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We consider the contribution of electron vacuum polarization to the magnetic dipole and electric 
quadrupole moments of heavy nuclei. The leading contributions, proportional to the large 
logarithm In( he/R) ( h, is the Compton wavelength of the electron, R is the the nuclear radius), 
are calculated exactly in the parameter Za (Z le 1 is the nuclear charge, a is the fine structure 
constant) with the help of the Green's function for the Dirac equation in a Coulomb field. The 
feasibility of experimental observation of the effect is discussed. 

1. INTRODUCTION 

As is well known, the discussion of certain quantum 
electrodynamic processes in a strong Coulomb field requires 
the exact contribution of that field, not an expansion in pow- 
ers of the parameter Z a  ( Z  lei is the nuclear charge, 
a = e2 = 1/137 is the fine structure constant, e is the elec- 
tron charge, f i  = c = 1 ). For example, Coulomb corrections 
noticeably reduce the coherent scattering cross section of a 
photon in the field of a nucleus.'.* 

An exact treatment of the Coulomb field is also needed 
in the analysis of the effect of vacuum polarization on the 
structure of the energy spectrum of muonic atoms (see Ref. 
3 and the literature cited therein). Usually in such an analy- 
sis only the spherically symmetric part p ( r )  of the induced 
vacuum charge distribution is taken into account. In partic- 
ular, in the pioneering work of Wichmann and K r ~ l l , ~  the 
Laplace transform of the product p ( r ) r  was calculated. 
The density p ( r )  itself was found in Ref. 5. In Ref. 6 the 
behavior of the spherically symmetric part of the density at 
small distances was studied by operator methods. In addi- 
tion particular contributions to p ( r )  were found with the 
help of numerical methods (see Refs. 3 and 7) .  Knowledge 
of the potential due to the induced charge permits the calcu- 
lation of shifts of atomic energy levels (see, for example, Ref. 
8).  

However, there exist heavy nuclei possessing large mul- 
tipole moments. The fields of such nuclei induce correspond- 
ing moments in the vacuum. In contrast to the total induced 
charge, equal to zero in view of the electric neutrality of the 
vacuum, higher multipole moments of the vacuum have 
nonzero values. More than that, it turns out that the leading 
contributions to these moments have additional enhance- 
ment factors in the form of the large logarithm ln(h,/R) of 
the ratio of the electron Compton wavelength he to the nu- 
clear radius R. The present work is devoted to the calcula- 
tion of these contributions to the induced magnetic dipole 
and electric quadrupole moments. 

The logarithmic enhancement of the induced moments 
was first discovered in Refs. 9 and 10 in the calculation of the 
three-loop contribution of the electron vacuum polarization 
to the anomalous magnetic moment of the muon (the role of 
R in this case is played by the muon Compton wavelength). 
One of the authors of Ref. 11 has proposed a simple method 
for the calculation of the logarithmic contribution in lowest 
order of perturbation theory. The muon is viewed as a point 
source of the Coulomb field and the magnetic dipole field. 

As a result there appears in the calculation of the induced 
moment a logarithmically divergent integral over the dis- 
tances from the field centers, which is cut off at short dis- 
tances at the muon Compton wavelength A, = l/m, and at 
large distances at h, = l/m,. We use a similar approach in 
the case of the nucleus. However, for nuclei with large 
charge Z i t  is no longer legitimate to consider their Coulomb 
field by means of perturbation theory (the expansion param- 
eter is now Za - 1 ) . For this reason we perform the calcula- 
tions with the help of the exact Green's function for the elec- 
tron in the Coulomb field. 

2. MAGNETIC DIPOLE MOMENT 

We go to the calculations. Outside the nucleus its mag- 
netic moment p produces a magnetic field with the vector 
potential A = [pr] / r  '. This magnetic field induces a vacu- 
um electron current 

where G(r,rll&) is the electron Green's function, which we 
represent in the form 

Here y, are the Dirac matrices. According to the Feynman 
rules the contour of integration over the energy E in ( 1 ) goes 
from - oo to + CD below the real axis in the left &-halfplane 
and above the axis in the right halfplane. The magnetic mo- 
ment corresponding to the vacuum current ( 1 ) is 

This moment is directed along p: M = gp. Expanding the 
Green's function in a series in powers of A we obtain from 
( 1 ) and ( 3 ) the following expression for the coefficient g: 

h 

where P = yo ( E  + Za/r)  - yp. It will be shown below that 
the first term in the expansion of the renormalized quantity g 
in powers ofZa  is proportional to (Za) 2.  For this reason it is 
necessary to subtract from the integrand in (4)  its value at 
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Z = 0. In what follows this subtraction is to be understood, 
it will be carried out explicitly in the final result. After the 
subtraction we still must regularize the integral since it is 
logarithmically divergent at small distances. We perform 
this regularization by taking the nuclear radius R as the low- 
er limit in the integration over r. Since we confine ourselves 
in the following to logarithmic accuracy we may set the elec- 
tron mass equal to zero. Further, the radial integration 
should be cut off above by the electron Compton wavelength 
A,. In this fashion we obtain an expression for the logarith- 
mic contribution to the quantity g that is exact inAZa.^ A 

Simple manipulations using the identity 1/P = P/P2 
bring (4) to the form 

where 1 is the orbital angular momentum operator, 
j = 1 = 2/2, Z = yo y, y, n = r/r. The analyticity properties 
of the Green's function allow rotating the contour of integra- 
tion by r /2  into coincidence with the imaginary axis. An 
integral representation for the electron Green's function in 
the Coulomb field was obtained in Ref. 12, valid in the entire 
complex plane of the variable E. This representation is very 
convenient for applications. Equation ( 16) from Ref. 12 for 

h 

D(r,rl(&) = (rl l/P21r') for E = iE can be represented as 

( 6 )  

Here I,, (y) is the modified Bessel function of the first kind, 

nl=r'/r', y=2 1 E 1 (rr') '"lsh s, xenn' ,  
d d 

A ( X I =  ;jE [ P I   PI-^ (XI I ,  B ( x )  = [ P I  ( x )  - P I - , ( x )  1, 

P, are the Legendre polynomials, and v = [ I  - (Za)2]+.  
Passing from integration over r to integration over rlE I we 
obtain the factored logarithmically divergent integral, 
which gives the large logarithm mentioned above. It is now 
convenient to express (5)  in the form 

It follows from the results of Refs. 10 and 11 that 
fM (Za) - (Za )  for Za -+O. Using the representation (6)  it 
is not hard to calculate the first term in the brackets in (5): 

m 

Here $(x) = d In r (x) /dx ,  where r ( x )  is the gamma func- 
tion. 

For the calculation of the seco%d and third terms we 
represent the matrix element (rl ( 1/P 2 ) 2  ( 1/P 2, J r )  in the 
form of the integral 

and similarly for (rl(  1/F2)'(r). We then take the trace over 
the products of y matrices and integrate over the angles of n 
and n'. This is easiest done by making use directly of Eq. 
( 16) from Ref. 12, where the function D(r,r1l&) is represent- 
ed as a sum over partial waves. The corresponding projec- 
tion operators satisfy the conditions of orthonormality, 
making it easy to calculate the necessary traces and inte- 
grals. As a result there remain in the double sum over I and I ' 
just the terms with I '  = I and I '  = I f  1 ("diagonal" and 
"off-diagonal" transitions respectively). We have 

[ (rs:r:;: ] I ~ ~ + ~ ( Y ) I ~ ~ ~ + ~ , ( Y ~ ) G .  xexp - 

Here 

y =B (rr') "lsh s, y'd2 (rr') '"lsh t, 

T=s+t, v'= [lfZ- (Za) '1 %, 

In (9) we made use of the symmetry under the exchange of I 
and 1 '. We describe briefly the subsequent calculations, as 
they are not entirely trivial. 

We start with a discussion of the contribution&, of the 
diagonal transitions. In this case all integrals are calculated 
analytically. The integration over r' and then over r is per- 
formed with the help of familiar formulas (Ref. 13, p. 321 
and 303 ) : .. 

1 ab a2+b2 
d. x e x p ( - c 2 ) L    ax)^. (6x1 = ,L(,) eap (7) , 

0 

and also recursion relations for Bessel functions. Introduc- 
ing then new variables T = s + t and r = s - t and integrat- 
ing over r and over T we finally obtain 
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where Y ( x )  = d $ ( x ) / d x .  Calculation of the contribution 
f,, of the off-diagonal transitions requires a somewhat big- 
ger effort. We introduce the variables 

T=s+t, y=sh s/sh T ,  p= (rr1)%, u= (rlr') ". 
We integrate over u and then over T, making use of the 

relation (Ref. 13, p. 358) 
m 

1 Ko([a2+b2+2ab ch T]')oh(pT)dT=K,(a) K,(b).  
0 

( 1 3 )  

Here K, ( x )  is the modified Bessel function of the third kind. 
After integration overp and y the functionf,, can be repre- 
sented as 

+1'@ (v', x) I +3 (Za)'@ ( v ,  x) @ (v', 5)  -@o" ( 5 )  1, 

where 

r (v+iZa) I' (v-iZa) 
0 (v ,  x) =xv aF(v+iZa, v-iZa; 2v+1; x ) ,  r ( ~ v + I )  

F(a,  6; c; X )  is the hypergeometric function, 
@ ' ( x )  = d @ ( x ) / d x ,  and 

We recall that the function fM ( Z a ) ,  in terms of which 
the sought-for quantity g ( 7 )  is expressed, is equal to 
f, + f2' + f22 [see (8),  ( 1 2 ) ,  and ( 1 4 ) l .  Hence we have 
evaluated the logarithmic part of the induced magnetic mo- 
ment in the field of the nucleus. In Fig. 1 we show the depen- 
dence of the ratio fM ( Z a ) / ( Z a )  on Z a .  It turns out that 
the contribution of the off-diagonal transitions to this ratio is 
less than 3% and depends very weakly on Z a .  At the same 
time it is clear from Fig. 1 that the ratio in question increases 
rapidly in the neighborhood of the point Z a  = ~ 3 1 2 .  The 
reason for this behavior is to be found in the presence of a 
pole at v  = 1/2 ( 1  = 1 ,  Z a  = v"3/2) in the expression for f2, . 
As is well known, the pole at v  = 1/2 is present in the matrix 
element of the hyperfine interaction operator, evaluated 
with respect to eigenfunctions of the Dirac equation in the 
Coulomb field (see, for example, Ref. 14). The origin of this 

FIG. 1 .  Dependence of the ratio f, (Za)/(Za)' on Za. 

pole has to do with the singularity in the vector potential A at 
small distances. Indeed, the wave function behaves at small 
distances like r  "- ', and the matrix element of the interac- 
tion with the vector potential A is proportional to 
( 2 v  - 1 )  - '. It is clear that near the point Z a  = v"3/2 finite- 
nuclear-size effects must be taken more accurately into ac- 
count. It is not hard to see that Eq. ( 1 2 )  is valid for 
2v - 1 > l / ln (  h , / R ) .  At the very point Z a  = the cal- 
culation leads to the integral 

We discuss now the question of the contribution to the 
induced moment of lowest order perturbation theory. The 
well-known connection between the "bare" potential and 
the potential induced by vacuum polarization at the one- 
loop level," permits one to write the following expression 
for the induced vector potential in the momentum represen- 
tation: 

where 9 (k2) is the polarization operator. Making use of 
formulas ( 1 14.2) and ( 114.5) from Ref. 15 in the coordinate 
representation we obtain 

Here d ( r )  is the Uehling potential.16 At short distances 
r< he this potential differs from the Coulomb potential by an 
additional factor 2a.ln ( h , / r ) / 3 7 ~ ,  while at large distances it 
differs by the factor (a/4n-+ ) exp ( - 2mr)/ ( m r )  3'2. In 
view of this last circumstance lowest order perturbation the- 
ory gives no contribution to the total induced moment, al- 
though it modifies the nuclear potential at short distances. 

3. ELECTRIC QUADRUPOLE MOMENT 

The quadrupole part of the electrostatic potential of a 
deformed nucleus 

(Q, is the nuclear quadrupole moment tensor, n = r / r )  in- 
duces a corresponding moment in the electron vacuum: '" 
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Qij = Jdr  p ( r )  r2 (3nr j -15~~) .  (18) 

with G, = qQ,. Similarly to the case of the magnetic dipole 
we obtain for the coefficient q the expression 

Here 

G,(r, r'le) =<r / [yo(lebZa/r)  -7p-m]-' Ir') 

is the electron Green's function in the Coulomb field, 
x = nn', P2 (x)  = ( 3x2 - 1 )/2 is a Legendre polynomial. It 
is now more convenient to use for G, the representation in 
Eq. (19) of Ref. 12 (for m = 0 and E = iE) : 

~ 4 2  (rr') "1 sh s, 2  h , T=s+sl, 

Thus, in the case under consideration we have along with 
"diagonal" (I = I ') also "off-diagonal" transitions of two 
types: with I '  = I + 1 and I '  = I + 2. Further integration 
leads to the result 

w 

1 
= - -1 ds exp [*2iZus- ( E  1 (r+rr)  cth sl 

4nrr' 

* ( i+yn .ynf )y~ i lA  ( X ) I ~ ~ ( ~ )  -i[ ' ' (r-r') - ( y ,  n+nf)* ( x )  2sh2s 

The notation is the same as in Eq. (6).  Similarly to what was 
done for g we extract the large logarithm and represent the 
sought-for quantity in the form 

where the function fQ reduces to the following after taking 
the trace and integrating over angles: 

- (r+r l )  cth s + cth sf) ] 

where 

B ~ - 2  ( V + B ) , ~  r(  ( v + P + c L ) I ~ )  r (  (v+p-p)12) BY,p(x)=2 x r ( v + i )  

A plot of the function fQ (Za)/ (Za) is shown in Fig. 
2. In this case strong cancellation occurs between contribu- 
tions corresponding to the transitions with A1 = 0 and 
A1 = 2-their sum is less than 3% of fQ for all values of the 
parameter Za .  Similarly to the case of the magnetic dipole 
moment rapid growth is observed in the induced electric 
quadrupole moment near the critical value of the parameter 
Za,  which now equals m / 4 .  The main source of this 
growth is the pole in the term in the partial-wave expansion 

with FIG. 2. Dependence of the ratio fa (Za)/(Za) on Za. 
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with I = 1, I ' = 2 for Y + Y' = 2. Upon accurate inclusion of 
finite-nuclear-size effects this pole singularity is trans- 
formed into an additional logarithmic factor 1/2 In ( h,/R ), 

just as in the case of the magnetic moment. 
Evidently the appearance of the logarithm ln(Xe/R) in 

the expressions for the induced moments is a general feature, 
which can be easily understood from dimensional consider- 
ations. Indeed, we are evaluating a dimensionless quantity 
( g  or q )  as an integral over a product of homogeneous func- 
tions (potentials and massless propagators). Such an inte- 
gral is necessarily logarithmically divergent. In view of the 
previously mentioned arguments this divergence is cut off at 
R in the ultraviolet region and at he in the infrared region. 

4. INDUCED POTENTIALS 

To calculate atomic energy shifts we need to know not 
only the total induced moments but also the corresponding 
charge and current distributions and the potentials due to 
them. For distances in the region R ( r 4  he it easily follows 
from simple dimensional considerations that 

Precisely such a distribution of charge and current densities 
gives the logarithmic contribution to the total induced mo- 
ments found above. At distances considerably in excess of A, 
the induced densities are found most easily with the help of 
the Euler-Heisenberg Lagrangian (see Ref. 15). We have 

The electrostatic and vector potentials due to the distribu- 
tions (25) and (26) are (to within logarithms) 

a Qjninj r 
q(r)=-f,--- In-, 

30n 2r3 R 

The zeroth-order perturbation-theory contribution to e, is 
found by means similar to those used for the induced vector 
potential [see (15) and (16)]: 

5. FEASIBILITY OF EXPERIMENTAL OBSERVATION OF THE 
EFFECT 

The question of feasibility of experimental observation 
of the phenomenon under discussion should be given a sepa- 
rate study. Nonetheless we should like to make several com- 

ments on the subject. It follows from our analysis that the 
main contribution to the induced magnetic moment is from 
distances between the nuclear radius and the electron Comp- 
ton wavelength. It therefore seems to us that the best candi- 
date for experimental observation of the phenomenon is a 
mu-mesic atom. The characteristic size of the muon wave 
function for low-lying levels in such atoms is approximately 
l/Zam, 4 he. Measuring the ratio of hyperfine intervals for 
strongly and weakly excited levels we can exclude the magni- 
tude of the "bare" magnetic moment of the nucleusp, whose 
calculation contains large theoretical uncertainties, and 
compare the ratio obtained that way with the results of our 
calculations. We consider an example, which permits judg- 
ing the size of the effect and the possibility of its experimen- 
tal observation. Using the standard method for the calcula- 
tion of the hyperfine splitting (see, for example, Ref. 17) and 
Eqs. ( 16) and (25) we find for states with quantum numbers 
n- I -1 ,n) l  

Herep andpo are respectively the magnetic moments of the 
nucleus and the muon, F = i + j, j = I + f is the total angu- 
lar momentum of the muon, i is the spin of the nucleon. We 
note that precisely such states are of greatest interest from 
the experimental point of view.'' In the experiment of Ref. 
18 hyperfine splitting in mu-mesic atoms with nuclear 
charges 63 < Z < 77 was measured and accuracy of < 1 % 
was achieved. As is easily estimated with the help of Eq. 
(29), the correction to the ratio of hyperfine intervals due to 
the effect discussed here could reach 0.5%. We note that the 
ratio has contributions also from nonlogarithmic correc- 
tions and such effects as the influence of vacuum polariza- 
tion on the muon wave function, Coulomb corrections to the 
magnetic form factor of the muon," and so forth. We antici- 
pate, however, that the effect discussed here dominates nu- 
merically since it contains a large logarithm, and that the 
precision of the predictions for the hyperfine intervals will be 
sufficient for comparison with experiment. Such an experi- 
ment would serve as an essentially new test of the predictions 
of nonlinear effects of quantum electrodynamics in a strong 
Coulomb field. 

The authors are grateful to V. N. Baier, G. von Oppen, 
and I. B. Khriplovich for useful discussions and interest in 
the work. 
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Antiferromagnets with easy-plane anisotropy are proposed as axion detectors. It is shown that the 
response of the detector is proportional to the ratio of the Dzyaloshinskii field to the external 
magnetic field; this makes it possible to strengthen the bounds on the axion-electron interaction 
constant. 

1. INTRODUCTION 

The discovery of long-range action transferred by mass- 
less or almost massless pseudoscalar particles (arions, ax- 
ions) would be of great significance both for constructing an 
adequate cosmological model and for studying physics at 
very small distances. The experimental status of the search 
for such "exotic" long-range actions at the beginning of 1989 
is reviewed in Ref. 1. 

The interaction of an axion field a with fermions $ in 
matter is described by the Lagrangian 

where q is the axion charge of the fermion. 
We shall study the interaction of the field a with magne- 

tically ordered dielectrics. At sufficiently low energies an 
axion can excite only the spin degrees of freedom of the elec- 
trons localized at the sites of the crystal lattice. In this limit 
the effect Lagrangian, following from Eq. ( 1.1 ), coupling 
the axion field with the medium is equal to 

9,, .=xVam (r) . (1.2) 

Here x =pa /pB is the ratio of the axionic magneton of the 
electron to the Bohr magneton, p, = q/2me, m, is the elec- 
tron mass, and m(r)  is the magnetization density of the me- 
dium. [The relation me&?$ = a, $?y@$ + the contribu- 
tion of the axial anomaly, which we ignored and which leads 
to direct axion-photon conversion in an external field2p3 (see 
also Ref. 1 ), was used in the derivation of the Lagrangian 
(1.21.1 

This "quasimagnetic" character of the field Va implies, 
in particular, that the static axion field generated by a ferro- 
magnet induces a constant magnetization in paramagnetic 
samples separated from this ferromagnet by a superconduct- 
ing ~ c r e e n . ~  The experiment of Ref. 4, performed according 
to this scheme, gave a limit on the constant x: 

with the homogeneous (ferromagnetic precession. ) Mag- 
nons excited in the ferromagnetic detector596 are detected 
based on the electromagnetic oscillations which are coupled 
with them. Ultimately it is precisely the number of these 
coupled photons, which is proportional to x4, that is record- 
ed. 

The number of excited magnons can be determined in- 
dependently by measuring the variation of the macroscopic 
magnetic field (which is proportional to the measurement of 
the macroscopic magnetization) with the help of a SQUID 
magnetometer. It is known, however, that antiferromagnets 
(more accurately, weak ferromagnets) with anisotropy of 
the "easy plane" type and large Dzyaloshinskii field HD are 
more suitable for such measurements (see, for example, Ref. 
8).  In this case the decrease in the weak ferromagnetic mo- 
ment accompanying excitation of one (quasi) goldstone 
magnon can exceedp, by more than an order of magnitude 
(this phenomenon was used in Ref. 8). 

In this paper we shall study the possibility of such an 
antiferromagnetic detector of axions. We shall show that the 
response to the axion signal measured by a SQUID contains 
the enhancement factor HD/Ho, where Ho is the external 
magnetic field. An experiment of the type described in Ref. 5 
on the generation and detection of axions can also strengthen 
the limit on the constant x by two orders of magnitude. 

2. AXION-MAGNON CONVERSION IN AN 
ANTIFERROMAGNETIC MEDIUM 

Let M, and M, be the magnetizations of the sublattices 
of the antiferromagnet, 

where 2M0 is the (almost) equilibrium value of the antifer- 
romagnetic moment and m , ,  are the dynamic variables of 
the medium. Let the z-axis be oriented along Mo and 
Im,,, I < IMol Then the transformation to canonical vari- 

x<2. lo-'. (1 .3 )  ables c,,  c, (see, for example, Ref. 9) ,  neglecting higher- 
order nonlinear terms, is made by means of the following 

In Refs. 5 and 6, on the other hand, an experiment on substitution: 
the generation and detection of a dynamic axion field was 
studied. This experiment employed the existence of a point 
of intersection of the dispersion relations of axions and spin mi,+iml,=c, (20.)'(1- -C c , . ~ , )  , 

4M0 
waves in a ferromagnet. Detailed calculations of the coeffi- 
cients of coherent axion-magnon and double magnon-axion- ma-im..=c, (2o,).(l - A- c, .c , ) ,  
magnon conversion in a ferromagnetic medium were pre- ~ M o  

(2.1) 
sented in Ref. 6. (In Ref. 7, which appeared at the same time 
as Ref. 5, it is suggested that galactic axions with wavelength o,=gJf~, g=!2pB/fi=2n.2,8 MHz/Oe, 

10-100 m be detected based on their resonance interaction mi,=-gcl*ci,  m3.=gcz*cZ 
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