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The self-consistent problem of four-wave mixing in a gas of four-level atoms (or molecules) is 
solved without the assumption that the interacting fields are weak and without assuming a given 
pump field. The wave propagation equations have the form of Hamilton's equations (the 
canonical equations), so the mathematical apparatus of classical mechanics can be employed, and 
all the integrals of motion can be determined. An exact solution of the problem is derived; energy 
exchange between waves, a transfer of population, and saturation of the atomic transitions are 
taken into account rigorously. The problem of determining the conversion efficiency reduces to 
one of finding the smallest positive root of a polynomial of degree lower than eighth. Possibilities 
for optimizing the conversion process are pointed out. 

1. INTRODUCTION ference between these mechanisms. This new computation 
In the theory offour-wave mixing, the nonlinear polar- method is based on finding an integral of motion, ( 11 ). This 

ization of the medium is usually expanded in a power series integral of motion cannot be determined by the usual aP- 
in the interacting fields, and only the lowest-order terms proach (in the case of a collinear interaction, this integral is 
contributing to the process are retained (Refs. 1-5, for ex- the quasi-energy of the bound system consisting of the atom 
ample). The analysis is restricted to short interaction re- and the external field). 
gions, for which the conversion efficiency is so small that one 
can assume that the pump is fixed and ignore the transfer of 
population between atomic levels. In that approach, how- 
ever, one cannot analyze four-wave mixing if the degree of 
conversion is high, one cannot determine the extent of con- 
version at which the conversion process reaches saturation, 
and one cannot find all the integrals of motion. Moreover, 
that approach becomes incorrect if there are strong reson- 
ances, and one of the atomic transitions reaches saturation 
during the amplification of the weak waves, or if saturation 
prevails at the very outset, at the entrance to the resonant 
medium. 

In this paper we analyze four-wave mixing for the case 
of the two-photon excitation of a four-level medium in the 
conversion w, + w, = w, + o,, in each elementary event of 
which the pumps, of frequencies w, and w,, are absorbed, 
and the photons w, and w, are emitted (and vice versa). The 
procedure which has been developed makes it possible to 
solve this problem with an exact account of effects stemming 
from the coherent saturation of atomic transitions and from 
energy exchange between waves, to the point at which one 
wave is totally depleted. Equations derived below [Eqs. 
(16)] cover not only the reaction mechanism 
w, + w, -w, + w,, which describes a transfer of intensity 
from pulses w,,, to pulses w,,,, but also (and rigorously) the 
inverse mechanism, w, + w, - w, + w,, as well as the inter- 

2. QUASIENERGY AND POLARIZATION OF AN ATOM 

Let us examine the behavior of a four-level system (Fig. 
1) in the field of four waves, with carrier frequencies w, 
( j  = 1 2, 3, 4) which satisfy the condition 
w, + w, = w, + w,. The lengths of the interacting pulses 
are assumed to be small in comparison with all the relaxation 
times of the system. We assume that the pulses are adiabatic, 
ignoring possible absorption processes. We seek the wave 
amplitudes in the form 

E j ( r ,  t )  =Ej exp (-iojt) + c.c., 
Ej=8'r exp (ik,r) , 

where k, = wj/c. We assume that the waves propagate at 
small angles from the vector k, + k, (the x axis). In the 
resonance appr~ximation,~ we seek a solution of the Schro- 
dinger equation as the following superposition of unper- 
turbed functions +hi : 

The ground level is adopted as the origin for the energy scale. 
Substituting (2)  into the Schrodinger equation, we find a 
system of equations for the amplitudes a,. We write these 
equations in matrix form: 

O - El*dl, 0 - E,*d,, 
- EidZl A -Ez*dZ3 

0 - E2d3, RA, - E3d,, 

- 4 0 -!E,*d,, &A3 

where elements, which can be assumed to be real. The quasi-energy 
8 1 = ~ 2 i - ~ 1 ,  A2=osi-oi-02, A3=oi l -w4  (4) fl is found from the condition under which Eqs. (3)  have a 

is the detuning from resonance, and d ,  are the dipole matrix nontrivial solution: 
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FIG. 1. Level scheme. 

If the interaction is turned on adiabatically, the unperturbed 
states of the system go into corresponding quasi-energy 
states, so the roots of Eq. (5 )  should be numbered in accor- 
dance with the conditions R,  -0, R2 -*A,, R, -*A2, and 
R, -A, as Ej -0. We assume that the system starts out in its 
ground state. After the interaction is turned on, the state of 
the system is then described by wave function (2) ,  into 
which we are to substitute the amplitudes a,!", which are the 
solutions of Eqs. (3)  with R = R, . When we write the 
expression for the polarization of the system in state (2),  it 
becomes obvious that the direct substitution of the ampli- 
tudes a;" would put this expression in a totally opaque form. 
We instead use the method developed in Ref. 7, which does 
not require finding explicit expressions for the amplitudes 
a,!" and which is convenient for the analysis below. Specifi- 
cally, the polarization of an atom in state Y can be written in 
the form 

We will not reproduce the proof of (6)  here; it is similar to a 
proof in Ref. 8. Note that the matrix equation (3)  has the 
same form as the steady-state Schrodinger equation, with a 
Hamiltonian which depends on E, and Ef as parameters. 
Making use of this circumstance and also the known expres- 
sion for the diagonal matrix element of the derivative of a 
Hamiltonian with respect to its ~a rame te r ,~  we can easily 
derive expression (6).  

3. WAVE PROPAGATION EQUATIONS 

Let us examine the self-consistent problem of the propa- 
gation of waves gj ( j = 1,2, 3,4) through a four-level me- 
dium which fills the half-space x > 0. We treat the one-di- 
mensional problem, assuming that the phase-matching 
conditions hold along the directions transverse with respect 
to the x axis. Substituting (6)  into the wave equation, and 
carrying out a truncation operation, we obtain 

where N is the density of atoms. The usual approach to this 
problem corresponds to an expansion of the quasi-energy in 
a power series in the quantities 8, .  Substitution of the first 
term of the expansion of R, , found from (5) ,  into (7) ,  leads 
to the well known equations for the resonant refractive in- 
dices at the frequencies w,: 

If we were to retain the terms of the expansion of the next 
order, we would obtain the equations which were studied in 
Ref. 1 and several other places. Those equations ignore co- 
herent saturation and cannot be used to determine all the 
integrals of motion. 

Thanks to representation (6)  of the polarization, we are 
able to solve Eq. (7)  exactly. We convert (7)  and the equa- 
tions which are its complex conjugates through the substitu- 
tion 

&Tj= I&TjI exp( iqj) = (2nliojIj/c)'" exp (icpj), (8) 

where I, = cl8, 12/(277&,) is the photon flux density. Se- 
parating the real and imaginary parts, we find from (7) 

dZi an, dq. aQ - = N  1 = - N - '  
d c p j ' d x  arj ' 

Equation ( 5 ) for the quasienergy contains the phases pj only 
in the linear combination 8 = p, + p, - p, - q~, + qx, 
where q is the x projection of the vector 
q = k, + k, - k, - k,. It is thus a simple matter to derive 
the relations 

with the help of which we find from (9)  
I,+12+Is+14=zlo+Izo+z30+140, 

I,-Iz=I,o-120, 
Is-I&=Iz0-I~07 (10) 

where Ip are the entrance values of the quantities I,. The 
meaning of the integrals of motion in ( 10) is obvious, since 
we are dealing with four-wave mixing in a lossless dielectric. 
Using ( 10) and the relations I, = I,, - J, I, = I,, - J, 
I, = I,, + J ,  and I, = I, + J ,  we can switch from the four 
unknowns 4 to the single unknown J = J (x ) ,  which is a 
measure of the energy exchange between waves. The initial 
condition on J is J = 0 at x = 0. 

We introduce 

Substituting 0, = a,, - qJ/N and either 
Ig,12=y,(Ip -J) (for j= 1, 2) or I%',I2=yj(rp +J) 
(forj  = 3,4)  into (5),  we find the equation 

F=f cos 0, (12) 

which determines R,, as a function of the parameters J and 
8. Here y,, F=F(J,R, , ) ,  and f =  f(J) aregiven by 
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Carrying out a canonical transformation, we find the follow- 
ing equations for J and 8 from (9)  : 

Equations ( 16) obviously have the form of Hamilton's equa- 
tions (the canonical equations) for classical one-dimension- 
a1 motion, if we treat Jand  8 as a generalized coordinate and 
a generalized momentum. The role of the time is played by 
the coordinate x, and the role of the Hamiltonian is played 
by Nil,,. It can be seen from (12)-(14) that ill, does not 
depend explicitly on x, so it is an integral of motion 
(dil,,/dx = 0). The value of this integral of motion can be 
found easily by examining the interaction at x = 0. Since 
J = 0 at x = 0, it follows from ( 11 ) that the value of ill, is 
determined by the value of the quasi-energy at the entrance 
to the resonant medium, ill, = a,  (x = 0). This value can 
be found by substituting the initial values of the field ampli- 
tudes, gfl = g j ( x = O ) , i n t o ( 5 ) .  

Differentiating ( 12) with respect to 8, we find 

as210 f (fZ-F2)5 -=-- sin 0 = F 
80 dFlaQlo  dF/dQ,o ' 

Substituting ( 17) into the first of Eqs. ( 16), we find 

The choice of sign in (18) depends on the sign of sin 8 at 
x = 0. Specifically, we take the upper (lower) sign in the 
case sin 8 > 0 (sin 8 < 0). The allowed region of motion is 
from J = 0 to J = J, , where J, is the smallest (or only) posi- 
tive root of the polynomial f 2(J) - F 2 ( J ) .  We do not need 
to solve the second of Eqs. (16), since once we know the 
dependence J ( x )  we can work from the relation cos 
8 = F(J) /f(J) to determine the dependence 8(x)  . 

To get a clearer picture of the structure of Eq. ( 18 ) , we 
note that F is a fourth-degree polynomial: 

4 

m-o 

The derivative dF/dil,, is a polynomial of third degree in J. 
We will not write out the coefficients A,, since the general 
expressions are quite lengthy [they can easily be derived by 
grouping terms by power of J in ( 14) 1. We will point out 
that the coefficients A,,  are proportional to q and are thus 
zero except in the case of a noncollinear (q#O) interaction. 
The coefficient A, is proportional to Sk,, i.e., to the detuning 
from phase matching at x = 0. The free term of the polyno- 
mial, A,, is proportional to the quantity 
(I,, I,, I,,I, ) cos go, where 8, is the initial phase. It van- 
ishes if there is no seed at any of the frequencies or if cos 
8, = 0. 

Equation ( 18 ) describes a process which is periodic in 
the coordinate x. Let us assume, for example, that one of the 
following conditions holds: I,, = 0, I,, = 0, 8, = f 7r/2. 
We can then say that on a certain interval O<x< 1, the four- 
wave mixing develops by the mechanism 
w, + w2 - w, + w,, i.e., that there is a transfer of intensity 
from pulses w,,, to pulses w,,,. At x = I,, the quantity J 
reaches its maximum value J = J, , and the transfer of inten- 
sity reverses direction: On the interval 1, <x<21, the four- 
wave mixing occurs by the mechanism w, + w, -w, + w, 
until the value J = 0 is reached at x = 21,. This picture re- 
peats at a period of 21,. This period is found from ( 18) to be 

J .  

If the root J, is degenerate, we conclude from (19) that 
I, = a, i.e., that the transfer of energy does not reverse di- 
rection anywhere. 

We complete this new formalism with an expression for 
the refractive index nj, for the frequency w,: 

The analysis below is carried out in terms of some par- 
ticular cases which are the most typical experimentally. We 
assume that the intensity of the seed light is considerably 
lower than that of the pump light and that there is a seed at 
only one frequency (which we assume to be w, ). In other 
words, we assume I,,,,, %I,, and I, = 0. We also assume 
that the one-photon detuning A, is large: 1 A, 1 % /A, 1, 
I gPdj  J/fi. We will refer to the quantity J, /Im,, , where 
Imln = min{Il0,I2,), as the "conversion efficiency." We 
wish to stress that we do not need to solve Eq. ( 18) in order 
to determine this conversion efficiency; it is sufficient to de- 
termine J , ,  the smallest positive root of the polynomial 
f ,(J) - F2(J). The conversion efficiency can be optimized 
comparatively easily. To do this, we should choose the pa- 
rameters of the problem (the entrance angles and detuning) 
in such a way that the condition F(J= I,,, ) = 0 holds. In 
this case, we obtain the conversion efficiency of maximum 
amplitude, J, = I,, . 

4. CASE OF A WEAK INTERACTION 

We will examine the most characteristic features of the 
evolution of the four-wave mixing in the particular case in 
which the detuning from resonance is so large that the inter- 
action of an atom with a field remains weak ( I A,  I, [A, I, 
IA, I % I gJdJ I/fi) throughout the conversion process. In this 
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limit we have \A, I, IA, 1, IA3 1 B lfllo I = :  I ~ I O ~ I  I2/fi2lAl 1, 
and we can use the approximations dF/dfl,, = - A, A, A, 
a n d F = A , J + A 2 J 2 , i n  (17), where 

We introduce some notation which we will need: 

where J, = I,,P ' / g 2 ,  and J,., are the roots of the quadratic 
equation 

The quantity J, is the smallest (or only) positive root (the 
condition for the existence of a root J, > 0 is the same as the 
condition P >  ISk, I, which we will assume below is satis- 
fied). Using (21 )-(23), we can put Eq. ( 18) in the form 

d l  I (I- Ji) (J-Jz) (J+Js) 
-= dx '[ JiIz 

Under the assumptions stated above, we have 
IJ,,, I ) I J, I, and the solution (24) becomes 

Expression (25) was derived by joining two solutions of Eq. 
(24), one holding in the limit J( I,, , I,, and the other in the 
limit J) I,, . These two solutions are the same and join over 
the broad region I,, ( J( I,,,,, . Consequently, Eq. (24) has 
the form of a function which is not periodic in x, and the use 
of this function is valid only on the interval O<x<l,. Since 
the periodicity of the function J ( x )  is known, however, we 
can make use of (25) to reproduce the value of J for arbitrary 
x. In particular, at x = 1, we find J(1, ) = Jl from (25). For 
x(I,, the expression in braces (curly brackets) in (25) can 
be replaced by unity; expression (25) then takes the form of 
some other well-known  expression^.'^'^ 

It follows from (22) and (25) that the four-wave mix- 
ing develops effectively if the phase mismatch is sufficiently 
small: (Sk, I <P. The transfer distance I, is at a minimum in 
the case 6k0 = 0. The large number of independent param- 
eters in this problem makes it possible to optimize the four- 
wave mixing and to achieve a 100% conversion efficiency in 
many cases, including the case Sk, #O. However, the best 
conditions for conversion are achieved with 

In this case we have A, =A2 = 0, and we find J, = I,, and 
J, = I,, from (23). In other words, the transfer of intensity 
away from pulses a,,, comes to a halt only when one of the 
waves, o, (in the case I,, <I,, ) or o, (in the case I,, > I,, ), 
becomes totally depleted. Conditions (26) are the optimum 
conditions, since 100% conversion efficiency is achieved at 
the minimum transfer distance I,, and under phase-match- 
ing conditions. 

It follows from (25) that in order to describe the func- 
tional dependence J = J ( x )  we should introduce along with 
I, the distance I, < I,, over which the conversion process es- 
sentially reaches saturation. To simplify the discussion we 
assume that conditions (26) hold. Under these conditions 
we have J, = I,, and J2 = I,, , with I,, <I,,. We can then 
write 

Is =g-fl ln( 161,0/130). (27) 

Under the condition I,, (I,, the saturation length is 
essentially equal to the transfer period (I, =:I, ) . A substan- 
tial difference between I, and I, arises in another case, 
1 I,, - I,, 1 4 I,,, in which we have I, )Is. In this case, the 
four-wave mixing develops in the following way: On the in- 
terval O<x 5 Is the quantity J ( x )  increases rapidly, in pro- 
portion to exp(gx). Over a distance x 2 I, the quantity J ( x )  
essentially reaches its maximum value I,,, the four-wave 
mixing reaches saturation, and the conversion rate on the 
interval Is <x<lr  decreases sharply. On the interval 
I, < x  < 24, the four-wave mixing goes in the opposite direc- 
tion (Fig. 2).  In the case I,, >I,,, we should interchange I,, 
and I,, in (27) and the expressions which follow. 

The transfer period I, depends on the entrance values of 
the intensities of the interacting pulses, Ip , which are in turn 
slowly varying functions of the time: Ip = Ip (T), where 
T = t - X/C. This period, I, = 1, (T), will thus have different 
values for different parts of the pump pulses. For example, 
we assume Sk, = 0 and that all the pulses have the same 
shape at the entrance to the medium: 

I,,(T) =I,o(0) exp ( -~~ / . t ,~ )  

[the curves in Figs. 3 and 4 are plotted for this case, under 
condition (26) 1. From (22) we then find 

I,, (7) = IrO exp (rV/.rO2) : 

where I, is the minimum value of the transfer period. This 
I minimum value is reached at the peak of the pump intensity. 

Because of the T dependence of I,, the pulses being amplified, 

FIG. 2. J ( x )  for various relations between the pump intensities. a- 
I , ,  <I2,  ( I ,  = I s  ); b--I,, = 0.99Z2, ( I ,  = 21%); c-IIO = IZO ( I r  = m ). 
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13,,~, break up into a train of subpulses over distances x > 21,, 
(Fig. 3). Correspondingly, the envelopes of the pump pulses 
are modulated. In addition, the dependence I, = 1, (7) rules 
out a complete transfer of energy from pulse w, (w, ), even at 
the maximum conversion efficiency in terms of the ampli- 
tude, with J, = I,, (J, = I,, ). The reason is that, if there is 
a transfer of intensity by the mechanism w, + w, - w, + w4 
in some part of the pump pulse in a given cross section 
x > 21, of the medium, then there are regions in which the 
transfer goes in the opposite direction: w, + w4 -0, + w,. 
This circumstance is related to the oscillations in the ener- 
gies of the pulses being amplified along the coordinate x 
(Fig. 4). The oscillation period here is 24,. A pattern like 

FIG. 3. Shapeof pulses o, and o, in various cross sections of the 
medium. a,&I,, <I,,; c,d-I,, = I,, . All curves are normal- 
ized to I,, ( T  = 0) [ I , ,  = I, ( T  = 0 )  ]. 

that in Fig. 4 has been observed experimentally by Krasni- 
kov et a l l 4  

It can be seen from (22) that as the roots J, and J, 
move closer together the value of I ,  increases logarithmical- 
ly. The case J, = J, is of interest. As an example we consider 
the degenerate pumping process (I,, = I,, ), assuming that 
the optimum conditions for conversion, (26), are satisfied. 
In the latter case we have Jl = J, =I,, =I2,, and from 
(24) we find 

We see that we have J -  I,, at x > I, .This example is particu- 
larly interesting since we find I, = CO, and the energy trans- 
fer does not reverse direction. As a result, it is possible to 
achieve an essentially complete transfer of energy from the 
pump wave to the pulses being amplified (Fig. 4) .  

5. LIMITOF A STRONG PUMP 

Let us consider a collinear interaction, q = 0, in which 
case the quasienergy f l ,  is an integral of motion. We assume 
that the two-photon detuning A, is small enough 
( y, y2II0 ,A: A: ) that the pump field saturates the two- 
photon transition 1-2-3 at the entrance to the medium. In 
thiscasewecan6 setfl,, = - (y,I,, + y,I,,)/A, in (14). 
Phase matching (6k0 = 0) is possible in this case only if 
A, A, > O  and /A, I > Ifl,, I. Assuming that these conditions 
hold, we find from ( 14) 

FIG. 4. Quantum conversion efficiency 7, defined as the ratio of the num- F=A,J+A,JZ, i?F/dQl~=-AiAsQio ( l + b J )  (29) 
ber of photons in the pulse being amplified, o,, to the initial number of 
photons in pulse o, . a-I,, (I,,; b--I,, = I,, . where 
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Using (29), we can put Eq. ( 18) in the form 

where J, = I,,p ,/g2, and J,,, are the roots of Eq. (23). We 
should substitute A,,, from (30) into Eq. (23 ). The quanti- 
ties g and p are given by expressions (22), into which we 
should substitute Sk, from (30), and in which (in the 
expression forp) we should make the substitution A, +Q,, . 
Equation (3 1 ) differs in form from (24) only in containing a 
factor ( 1 + bJ) - '. It is thus obvious that in the case bJ, < 1 
the solution of Eq. (3 1 ) will differ only slightly from (25). 
Again in the case J, J, > 0, there is no qualitative difference. 

Let us consider the case bJ, ) 1, assuming J, < 0. It is 
sufficient to analyze the four-wave mixing on the interval 
O<x<l,. At short interaction distances, with J ( J , ,  the 
quantity J increases exponentially, as does the solution of 
(24). 

For large interaction distances [gx > I ln (bI,, ) I 1, over 
which we reach values bJ> 1, we find from (3 1 ) 

where 

g 
ge = ---- ( ' " I - " )  

b 1 J,J21 '"' 
1, =g,-' arccos ------ . 

I J?I+J! 
(33 

It follows that if the four-wave mixing develops comparati- 
vely rapidly [ J a  exp(gx) ] in the initial stage, the rate of 
development decreases sharply in a later stage (at gx) 1) 
and is determined by an effective gain g, (g. In the case 
Sk, = 0 the quantity g, is independent of the entrance values 
of the pump intensities: 

The transfer distance is also independent of the intensities of 
the pump and the seed light, so it is independent of the time. 
As was mentioned in Sec. 5, this is a favorable circumstance 
if we wish to increase the conversion efficiency. The maxi- 
mum efficiency is reached at Sk, #O [this situation is char- 
acteristic of a collinear interaction (q = 0) and is not a con- 

sequence of a saturation of the transitions]. In the case 
I,, <I2, , for example, the maximum conversion ( J ,  = I,, ) 
is achieved at a detuning 

from phase matching. In the case I,, >I,, ( J ,  = I,, ), we 
should replace I,, in ( 35 ) by I,, . 

6. CONCLUSION 

The exact equations derived above can be used for cal- 
culations on four-wave mixing with an arbitrary extent of 
conversion. Pump depletion can be taken into account, as 
can coherent-saturation effects, which are important under 
resonance conditions. Because of the large number of pa- 
rameters in this problem, we have applied the general results 
to only two particular cases. We have not discussed the case 
in which the interaction of the atom with the field is weak at 
x = 0 but becomes strong enough to cause saturation as the 
waves a,, are amplified. Such a situation generally holds 
when the detuning A, is small ( (A, 1 ( 1 A, I, I 8',,d1 l/fi, 
I 8',,d2 I/fi), and it is characterized by a low conversion effi- 
ciency. 

We wish to thank M. L. Ter-Mikaelyan for a discussion 
of these results. 
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