erated from analyzing the branching bifurcations of 
complex solitons (homoclinic saddle loops) from simple so- 
litons in order to search for cases of complete integrability of 
Hamiltonian dynamic systems. The realization of this possi- 
bility might lead to the formulation of an integrability crite- 
rion for a certain class of Hamiltonian systems with two de- 
grees of freedom which arise when the original field 
equations are reduced and which (a  particularly important 
point) lead to the existence of soliton states and branching 
bifurcations thereof near an integrability point or integrabi- 
lity region. 

At present we do not know just how bifurcations of the 
branching of stationary envelope solitons are manifested in 
evolution problems. The observation of such bifurcations in 
problems of this sort might suggest new possibilities for con- 
trolling soliton signals. 

1. The system of nonlinear Schrodinger equations 

determines the dynamics of envelope waves with polariza- 
tions ($, ,$, ) and phase velocities ( v ,  ,v2 ) in a nonlinear 
medium with nonlinearity parameters Ru (Ref. 1, for exam- 
ple). 

Setting R,, = R,, > 0, and transforming independent 
variables, 

we find that Eqs. ( 1.1 ) become 

Here 
'h a=Rl t /R1z ,  c=R2z/Rtz, 6= (7Jz-vi)lRlz. ( 1.4) 

For Eqs. ( 1.3) we can identify stationary solutions 

xi ( )  9, ( g ,  'C) =eik'r+ldE'zX $1 ( E ,  'c) =el'*' ( (1.5) 

with the real parameters A,, A, and functions XI ,  X,. The 
functions XI ,  X, , satisfy the system of equations 

Xt,EE-hlXt+ 2 (ax,'+ Xz2)Xl=0.  

where 
Y= (hz-6'/4) ht. 

In the phase space T ( PI = X,,5, XI , P2 = X2,6, X,  1, Eqs. 
( 1.6) correspond to the following system of canonical equa- 
tions with Hamiltonian 

Both the solutions of Eqs. ( 1.6) and Hamiltonian ( 1.8) de- 
pend on essentially the three structural parameters a,  c, and 
Y. The parameters a and c are determined by the parameters 
of the nonlinear medium, while v is determined by the differ- 
ence between phase velocities, v ,  - v,, and by the param- 
eters A,, A, of the class of stationary solutions which have 
been singled out. 

619 Sov. Phys. JETP 72 (4), April 1991 0038-5646/91/040619-05$03.00 @ 1991 American Institute of Physics 619 



According to ( 1.5), solutions of Eqs. ( 1.6) which satis- 
fy the following conditions correspond to stationary nonto- 
pological envelope solitons: 

lim X,--0, lim Xa=O. 
E+*m 

(1.9) 
E+*- 

Let us assume that the parameters of Eqs. ( 1.6) satisfy the 
inequalities 

In this case, the problem ( 1.6), ( 1.9) allows the existence of 
solitons of the forms (X, ,0) and (0,X2 ), where 

We will refer to such states as soliton states with given polar- 
izations ($, ,0) or (0,$2 ), respectively. In the phase space T, 
the mappings of these states are separatrices: homoclinic 
loops of a singular saddle point 
O(X, = P I  = X2 = P2 = 0), which lie in the invariant 
planes (PI ,XI ) and (P2 ,X2 ), respectively, on the Hamilto- 
nian level H = 0. 

From this point of view, homoclinic saddle loops 0 ,  
which are distinct from simple loops which lie in the 
(P, ,XI ) and (P2 ,X2 ) invariant planes, correspond to sta- 
tionary nontopological envelope solitons of a general type 
which are determined by ( I S ) ,  ( 1.9) with A,  > 0, A, > 0 in 
the phase space T. We will call representatives of soliton 
states of this type "vector solitons." 

It was shown in Refs. 2 and 3 that in the case v = 1 the 
following solution of Eqs. ( 1.6) corresponds to the simplest 
vector soliton: 

witharegionofexistencea> 1 ,c>  1 o r a < l ,  C <  1. 
In the case v# 1, simple vector solitons correspond, in 

particular, to a single-parameter family of solutions of Eqs. 
( 1.6) determined by 

Here B is the parameter of the family, and (XI ), is the 
solution of the equation 

The region in which the solutions ( 1.13) exist is defined by 

In the space of the structural parameters (a,c,v) the region 
in which vector solitons of this sort exist is a curve with the 
following projection onto the (XI ,X2 ) plane: 

The existence of a single-parameter family of vector so- 
litons ( l .  13 )-( l .  15) is a consequence of the coalescence in 

the phase space r of the stable and unstable manifolds of the 
singular point 0 at the Hamiltonian level H = 0. This coales- 
cence of the stable and unstable saddle manifolds of a singu- 
lar point is one necessary condition for the complete integra- 
bility of a Hamiltonian dynamic system (i.e., for 
integrability at an arbitrary level of Hamiltonian H). 

A first observation: On the curve ( 1.15) on which the 
saddle manifolds coalesce, there are three points at which 
Eqs. ( 1.6) are completely integrable. They correspond to the 
following values of the structural parameters of these equa- 
tions: 

a=c=2i=i; (1.17) 

In case ( 1.17), the complete integrability is associated with 
the invariance of the system under the rotation group and 
the presence of the obvious supplementary integral 
M = XI P2 - X2 PI. For the values of the structural param- 
eters in ( 1.18), the existence of this supplementary integral 
(in the form of a fourth-degree polynomial in the momenta 
PI ,P2 and the complete integrability of Eqs. ( 1.6) follow 
from the analysis of Ref. 4. 

At the points of complete integrability, ( 1.17), ( 1.18), 
it is a simple matter to evaluate the integral in ( 1.13) and to 
write explicit expressions for the single-parameter family of 
vector solitons. For the point of complete integrability 
a = c = 1, v = 1, and for the value A ,  = 1 (which can be 
reached through a simple scaling), for example, the family 
of vector solitons is given by 

where B is the actual parameter of the family, while the pa- 
rameter {,, is associated with the invariance of the system 
under a shift along the trajectory in I'. 

2. It was shown in Refs. 2 and 3 for the case v = 1 that 
a = 1 and c = 1 are bifurcation values which determine the 
creation or annihilation of simple vector solitons as in 
( 1.12). To demonstrate the point, we assume a < 1, c > 1. As 
the parameter a increases at a constant value of the param- 
eter c, the crossing of the value a = 1 results in the creation 
(in the case a = 1 ) of a pair of vector solitons as in (1.12); 
they branch off from a pair of solitons with the given polar- 
ization, (XI ,O). If, at a constant value of the parameter a, we 
then reduce the value of the parameter c >  1, we find that 
when the bifurcation value c = 1 is crossed these vector soli- 
tons coalesce with a pair of solitons of a different given polar- 
ization, (0,X2 ). 

In addition, a countable set of bifurcation values of the 
parameter a (or c) was determined in Ref. 2. When those 
bifurcation values are crossed, a countable set of complex 
vector solitons, which branch off from a pair of solitons with 
a given polarization, (XI ,O) [or (O,X, ) 1, is created. Figure 
1 shows projections of the trajectory of a vector soliton onto 
the (X, ,X2 ) plane to illustrate various stages of the transfor- 
mation of this trajectory with distance from the bifurcation 
point. 

Corresponding to the vector solitons in the phase space 
T are homoclinic loops of the saddle 0 ,  i.e., trajectories 
along which stable and unstable manifolds of the saddle in- 
tersect. 
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FIG. 1 .  Projections onto the (XI ,X2) plane of homoclinic loops which 
branch off at various values of N, (N, = 0,1,2,3) from the simple loop 
corresponding to a soliton with a given polarization, (X, ,O), in various 
stages of the transformation when the parameter a varies. 1-Immediate- 
ly after the creation bifurcation; 2,3-when the parameter a increases. 

A qualitative analysis, which is supported by numerical 
calculations, leads to the following assertion? Bifurcation 
values of the parameters a and c correspond to tangency of 
the stable and unstable manifolds of saddle 0 along simple 
homoclinic loops which lie in the invariant planes (PI ,X, ) 
and (P2 ,X2 ) and which are inverse transforms of solitons 
with a given polarization (XI ,0) and (0,X2 ). 

It is shown below that a generalization of this assertion 
to the case v# 1 is the major step in a determination of those 
manifolds of lower dimensionality in the space of structural 
parameters (a,c,v) to which points of complete integrabi- 
lity, or of an integrability at a certain level of Hamiltonian H, 
belong. 

Settingil, = 1 in Eqs. ( 1.6) (we do not detract from the 
generality of this analysis by doing so), and also setting 

we find that to first order in the functions u,  and u2 the 
possibility that the vector solitons can branch off from a pair 
of solitons with a given polarization ( f l/a1I2 cosh 5,O) is 
determined by the conditions under which the following 
problem can be solved: 

For an arbitrary point (a,c,v) in the space of structural pa- 
rameters, the problem (2.2), (2.3) is overdetermined and 
generally unsolvable. The reason is that Eq. (2.2) has a 
unique solution sinh ( /cosh2 (, which satisfies the necessary 
conditions and which corresponds to a displacement mode. 
However, Eq. (2.3) can be solved for an arbitrary value of v 
only for values of a and c which satisfy the bifurcation rela- 
tions 

v%=Ni(a)-Nt, N,=O, 1, . . . , [N,(a) 1, (2.4) 

where N, (a )  = { - 1 + [ l  + 8/~]"~) /2 ,  and [N, ( a ) ]  is 
the greatest integer in Nl (a).  Correspondingly, we find that 
when vector solitons branch off from a pair of solitons with a 
different polarization [0, + (v/c) 1'2/cosh (1 we obtain the 
bifurcation relations 

Solving (2.4), (2.5 ) for a and c, we reach the conclusion that 
vector solitons branch off from two pairs of solitons of given 
polarizations, (XI ,0) and (0,X2 ), on a countable set of bi- 
furcation curves which arise upon the intersection of bifur- 
cation surfaces in the parameter space (a,c,v) (Fig. 2): 

According to the assertion above, the stable and unsta- 
ble manifolds of saddle 0 are tangent along simple homo- 
clinic loops on these bifurcation curves. These loops lie in the 
invariant planes (PI  ,XI ) and (P2 ,X, ) and are the inverse 
transforms of solitons with a given polarization. In the case 
N, = N2 = 0, the curve determined by (2.6) coincides with 
( 1.15), on which the stable and unstable manifolds of saddle 
0 coalesce, and there are three points of complete integrabi- 
lity, (1.17) and (1.18). 

In the cases N, = 1, N2 = 0 and N, = 0, N2 = 1, there 
are points of complete integrability on the bifurcation curves 
determined by (2.6): ( a  = +, c = +, v = $) and (a = 4, 
c = +, Y = 4), respectively.6 In particular, at the point of 

FIG. 2. Projections onto the (a,c) parameter plane of the bifurcation 
curves for simultaneous branching of complex loops from two pairs of 
simple loops in the invariant planes (PI ,XI ) and (P2 ,X, ). Shown here are 
projections of the points of complete integrability of the dynamic system. 
1-Nl = 0, N2 = 0; 2-N, = 0, N2 = 1; 3-NI = 1, N2 = 0; 4--NI = 1, 
N, = 1. 
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complete integrability a = 3, c = 4, v = f the family of vec- 
tor solitons is determined by 

where B parametrizes the family. Finally, in the case 
N ,  = N2 = 1, there is a point of complete integrability, 
a = c = f, Y = 1, on the corresponding bifurcation curve, 
(2.6). At this point the family of vector solitons is deter- 
mined by 

x1=(3"/2) [ l lch(E- t t )+~lch(E- tz )  I ,  (2.8) 

at which the actual parameter of the family is g2 - c, . 
These comments lead to a second observation: In the 

known cases of complete integrability of a dynamic system 
with Hamiltonian ( 1.8), which satisfies conditions ( 1. lo) ,  
the corresponding values of the structural parameters a, c, Y 

belong to the bifurcation curves (2.6), for which vector soli- 
tons branch off from two pairs of solitons with a given polar- 
ization. 

These observations, along with the generalization of the 
assertion above to the case v# 1, indicate that it would be 
possible to select, in the space of structural parameters of 
Hamiltonian systems of a certain type, bifurcation sets of 
lower dimensionality to which points of complete integrabi- 
lity might belong. 

For a dynamic system with Hamiltonian ( 1.8), these 
bifurcation sets are represented by curves in the parameter 
space (a,c,v). Corresponding to each point of these curves in 
phase space r the stable and unstable manifolds of the saddle 
0 are tangent along simple homoclinic loops which lie in 
invariant two-dimensional planes of the phase space.' In the 
course of motion along these bifurcation curves, the order of 
the tangency of the manifolds of saddle 0 may change. Nu- 
merical calculations indicate that the order of the tangency 
of the manifolds increases as the known points of complete 
integrability are approached; these manifolds coalesce (i.e., 
there is a tangency of infinite order) exactly at the point of 
complete integrability. Exceptional cases are the points of 
complete integrability which lie on the bifurcation curve 
(2.6) in the case N,  = N, = 0. In this case, the entire curve 
corresponds to a complete coalescence of the stable and un- 
stable manifolds of the saddle (and, probably, to the case of 
integrability at an isolated level of the Hamiltonian H) . 

The search for cases of a complete integrability, or of 
integrability at an isolated level of H, of Hamiltonian sys- 
tems can thus be linked with the identification of a certain set 
of (generally isolated) points on the bifurcation sets for 
which the stable and unstable manifolds of the saddle are 
tangent. As these points are approached in T, the order of 
the tangency of these manifolds increases without bound. 

Clearly, this scenario for achieving complete integrabi- 
lity in the space of Hamiltonian systems is only one possible 
scenario, which is strongly linked with the existence of a 
nontrivial bifurcation set of the tangency of the stable and 
unstable manifolds of a saddle point. However, the related 
reduction in terms of the dimensionality of the structural 
parameters opens up the possibility of constructing algor- 
ithms for a numerical search for cases of complete integrabi- 

lity. Furthermore, the primary object of the search consists 
of homoclinic trajectories of a saddle, which can be directly 
related to stationary states of a system of nonlinear Schro- 
dinger equations of the form ( 1.1 ). We also note that studies 
in the two-dimensional Hknon-Heiles Hamiltonian model 
show that a situation analogous to that described above may 
occur. 

Let us consider a small neighborhood of a point of com- 
plete integrability as in ( 1.17). In this neighborhood, a sin- 
gle-parameter family of vector solitons is determined by 

cos cp sin cp xi=- Xz=-. 
ch E ' ch E 

Setting 

a=1+6a, c=1+6c, v= l iGv ,  
cos rp sin rp 

XI=-  + ul ,  xz = - 
ch E 

+ a2 
ch E 

in Eqs. ( 1.6), we find that in the approximation linear in the 
perturbation the problem of the survival of vector solitons is 
related to the solvability of the inhomogeneous problem 

2 cos3 cp sin cp 
WI ,EE-WZ + - w2=26a - 

- ch2E ch3 E 

under the conditions 

lim wl= lim w2=0. 
E+a- E-*i- 

The functions w ,  , w2 here are related to the functions u ,  , u, 
by a transformation consisting of a rotation through an angle 
of ~ / 4 .  The first of Eqs. (2.11) can be solved for arbitrary 
perturbations w ,  , w, ,  since the solution of the homogeneous 
problem ( f l/cosh 6) is odd. The condition under which 
the second of Eqs. (2.11 ) can be solved-the condition that 
the solution of the corresponding homogeneous equation be 
orthogonal to the right side of the inhomogeneous equa- 
tion-leads to the equation 

sin c p [ ' / ,  (6a cos2 cp-6c sin2 cp) +6v] =O. 

In the parameter space (a,c,v), this equation determines a 
plane which passes through the point of complete integrabi- 
lity, a = c = v = 1, and which has the orientation deter- 
mined by the parameter of the family of vector solitons, 
(2.9). Consequently, a vector soliton with parameter q, can 
"survive" only if we move away from the point of complete 
integrability in the space (a,c,v) along directions which be- 
long to a plane with a certain orientation in this space. Along 
the bifurcation curve determined by (2.6) with 
N ,  = N2 = 0, however, the entire family of vector solitons 
(2.9) survives. For this bifurcation curve, which passes 
through a point of complete integrability, we have 
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and the condition under which the problem (2.11 ) can be 
solved is satisfied for an arbitrary value of the parameter p. 
This result indicates that on this curve on which the stable 
and unstable manifolds of saddle 0 are tangent these mani- 
folds coalesce completely. 
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