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Possible deviations from equilibrium velocity distributions are taken into consideration in 
numerical and analytic solutions of the problem of the laser excitation of vibrational-rotational 
and vibrational transitions of molecules constituting a small admixture in a buffer gas. Analytic 
results are derived from a strong-collision model. At low pressures, at which the collisional 
absorption linewidth is much smaller than the Doppler width, the results are changed not only 
quantitatively but also qualitatively by incorporating a laser-induced deviation from equilibrium 
velocity distributions of the molecules. In a strong field, for example, the ratio of the quasisteady 
probability for a stimulated vibrational-rotational transition to the corresponding probability 
calculated without consideration of a deviation from an equilibrium velocity distribution is 
proportional to the ratio of the collisional linewidth to the Doppler width. As a result, the 
maximum probability for vibrational photoexcitation (the rotational "bottleneck") is reached at 
significantly higher light intensities. In fields of moderate intensity, the probability for a 
stimulated vibrational-rotational transition may depend nonlinearly on the light intensity. 
Various models of the elastic-collision integral are tested by comparison with the results found 
through a Monte Carlo solution of the Boltzmann equation. Specifically, relaxation-constant 
models, models of strong and weak collisions, and the Keilson-Storer model are tested. The 
conditions for the applicability of these models in this particular problem are determined. If the 
wrong model collision integral is chosen, there may be errors of up to 100% in the calculated 
distribution functions and absorption coefficient. 

INTRODUCTION 

The application of laser light to molecular gases may 
disrupt the equilibrium distributions of the particles with 
respect to the various degrees of freedom. For molecules in 
the electronic ground state, it is customary to distinguish a 
deviation of their vibrational-rotational populations from 
equilibrium and a deviation of their velocity distributions 
from equilibrium. The literature on the nonequilibrium vi- 
brational-rotational kinetics of the excitation of multilevel 
systems in a laser light field is quite diverse and has been the 
subject of several reviews and monographs (e.g., Refs. 1-4). 
Distortions of the equilibrium velocity distributions, in con- 
trast, are usually ignored in efforts to solve these problems 
(see also Refs. 5-7). Effects stemming from a deviation of 
particle velocity distributions from equilibrium have attract- 
ed some interest in problems involving sub-Doppler atomic 
saturation spectros~opy,~- '~ in particular, the phenomenon 
of a light-induced drift.'' Most of the results have been de- 
rived analytically for two-level atoms in relaxation-constant 
modelsas9 or in the limiting cases of strong and weak elastic 
 collision^.^ Only numerical results have been obtained in 
intermediate cases,12 through the use of an approximate de- 
scription of elastic collisions of atoms in the Keilson-Storer 

In general, the behavior of colliding atoms and mole- 
cules in external fields is described by the quantum kinetic 
equation for the density m a t r i ~ . ~  Such an equation is exceed- 
ingly difficult to solve even by numerical methods. In the 
simpler case of a classical translational motion of the parti- 
cles, and if the "phase memory" of these particles is ignored, 
one can use Boltzmann equations with source terms to de- 
rive the velocity distributions of the populations. Solving 

such equations is no less complicated a problem, particularly 
if the deviations from equilibrium velocity distributions are 
pronounced. In this situation, the existing methods of the 
kinetic theory of g a ~ e s ' ~ . ' ~  either are inapplicable (this is 
true of the Chapman-Enskog method) or are of only limited 
applicability (this is true of the moment methods). This dif- 
ficulty in solving the quantum kinetic equations and the 
Boltzmann equations is apparently the reason why distor- 
tions of the equilibrium velocity distributions of the mole- 
cules either have been ignored altogether (e.g., in problems 
involving the laser excitation of molecules) or have been 
dealt with only approximately (e.g., in problems of sub- 
Doppler saturation spectroscopy). 

In the present paper we take up the laser excitation of 
molecules under collisional conditions, taking account of 
the distortions of the velocity distributions caused by the 
light. We focus on (first) deriving and analyzing analytic 
expressions for the probabilities for stimulated vibrational- 
rotational and rotational transitions (modified to incorpo- 
rate the nonequilibrium velocity distributions) and (sec- 
ond) studying the validity of various approximate descrip- 
tions of the elastic-collision integral, through a comparison 
of results calculated on the nonequilibrium velocity distribu- 
tions of the molecules with results found through a solution 
of the Boltzmann equations by the Monte Carlo method. 

2. FORMULATION OFTHE PROBLEM 

We consider the absorption of light on the V -  V' vibra- 
tional transition of a small admixture of molecules of an ac- 
tive gas in a medium of a buffer gas. We assume that the 
vibrational-rotational spectrum of the active gas has a fairly 
sparse line structure, so that the light effectively interacts 
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with only a single vibrational-rotational transition, 1 V,J)- 
I V1,J'). Under these conditions, the populations of those vi- 
brational-rotational levels which are not in resonance with 
the light are changed by collisional rotational R T exchange. 
The time scale of the rotational relaxation, T,,, at standard 
temperature is usually several times the time scale between 
kinetic collisions, r0,  while the vibrational relaxation time 
rV is several hundred or even thousands of times 7,. We will 
be ignoring the effect of collisional vibrational exchange on 
the populations of the vibrational-rotational levels, under 
the assumption that these processes are slow in comparison 
with the optical excitation and the R T relaxation. 

The usual kinetic rate equations are valid for the popu- 
lationsof thevibrational-rotational levels I V,J ) and I Vf,J '), 
which are interacting with the light, over times greater than 
the phase relaxation time. If we assume that an equilibrium 
distribution with respect to rotational sublevels is estab- 
lished over the time scale r,, of the rotational relaxation,' 
then these equations take the following form for each value 
ofthe velocity vector v ofthe active molecules in the spatially 
homogeneous case: 

Here f,,.,. (v) and fvJ (v) are the velocity distributions of the 
populations of the active molecules in the vibrational-rota- 
tional levels which are in resonance with the light; 
Nv,  = N'& + n ..,, and N, = N O, + n , are the vibrational 
populations; (dN O,. / d t )  ,ib,l and (dN '$/dt) ,ibrel are vibra- 

tional-relaxation terms; q,, and qJ are the equilibrium values 
of the fraction of molecules in the rotation sublevels which 
are at resonance with the light; g,.,, and gvJ are the statisti- 
cal weights of the levels; m, is the molecular mass of the 
active gas; k is the Boltzmann constant; Tis the temperature 
of the medium; f, (v, ) is the equilibrium velocity distribu- 
tion of the density of buffer-gas molecules; do, is the differ- 
ential cross section for elastic collisions of the active-gas 
molecules with the buffer molecules; and v' and v; are the 
velocities after a collision. The function W( v), the probabili- 
ty for stimulated emission on the transition I V,J,v)-1 V1,J,v) 
per unit time, is given by 

w (v)  = 
~ C Z A E ' I  V'J' 4 n ) d z ' 1 ~ 1  

(WY;"')3 li 
G [ WAS (WJ (v)] = 

Scfi2 

V'J' V'J' x G o,,, toy:' (v)]. UVJ (v) = Wv J t ( k ~ ) ,  

where c is the velocity of light, A Ly' is the probability for s 
spontaneous transition per unit time, I is the intensity of the 
monochromatic light, which we assume remains constant 
over time, wL/' is the frequency at the center of the I V,J)- 
I Vi,J'), ( d  ;iJ'I is the dipole matrix element of the transition, 
w,,, is the frequency of the laser light, r is the collisional 
half-width of the transition, and k is the wave vector of the 
light. 

In the problem formulated in this manner, the distribu- 
tion functions p,. (v)  and p, (v) can be approximated as 
Maxwellian, since the change in the resultant populations of 
the vibrational-rotational levels which are not at resonance 
with the light, NO,, and NO,, is a relatively slow process, 
occurring over a time scale rR,/qJ which satisfies 
rRT/qJ % rO [see Eqs. 3 and 41. The one exception is the case 
of weak collisions of the molecules in the upper vibrational 
level, with NO,. -n,.,., in which case the time scale for a 
change in the population NO,, becomes the time r,, N> r,, . In 
this situation the distribution function p,. (v)  may be quite 
non-Maxwellian, but the incoming term due to rotational 
exchange in Eq. ( I ) ,  g , . ~ ~ . p v .  (v)/r,, is O(q,. 4 1 )  and 
can be completely ignored in comparison with the other 
terms in the equation. 

We have a few words about the model of collisions 
which are strong in the rotational sense [the model used in 
writing Eqs. ( 1 )-(4) 1. For molecules whose rotational con- 
stants are not too large, R T transitions are generally multi- 
quantum transitions.I6 Under these conditions we would ex- 
pect that a model of collisions which are strong in the 
rotational sense would work satisfactorily. In particular, it 
was stated in Refs. 17 and 18 that this model can be used to 
describe the rotational relaxation of the levels of the P ( 2 0 )  
line of the CO, molecule, which we will be discussing below, 
in Sec. 4. 

We will be interested primarily in the situation with 
v'J '  r, 1 O,., -avr I si/,ao,, 

where 

is the Doppler width of the absorption line. In this case, we 
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know8-'' that the velocity distributions fvJ (v) and f,.,. (v) 
may be far from equilibrium (there may be Bennett peaks 
and dips), so the probabilities for stimulated vibrational- 
rotational and vibrational transitions may differ from those 
found without consideration of this deviation from equilibri- 
um). The same is true of the absorption coefficient. 

3. EXCITATION PROBABILITIES AND ABSORPTION 
COEFFICIENT: STRONG-COLLISION MODEL 

Integrating Eqs. ( 1) and (2)  over velocity, we find the 
following expression for the probability for a stimulated 
transition I V,J )-I V 1 , J ' )  per unit time: 

For simplicity we have assumed g,.,. /gvJ =: 1, as we are al- 
ways justified in doing for levels with a large rotational num- 
ber J. 

The quantities nVJ,nv.,, and Nv,Nv, vary over two 
quite different time scales. If we are interested in the slow 
process of the changes in vibrational populations, the popu- 
lations nvJ and n ..,. can be regarded as quasisteady; i.e., we 
can set the right sides of Eqs. ( 1 ) and (2) ,  integrated over 
velocity, equal to zero. It then becomes possible to find from 
Eqs. ( 3 ) and (4)  expressions for the probability for a stimu- 
lated vibrational transition per unit time:I9 

The probability W F: is generally a function of the time, but 
all that we need is its quasisteady value for the derivation of 
(6).  If we ignore the deviation of the distributions f,, (v) 
and f,.,. (v) from equilibrium in ( 5 )  and set 
fvJ(v) = nVJf,,(v) andf,.,. (v) = nv.,.fM(v), we find an 
existing r e s ~ l t " ~ '  for the probability for a stimulated vibra- 
tional-rotational transition: 

V ' I '  4n2 V V I '  
(W,, ),,=71d,, lZZgv(a,x). 

3cfi 

Here gv(a,x) is a normalized Voigt function with param- 
eters which are independent of the light intensity: 

2 (In 2)'" a exp (- y') 
g v  (a, x)  = - 

x1IJAoD n f (x- y)z+nz 
dy, 

Let us determine how the quantity W Fy' and, corre- 
spondingly, WV4.. change when we take the deviation of 
the distributions fvJ (v) and f,,,. (v) from equilibrium into 
account. 

To derive analytic results, we work from a quasisteady 
solution of Eqs. ( 1 ) and (2).  We simplify the collision inte- 
grals in ( 1 ) and (2) ,  adopting the model of strong elastic 
collisions. In this model, the active molecules acquire a Max- 
wellian velocity distribution over the time T, between elastic 
collisions, and the collision integral in ( 2 ) becomes 

[there is a corresponding expression for ( 1 j 1.  We will also 
put the rotational-exchange terms in ( 1 ) and (2)  in a more 
convenient form, by setting 

In doing so we introduce an error - O(qJ < 1 ) in ( 1 ) and (2) 
and an error -O(q:) in (3 ) and (4).  After some straight- 
forward calculations we find the following expression for the 
quasisteady value of the probability for a stimulated vibra- 
tional-rotational transition I V1,J  ') : 

V ' J '  
v , I - -  4n2 IdvI 12Zgv(a',x) 

WVI -- 
3cfiz (I+%) "-nxI'gv (a'. xj 

' 

In the limiting cases of a weak field (x  < 1 ) or an "in- 
stantaneous" translational relaxation (7, = O), expression 
(9)  for the probability W ;jJ' becomes expression (7)  for the 
probability ( W Ly'), , which was derived without consider- 
ation of the distortions of the velocity distributions. 

Just how great is the difference between W L;"' and 
(W;jJ'),, in other cases? Let us consider the case 
Aw2 )AmD. It is not difficult to show that if this condition 
holds because of a large collisional width Aw, 9 Aw,, for an 
arbitrary value of the saturation parameter x ,  the spectral 
shape of the probability W L:' is described by a Lorentzian 
line with a width Aw,, and we have W ;:' = ( W F;'),, . The 
most interesting case is the opposite one, with Aw2 %Am, 
(i.e., x )  1 )  but A o ,  <A@,. In this case of strong saturation 
with Iw,,, - w ;?'I - Aw, the difference between W LjJ' and 
( W LjJ')., is a maximum: 

- -- A@JL 
A ~ D  V'J' 

1 + 8 1 n 2  ( Olas - O y  J )2 

A(oD2 

Since the probabilities W Ly' and ( W L;"'),, in a weak 
field are the same and are linear functions of the intensity I, 
and since this linearity persists in a strong field, but with 
different proportionality factors, according to ( lo) ,  there 
exists a region of nonlinearity for the function W Ly' (I). For 
example, with a Doppler line W L:', with Aw2 < Aw, (the 
field is not too strong, and the condition Aw, < Aw, holds), 
we have 

For x 2 1 this ratio is proportional to I - Figure 1 shows 
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FIG. 1 .  The quantity Wr;J'rR, as a function of the parameter 
P * = zrRT/2rrr for various values of the normalized detuning and of the 
collisional absorption linewidth with T,, = 57,. {,x: 1 4 . 1 ,  0; 2 4 . 1 ,  
0.5; 3 - 4 . 1 ,  1; &-0.5,0.5;  5-1, 0.5. The dashed lines show the quantity 
W ~:'~, ,~0.1/{ .  

the dimensionless quantity W Li' as a function of the param- 
eter p * = X T ~ ~ / ~ T ,  -I for various values of the detuning 
(for various values of x )  and for various values of the pres- 
sure (for various values of the quantity 5 = Ao,/Aw,). 
These curves illustrate the comments above. We can clearly 
see a nonlinear region on the plot of W ;y' (I); this nonlinear 
region gradually fades away with increasing AwL/AwD. 

Figure 2a shows the change in the vibrational-photoex- 
citation probability W, - ,. which stems from the change in 
W ;iJ'. In the case Aw, )Aw, or in the weak-field limit 
( x g l )  we have W = W e  and thus 
W,- ,. = ( Wv4 ,. ) ,, . In the strong-field limit ( x )  1 ) we 
have W ;;'- w and W,- ,, = qJ/2r,,; i.e., there is a rota- 
tional "b~ttleneck,"'~ which does not depend on the transla- 
tional relaxational rate. On the other hand, we see from Fig. 
2a that this effect is manifested at far higher light intensities 
when the laser-induced deviation from equilibrium velocity 
distributions is taken into account [see ( 10) 1. In moderate 
fields ( 10 5f l *  5 100) the differences between W,, ,. and 
( W,_ ,. ),, reach a factor of 1.5 or 2. 

An expression for the quasisteady absorption coeffi- 
cient for monochromatic light on the transition I V,J) -  
I V1 ,J ' )  is 

Figure 2b shows a plot of this quantity versus the light inten- 
sity. It can be seen from this figure that the deviation from 
equilibrium velocity distributions has only a slight effect on 
the absorption coefficient in the limits of weak and strong 
fields, but at intermediate intensities (2  5 0  * 5 40) the dis- 
tortions of the Maxwellian distributions change the value of 
av'J' , by a factor of as much as 1.5 or 2. This point must be 
kept in mind in analyzing experiments on the propagation of 
intense laser light in the upper a t m ~ s p h e r e ~ ~ . ~ '  or in deter- 
mining the properties of the active media of low-pressure gas 
lasers by optical methods.22 

FIG. 2. Plots of ( a )  the normalized probability for vibrational photoexci- 
tation, 2 Wv_ ,. 7, .,/q,, and (b)  the normalized absorption coefficient 
aL;J'/(aLjJ'), =, versus the parameter p * = XT,,/~T,, for various val- 
u e s o f l a n d x :  I-{= 0 . 1 , ~  = 0.5; 2 - 4 . 1 ,  1; 3 4 . 3 ,  1. Thecurves with- 
out filled circles were calculated without consideration of the deviation 
from the equilibrium velocity distributions; those with filled circles reflect 
these deviations (r,, = 27, ). 

The analytic results derived above for the probability 
for a stimulated vibrational-rotational transition and for the 
saturation absorption coefficient are superficially reminis- 
cent of the expressions given in Ref. 8 for the case of the 
excitation of an atomic transition. However, the latter ex- 
pressions were derived in a relaxation-constant model, i.e., 
without consideration of the changes in the particle veloc- 
ities upon collisions. We would also like to stress that the 
probability for a stimulated transition which was given in 
Ref. 8 has a meaning slightly different than that of W ry' in 
(5),  since An LjJ' in (5)  is the instantaneous or running dif- 
ference between level populations, not the equilibrium dif- 
ference. The probability W ;jJ' determined in this manner is 
required in calculating the probability for vibrational pho- 
toexcitation, Wv4 ,. from expression (6) .  
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4. VALIDITY OF VARIOUS MODELS OFTHE ELASTIC- 
COLLISION INTEGRAL 

The results of Sec. 3 show how important it is to consid- 
er the distortions of the distributions fvJ (v) and f,.,. (v) in 
calculating the probability for a stimulated vibrational-rota- 
tional transition, the probability for vibrational photoexcita- 
tion, and the absorption coefficient. The model of strong 
elastic collisions which was used in Sec. 3 is obviously of 
limited applicability. The error of this model is small under 
the condition m, Sm, , where m, is the mass of the buffer- 
gas molecule. In the other limit-the case of weak collisions 
(m, <m, )-the elastic-collision integral can be written as a 
Fokker-Planck integral. In the limit m,/m, -0, the results 
of Sec. 3 remain valid if we formally set T, = a. 

In general, the Keilson-Storer is a good ap- 
proximation of the actual elastic collisions. In that model the 
collision integral is written in the form 

mI3 + i/z - [0-"1-20') erf (0) -0-' exp (-ez) ] 
m,+m, 

X iexp (-0') 4- (28-l-0-') erf (8) ] -', 

where a,, is a randomization coefficient. It has a value 
a,, = 1 in the case m, /m, % 1 (the weak-collision limit) 
and a value a,, = 0 in the case m, /m, 4 1 (the strong-colli- 
sion limit). Here u and u ,  are the projections of the velocity 
of the molecules onto the direction of the light. 

Table I shows values of the coefficient of the Keilson- 
Storer model, a,, , for certain pairs of colliding molecules 
(the active molecule and the buffer molecule). The Keilson- 

Storer integrodifferential equations can be solved only by 
numerical methods, and the literature reveals extremely few 
such solutions. A simulation of the Boltzmann equations 
with a real collision integral is an even more laborious prob- 
lem from the computational standpoint. An effective meth- 
od for solving it is the Monte Carlo method whose principles 
are set forth in Ref. 24. That method makes it possible to 
simulate collisions of particles with the real interaction po- 
tential without any simplification of the collision integral. In 
this section of the paper, we use that method to analyze how 
well the models mentioned above correspond to the actual 
collision integral. Since it is extremely laborious to solve the 
Boltzmann equations numerically, it is obviously important 
to know the range of applicability of the simple collision- 
integral models, particularly in problems involving the in- 
teraction of light with multilevel systems. None of the model 
collision integrals discussed above is valid if the active-gas 
molecules constitute more than a small admixture in a medi- 
um of the buffer gas. 

To reduce the time required for the numerical calcula- 
tions we consider the situation in which a quasisteady state 
of the transition is reached over a few rotational-relaxation 
times. In this case the vibrational transition is far from satu- 
ration, and the relation N,,  q,. 4 N,q, holds. Equations ( 1 ) 
and (2)  can then be examined without reference to Eqs. ( 3 )  
and (41, with the rotational-exchange terms in ( 1 ) and ( 2 )  
written in the respective forms 

TABLE I. The coefficient a,, of the Keilson-Storer model for various pairs of 
colliding molecules. 

where n:: is the initial equilibrium population of the level 
I V,J>. 

To study the models we adopt the example of the excita- 
tion of the ( 10'0)-(00'1 )P(20) vibrational-rotational tran- 
sition of the CO, molecule in a medium of N, and also in a 
medium of He. In our formulation of the problem, we can 
ignore vibrational VV' and VTrelaxation. The reason is that 
the time scale of the fastest VV' exchange in the mixture 
COz-N, isz5 T, z 8 0 0 ~ ~ .  In the numerical calculations we 
adopt the following parameter values for the P(20) 

I Collision pair I Ratio of molecular 
masses, m, /m , 
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coz - NZ 
C O z  - He 
C O z  - 0 2  

H z 0  - N z  
HBr - Nz 
H I  - N z  
C z H z  - NZ 
HCI - NZ 
C O  - N z  
HF - II2 
HF - F z  
HF - He 
HF - N z  
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4 ' 1 ~ ~  

4 4 ~ 4  

44/3z  
"/?a 
8 ' / ~ ~  

'28128 

26/z8 
36128 
"i28 

ZO/s 
20/38 

2 0 / ~  

20!zs 

0,515 
0,890 
0,479 
0,284 
O,67 1 
0,767 
0,374 
0,461 
0,393 
0,880 
0,241 
0.783 
0,308 



V ' J '  V ' J '  
A v j  = 0,187 s-l;  ov, /2nc=944,1940cm-' ; 

q ~ = q ~ , k O , O 7 ;  

Apparently the only way to exactly determine the dif- 
ferential elastic cross section do, would be to numerically 
calculate the scattering trajectories of the colliding mole- 
cules for a real, spherically asymmetric potential. The com- 
plexity of solving that problem is greater than that of solving 
the kinetic equations ( 1 ), (2) .  However, there is no need to 
actually solve that problem in order to evaluate the sensitiv- 
ity of the distribution functions to some model or other for 
the elastic-collision integral. 

Let us assume that the elastic scattering is by a Len- 
nard-Jones (6-12) potential with the parameter  value^^'^^^ 

a (C02-CO,) =4,328 A; a (N,-N,) =3,745 A; a (He-He) 
=2,55l A; e (GOz-C02)lk= 198,2 IC; e (Nz-N,) lk 

=95,2 K; e(He-He)/k=10,22 K. 

We find the parameters ug and eg for collisions of molecules 
of species i with molecules of species j by means of the known 
combinational relations.15 We take 1/r, to be equal to the 
equilibrium mean transport collision rate I/?,: 

where ci = c, (mr/2k7') "', c, is the relative velocity of the 
colliding molecules, m, is their reduced mass, n~ is the num- 
ber density of the buffer-gas molecules, x is the scattering 
angle in the c.m. system, b * = b /u,, and b is the impact 
parameter. A change in l/r0 by 10-15% has a negligible 
effect on the calculated results. The relative error of these 
results is about 0.3% for the populations and about 2% for 
the distribution functions. 

The incoherent approach used in writing Eqs. ( 1 ) and 
(2) (on the one hand) and the classical description of the 
translational motion (on the other) make it impossible to 
correctly describe small-angle diffractive scattering, in the 
course of which the oscillations of the off-diagonal element 
of the density matrix do not undergo phase rela~ation.,~ 
This is true even for times greater than the mean phase-re- 
laxation time l / r .  However, the angular width of the dif- 
fractive part of the scattering function is about 3" for C0,- 
He collisions and lo for C0,-N, collisions. In  scattering 
through such small angles the velocity of the molecules and 
thus their distribution function remain essentially un- 
changed. In all the numerical calculations we accordingly 
"truncated" the interaction potential, at a scattering angle 
xmln = 3' for CO, -He and at x,,, = lo for CO, -N, . In oth- 
er words, we completely ignored the small-angle scattering. 

Simple estimates show that the error in the distribution func- 
tions calculated by this procedure does not exceed the statis- 
tical error of the method. 

It was not by chance that we selected the gases N, and 
He as buffer media; the choice was dictated by the purpose of 
this study. When the buffer gas is N,, the masses of the active 
molecules (CO,) and the buffer molecules do not differ 
greatly, and a,, has a value of 0.5 15, qualifying C0,-N, 
collisions as an intermediate case between strong and weak 
collisions. In this situation, the question of the accuracy of 
the strong-collision model is particularly interesting. 

Figure 3 demonstrates the good agreement between the 
results calculated on the time evolution of the populations 
from the Boltzmann equations and from the strong-collision 
model for various values of the light intensity, the time T,,, 

V ' J '  the detuning fl = (a,,, - a ,  )/2?rc, and the pressurep of 
the CO, -N, mixture. The results calculated for the popula- 
tions in the Keilson-Storer model agree almost perfectly 
with the results of the solutions of the Boltzmann equations 
and are thus omitted from Fig. 3. In the cases considered, the 
calculations demonstrate a good overall agreement in terms 
of not only the integral populations but also the velocity 
distributions fvJ ( v )  and f,.,. ( u )  of the molecules. This 
agreement thus extends to the excitation probabilities and 
the absorption coefficient. As an example, we see from Fig. 4 
that the strong-collision model introduces a small error in 
the region near the absorption resonance and some error on 
the left-hand tail of the distribution (i.e., on the tail further 
from the resonance). The Keilson-Storer model accurately 
reproduces the distribution function in the tails, having a 
small error only in a narrow region near the resonance. 

The situation can change dramatically if a light gas is 
used as the buffer gas. The results calculated on the popula- 
tions and velocity distributions (Figs. 5 and 6)  agree well 
with the results of the solution of the Boltzmann equations 
only in the Keilson-Storer model. Calculations carried out 
with various values of the mass ratio m,/m, lead to the 
conclusion that the Keilson-Storer model gives a satisfac- 
tory description of both strong and weak elastic collisions in 

FIG. 3. Time evolution of the population of the I V , J )  lower level of the 
CO, molecules. The buffer gas is N,. 1, 2-I= lo4 w/cm2; 3-7-10' 
W/cm2. 2-p = atm; other curves-2.10-' atm. 1, 2, 5- 
~~,.=2.5r~;3,4,6,7-5r~.1,2,4,5-~=5~10~~~cm ' ; 3 - 2 . 1 0 '  
c m  I ;  6-10 - cm-  I ;  7-1.5 10- ' c m  '. The solid curves are solutions 
of the Boltzmann equations, and the dashed curves are calculated from 
the strong-collision model. 
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FIG. 6. Velocity distributions of the CO, molecules in the quasisteady 

FIG. 4. Velocity distributions of the CO, molecules in the quasisteady 
state. n';; = 1, n;!: = 0. The buffer gas is N,. 1-1 V , J )  lower level; 2- 

I V ' , J 1 )  upper level. The curve labels have the same meaning as in Fig. 3. 
The dot-dashed lines show results calculated from the Keilson-Storer 
model (1=103 W/cm2, R = 5 . 1 0 - 4  cm-I, p=2 .10- '  atm, 

our case. In contrast, the models of strong collisions 
( a K s  = 0) and weak collisions (a,, = 1) are both afflicted 
by significant errors in the determination of the populations 
and velocity distributions in the C0,-He case. These errors 
become particularly obvious in the calculation of the veloc- 
ity distributions (Fig. 6), where they can reach 100%. These 
errors lead in turn to equal errors in the absorption coeffi- 
cient for the given velocity, a;;':;" (Fig. 7), and errors in the 
integral absorption coefficient (the areas under curves 1, 2, 
and 3 are different). 

The errors of the strong- and weak-collision models 
differ in sign. In addition, for the cases shown in Figs. 6 and 7 
the errors of these limiting models are identical in magni- 
tude, although the C0,-He collisions would appear to be a 
better approximation of weak collisions (a,, = 0.890). The 
sensitivity of the velocity distributions of the molecules to 
the particular model used for the elastic-collision integral 
obviously depends on the relation between re and r,,. For 
re > rRT the model has only a minor effect. In the case 
re 5 rRT1 as was shown above, the velocity distributions may 

state. n';; = 1, n';!:. = 0. The buffer gas is He. The solid curves show the 
solution of the Boltzmann equations and results calculated from the Keil- 
son-Storer model. The curve labels otherwise have the same meaning as in 
Fig. 5. 1-1 V , J )  lower level; 2-1 V 1 , J ' )  upper level (I= 10' W/cm2, 
~ = 5 . 1 0 - 4 c m - l , p = 2 1 0 3 a t m , ~ R T  = 57,). 

depend noticeably on the particular model. The calculations 
show that for T, ~ r , ,  the following assertions are valid: The 
strong-collision model works at 0 <a,, < 0.5. Reliable re- 
sults can be found at 0.5 < a,, < 0.85-0.9 only by solving the 
Boltzmann or Keilson-Storer equation. The Fokker-Planck 
diffusion equations which follow asymptotically from the 
Keilson-Storer equations can be used in the interval 0.85- 
0.9 <aKs < 0.95. For 0.95 <aKs < 1 one can completely ig- 
nore the effect of elastic collisions on the shape of the veloc- 
ity distribution functions. 

The validity of the strong-collision model was tested by 
K ~ u r a , ~ '  who solved the problem of the relaxation of an 
initial perturbation of the distribution function in a process 
of elastic collisions. However, that study was limited to the 
particular case m,/m, = 1, so no general conclusions can 
be drawn from the good agreement which was found 
between the model-based results and the Monte Carlo re- 
sults. 

Attempts have been made previously to generalize the 
strong-collision model to the case of an arbitrary relation 

FIG. 5. Time evolution of the population of the I V , J )  lower level. The 
buffer gas is He; 0 = 5. 10-4cm- ' ;p  = 2.10-'atm. 1-I = lo4 W/cm2, FIG. 7. Normalized absorption coefficient a* = az,J ' (~)  .u,,r/(u,n';;) 
T,, = 7,; 2-10" W/cm2, 57,. Thecurvelabelshave thesamemeaning as for I= 10" W/cm3, 0 = 5 .  l o 4  c m  ' , p  = 2.10 - 'atm, and T,,. = 57,. 
in Fig. 4. The dashed curves with the shorter dashes show results calculat- The buffer gas is He. 1-Strong-collision model; 2-Keilson-Storer mod- 
ed in the weak-collision limit (a,, = 1 ). el; 3-weak-collision limit (a,, = 1 ). 

610 Sov. Phys. JETP 72 (4), April 1991 Bazelyan etal. 610 



between the masses of the molecules, by varying the time T, 

in some manner. For example, Haverkort et a1.12 replaced T, 

by an effective time T , ~  = T,/( 1 - a ) ,  where a is a function 
of m,/m, with a - 0  as m,/m,-0 and a - 1  as 
m, /m, - w . The physical meaning here is that some of the 
molecules (a  fraction 1 - a)  undergo strong collisions, 
while others (a fraction a) have the same velocity vectors 
after the collision. If we replace T, by T ~ ~ ,  all the results of 
Sec. 3 remain in force. The value a = a,, was adopted in 
Ref. 12 to calculate the velocity of the light-induced drift 
(i.e., the first moment of the distribution function). That 
value leads to the best agreement between the expressions for 
momentum exchange found from this model and from the 
Keilson-Storer model. However, our own calculations show 
that the coefficient a should be assigned different values, 
depending on the particular moment of the distribution 
function which is being calculated. Consequently, it would 
be difficult to expect good accuracy in the distribution func- 
tions calculated in all applications of this model, and the 
model itself should be regarded as only semiquantitative. 

Finally, we note that in all cases of practical interest in 
the physics of gas lasers, atmospheric ecology, etc., the ratio 
of the masses of the colliding molecules is such that we have 
0.5 <a,, <0.85-0.9, so it would not be valid to use simple 
models of the elastic-collision integral in these cases (see 
Table I). 

5. CONCLUSION 

In summary, consideration of the laser-induced devi- 
ation of the velocity distributions of the molecules from 
equilibrium results in substantial changes in the probability 
for stimulated vibrational-rotational and vibrational transi- 
tions and also in the absorption coefficient for the light. Non- 
equilibrium velocity distributions may depend substantially 
on the particular model selected for the elastic-collision inte- 
gral. Here are some more-detailed conclusions. 

1. The quasisteady probability W ;JJ' for the stimulated 
vibrational-rotational transition is a nonlinear, square-root 
function of the light intensity I when the collisional absorp- 
tion linewidth is small in comparison with the Doppler 
width (Aw, (Aw,), and the field is at a moderate level 
( ~ 2  1) [see (11) and Fig. 11. 

2. The presence of a nonlinear region on the plot of 
W ;;'(I) leads to decreases, by a factor up to 1.5 or 2, in the 
probability for vibrational photoexcitation, W,, ,., and in 
the optical absorption coefficient a p '  (in comparison with 
the values found without consideration of the deviation of 
the velocity distributions of the molecules from equilibri- 
um) (Fig. 2, a and b). 

3. The quasisteady probability for a stimulated vibra- 
tional-rotational transition, W ;:', in a strong field (tt $1 ) 
increases linearly with the light intensity. The ratio of this 
probability to the probability found without consideration of 
the deviation of the velocity distributions of the molecules 
from equilibrium is proportional to Aw,/Aw, in the case 
Aw, <A@, [see (1  lo ) ] .  The slower growth of W ;:'(I) 
(slower by a factor of tens) has the consequence that the 
probability for vibrational photoexcitation, 
W,, .. = q , / 2 ~ ~ ,  (the rotational bottleneck), reaches its 
maximum at substantially higher light intensities (Fig. 2a). 

4. An incorrect choice of model for the elastic-collision 

integral can change the calculated distribution functions by 
amounts equal to their values. Comparing the results calcu- 
lated on the basis of models and results of solutions of the 
Boltzmann equations with the actual collision integral leads 
to the conclusion that the Keilson-Storer model is quite ac- 
curate over the entire range of the parameter a,, ( a  measure 
of the ratio of masses of the colliding molecules) in problems 
of optical excitation and relaxation of a small admixture of 
absorbing molecules in a medium of a buffer gas. In several 
cases, simpler approximations are also quite accurate. For 
example, if the rates of elastic collisions and R T  collisions 
are equal, with 0 <a,, <: 0.5, the model of strong collisions 
works well, while for 0.85 < a,, < 1 the model of weak colli- 
sions (Fokker-Planck equations) work well. For 
0.95 <a,, < 1 one can completely ignore the effect of colli- 
sions on the shape of the nonequilibrium velocity distribu- 
tions of the molecules. In the interval 0.5 <a,, < 0.85, the 
only way to obtain reliable results is to solve the Boltzmann 
or Keilson-Storer equation. 
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