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A first theoretical look is taken at the tails of the density of states in semimagnetic 
semiconductors. The exchange interaction between a charge carrier and magnetic ions makes the 
energy dependence of the density of statesg(E) in the tails markedly different from the known 
energy dependencego( E) cc exp [ - 1 E I/&,) ] for nonmagnetic solid solutions. Theg(E) 
dependence is not monotonic. Some characteristic energies El < Ef < E2 < 0 which separate 
spectral regions with qualitatively different g (  E )  behavior are found. There is ago(E) 
dependence only at the lowest energies, I E I 4 I E2 I .  At Ef < E < E, the density of states again falls 
off with increasing lE 1, but it is exponentially larger thango(E). In the region E, < E < Ef the 
density of states has a deep valley. Finally, at the lowest energies E < E, there is a dependence 
g(E)  cc exp [ - (E ( / E ,  ) 'I2 I ,  where E ,  may be several times E,. The thermal disorder in the spin 
system of the ions makes the density of statesg(E) temperature-dependent. Some possible 
experimental manifestations of these features of the tails on the density of states are discussed. 

1. INTRODUCTION 

Fluctuations in the chemical composition of solid solu- 
tions are known to give rise to tails on the density of states 
(Refs. 1-3, for example). If there is no spatial correlation in 
the arrangement of the atoms of the solution, the energy 
dependence of the density of states is described by 

The tail decay parameter is determined by the nature and 
extent of the disorder. For a substitutional disorder, for ex- 
ample, we would have 

where v is the effective potential of one impurity atom, ii is 
the average impurity concentration, a is a lattice constant, m 
is the effective mass of the charge carrier, and c=: 178 is a 
numerical The results in ( 1) and (2)  describe the 
tails on the density of states in nonmagnetic semiconductors, 
where the interaction of an electron with impurity atoms is 
caused exclusively by the properties of the core potentials of 
the atoms. 

In this paper we will be discussing semimagnetic semi- 
conductors, which are usually thought of as solid solutions 
in which one component has a net magnetic moment. Exam- 
ples are the solid solutions M,Ai', BV1, in which the mag- 
netic impurity M is an iron-group atom. The exchange inter- 
action with the atoms of the magnetic impurity strongly 
influences the properties of the charge carriers in semimag- 
netic semiconductors.5 In particular, it should affect the 
shape of the tails on the density of states. This topic, which 
has not been discussed previously, is the subject of the pres- 
ent paper. 

We consider a solid solution with a relatively low con- 
centration of the magnetic impurity,Ea3 < 1, at temperatures 

where J is the exchange-interaction integral. The summa- 
tion in (3) is over all the impurity centers, S, is the spin of 
impurity center i, and s is the spin of an electron (s = 1/2). 
To help clarify the discussion below, we will cite some typi- 
cal values of the parameters in (3).  For the materials which 
have been studied in most detail, Cd, -,Mn,Te and 
Hg, - , Mn,Te, the quantity I J a  - ) is - 1 eV, slightly differ- 
ent for electrons and holes. The quantity v, which stems from 
the difference between the core potentials of the impurity 
and host atoms, should be on the order of atomic scales, i.e., 

1 va - I 2 1 eV. The parameter va - can also be estimated 
from the concentration dependence of the width of the band 

From the data of Ref. 5, we find that va-3 varies with the 
particular material, from 0.5 eV (Zn, - ,Mn,Te) to -4 eV 
(Hg, - , Mn, Te). The value of S = IS 1 is usually a few units; 
for Mn2+ ions, for example, it is S = 3. The situation 
IvI - IJSsl is thus typical, and this is the situation on which 
we focus below. When we take up the relatively improbable 
although theoretically possible case I vl < I JSsl, we will state 
so explicitly. We would point out, however, that for the ex- 
change interaction to outweigh the potential interaction we 
would actually need the stiffer condition Ivlg~Zsl,  where 3 
is the average spin induced by the field of an electron, which 
satisfies IS 10. 

The discussion below is organized as follows. In Sec. 2 
we present some qualitative arguments which will make it 
possible to describe, without further calculations, the energy 
dependence of the density of states in a semimagnetic semi- 
conductor. In Sec. 3 we use an optimum-fluctuation method 
to derive explicit expressions forg(E) in semimagnetic semi- 
conductors in various energy regions. Section 4 contains a 
discussion of the results. 

T which are not too low, at which there is no magnetic 
order. The interaction of an electron with the im~uri tv svs- 2. QUALITATIVE CONSIDERATIONS . - "  
tem is described by the Hamiltonian We begin with a description of the effect of the exchange 

interaction on the properties of localized electrons in a semi- 
H = -J z6 (r-rij ( s s i )  + u 6 (r-ri) ,  (3)  magnetic semiconductor. The most important consequence 

of this interaction for our purposes is the magnetopolaron 
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effecL6 This effect can be summarized by saying that a local- 
ized electron orients the spins of the magnetic atoms, so a 
self-consistent magnetization arises. It lowers the energy of 
the system. In describing such states, it is convenient to dis- 
tinguish three regimes, which correspond to different tem- 
peratures. 

Saturation regime. This regime is realized at the lowest 
temperatures, at which essentially all the spins in the elec- 
tron localization region are oriented. This case occurs under 
the condition 

Here $(r) is the electron wave function, and the angle brack- 
ets mean an average over the localization region. 

Polaron regime. This regime arises with increasing T,  
when inequality ( 4 )  is reversed. In this regime the response 
of the magnetic impurity system to the electron spin be- 
comes linear in the parameter I JSsl ($')/T< 1 .  The effective 
field acting on an electron turns out to be proportional to 
$'= 1$(r) 1 2 ,  as in the case of ordinary acoustic polarons.' 
The corresponding states are magnetic polarons in a random 
field generated by fluctuations in the concentration of the 
magnetic impurity. In this regime, thermal fluctuations of 
the spins of the magnetic atoms are substantial. However, 
their nonvanishing average magnetization is still important. 

Thermodynamic-fluctuation regime. This regime oc- 
curs at the highest temperatures. Here the fluctuations of the 
magnetization of the atomic spin system exceed the average 
value of the magnetization. The electron is coupled with the 
fluctuating magnetization because the electron spin and the 
spatial variations of the magnetization make local "fine ad- 
justments" of the approximate nature. The temperature at 
which this regime begins to set in can be estimated by equat- 
ing the energy of the interaction of an electron with N atoms 
in the localization region, i.e., I JSsl$*N, to the energy of the 
thermal fluctuations, i.e., N1" T. Here one must bear in 
mind that N-7iR 3, where R is the localization radius. The 
normalization condition $'R 3z  1 must also be taken into 
account. As a result, the condition for the thermodynamic- 
fluctuation regime becomes 

Since N$1 and IJi?/T I $ 1 ,  the temperature of the transition 
to the regime of thermodynamic fluctuations is much higher 
than the temperature~of the transition from the saturation 
regime to the polaron regime. There is accordingly a region 
in which the polaron regime exists. 

We will now use the discussion above to describe the 
behavior of the density of states in the tails in a semimagnetic 
semiconductor. We note first that conditions ( 4 )  and ( 5 )  
can be used to distinguish different energy regions in the tail 
on the density of states at a fixed temperature. The idea is 
that as the state energy E in the band gap decreases there is a 
decrease in its localization radius, and ($') - R corre- 
spondingly increases. It follows that at a given temperature 
T there is a characteristic energy E,  ( T) which separates the 
regions of the saturation and polaron regimes: 

IJSsI ( I$~>/T>I ,  E<E, ( T ) ,  
( 6 )  

I JSsl ( Q Z > / T < l ,  E>E, ( T ) .  

Correspondingly, one can introduce an energy E2( T )  which 

separates the regions of the polaron and thermodynamic 
fluctuation regimes: 

In the saturation regime, i.e., at E < E l ,  essentially all 
the spins of the magnetic atoms are oriented, so the energy of 
the interaction with each of them changes by the maximum 
possible amount: 

In addition, the origin of the energy scale shifts by an amount 
IJS I7i/2. As aresult, the tail on the density ofstates at E < El  
can be described by expressions ( 1 ) and ( 2 ) ,  in which it is 
sufficient to make the substitution 

The exchange interaction in a semimagnetic semiconductor 
thus leads to an exponential variation of the tails on the den- 
sity of states at E < E ,  ( TI.  

We turn now to an analysis of the polaron energy re- 
gion, El  ( T) < E < E, ( T )  . In this region, the localization ra- 
dius of the state increases with increasing E( > E, ), and the 
coupling of the electron with the magnetic moments of the 
atoms weakens. One might expect that the destruction of 
magnetic polarons by the thermal disorder in this energy 
region would lead to a valley in the density of states. We 
should thus find a peak in the density of states at E-  E,. 

In the region of the thermodynamic-fluctuation regime, 
0 < E < E2( T ) ,  the magnetic interaction of the electron with 
the impurity ions leads to a relatively slight lowering of the 
electron energy, I AE I < I E 1 .  Correspondingly, the shape of 
the tails on the density of states should be approximately as 
described by ( 1 ) : 

where a is a numerical coefficient. To estimate AE we note 
that at high temperatures the interaction with the magnetic 
ion induces an average spin S- JS$'/T at an electron. As a 
result we find 

AE- I JSSI n-JZS2$ZnlT. ( 1 1 )  

In the region of thermodynamic fluctuations of the density 
of states, g ( E )  therefore increases with increasing E. To con- 
clude this section of the paper we note that localization ef- 
fects in the tails on the density of states can be important 
only at fairly low temperatures. Specifically, the thermal en- 
ergy Tmust be considerably lower than the maximum ener- 
gy scale in the tail on the density of states. We therefore 
assume 

T< max { & a ,  &I, ] JSliiI2). 

3. OPTIMUM-FLUCTUATION METHOD 

Our problem is to find the explicit expression for the 
function @ , ( E )  at high energies IE 1 in the region of an ex- 
ponentially low density of states: 

g(E)=go esp[-cDo(E)]<ga. 

In this region, among all possible local configurations of the 
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impurity center which would create electronic states with a 
given energy E, there are certain optimum configurations 
which dominate g (E)  . The optimum-fluctuation 
makes it possible to determine such configurations and their 
contribution to @,(E). A specific feature of out problem is 
that we are dealing with states with a given free energy F. 
This formulation of the problem is dictated by the need to 
deal with thermodynamic fluctuations in a spin system. We 
thus seek the optimum fluctuations which determine the 
density of states for a given value ofF. In this case the density 
of states can be thought of as a function of the free energy F 
or as a function of the electron energy E corresponding to the 
given value of F. 

We consider the Gaussian region of the spectrum, 
where the density of states remains appreciable in magni- 
tude. In this region, the situation is dominated by fluctu- 
ations created by a relatively small deviation of the local 
impurity concentration n( r )  from its average value E. The 
probability for the formation of a fluctuation Sn ( r )  is 

6n2 ( r )  
ex, [- dr -1 

2n ' 

where Sn ( r )  = n ( r )  - E. Optimizing probability ( 12) for a 
given value of F i s  equivalent to seeking an extremum of the 
functional 

6nz ( r )  
8 [ n ( r ) ] =  j d r - - h [ ~ - 8 . j  2n $ ' ( r )dr ] ,  (13) 

where A and $ are Lagrange multipliers. The last term in 
(square) brackets in ( 13) reflects the fact that the electron 
wave function in a fluctuation is normalized. We will see 
below [see (22) ] that 8 is the self-energy of an electron. 

The free energy F is given by 

ti" 
F =--J ( ~ $ ( r ) ) ' d r + u j  $ l (r )n(r)dr-T l n z ,  (14) 

2 m 

where Z is the partition function of the spin system, given by 

Using standard manipulations,8 we can put Z in the form 

1 

Here 

sh[ ( S f  '1z)El 
f ( 8 )  = 

sh (E/2) ' 

(19) 
The function B, (c) is the ordinary Brillouin function. 

Using ( 14) and ( 16)-( 19), we can vary functional 
(13) with respect to$(r) and Sn ( r ) .  Switching from a sum- 
mation over the sites i to an integration, and equating the 
variation S@ to zero, we obtain the system of equations 

A2 -- 1 EBB' ( E )  -I- Bs ( E l  A$, - [L J ~ B .  ( I )  - un 
2m 1+I 

Here we have introduced 

Equations (20) lead to an equation of the Schrodinger type 
with a $-dependent effective potential: 

A -- A$+U$=E$, E=Z-uii. 
2m 

(22) 

The energy E is reckoned from the shifted band boundary, as 
in (1):  

In addition, using Eqs. (20), we can express the argument of 
the exponential function in the density of states in terms ofR 
and $: 

We then find 

To determine an explicit expression for the functional de- 
pendence @,(E) we should work from the solution of Eq. 
(22) to find the function $(r)  and R(B) and then substitute 
them into (24). This procedure cannot be implemented ana- 
lytically for arbitrary values of the parameters in (22)-(24). 
We will thus consider separately the various parts of the 
spectrum according to the classification given in Sec. 2. 

As follows from (4) ,  the saturation regime corresponds 
to the condition & 1. In this case the following approxima- 
tions hold: 

l J S l  $2, Bs ( E )  -- S  sign J ,  In f ( E )  -- 7 AT 
' J S ' n  > 1. (25) 

2T 

Equation (22) becomes 

A nonlinear Schrodinger equation of the type in (26) has 
been studied in detail in papers on the standard optimum- 
fluctuation m e t h ~ d . ' - ~ , ~  The results of importance here can 
be summarized by the expressions 

Using these results, we obtain expressions ( 1 ) and (2)  with 
the parameters in (9) .  Where necessary we can also express 
the density of states in terms of the free energy, which in the 
case at hand is 

We turn now to the polaron regime, in which we again 
have I& 1 but {< 1. We can use the following approxima- 
tions in this case: 
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Q2 = I Q4 dr. 
For I we use (36). As a result we find 

Equation (22) becomes 

There is a difference between Eqs. (30) and (26) in that A 
appears in only one of the two terms in the effective poten- 
tial. However, expressions of the type in (27), suitably modi- 
fied, are again applicable. Using them, we find 

The free energy is expressed in terms of E: 

For the values under consideration, IE / % T, the free energy 
has a minimum as a function of the energy E a t  

The existence of this minimum means that there are no states 
with energies E < Ef in the polaron regime. The valley in the 
spectrum of the density of states in the case with a polaron 
effect was first observed by Kusmartsev and R a ~ h b a . ~  

Our last topic is the thermodynamic-fluctuation re- 
gime. In this case approximations (29) remain valid, but we 
have I< 1. Equation (22) accordingly takes the form (30) 
with the second term of the effective potential greater by a 
factor of 3. It thus becomes possible to formally make use of 
expressions (3 1 ) with E' -E* /9. In this regime the second 
term in (3 1 ) is small, so we have 

Correspondingly, the free energy becomes 

To verify that ( lE //E* ) 'I2 g 1 is small, we need to express 
this quantity in terms of the parameter I< 1. Using expres- 
sions (27) for this purpose, we find 

Expression (34) agrees with the qualitative result in ( 10) if 
we use the estimate $2 - R - -a  - ' I E / B  1 3'2 in the latter. 

We can now write expressions for the characteristic en- 
ergies El and E,, which separate the regions in which these 
three regimes occur. These energies are determined from the 
conditions = 1 and I = 1. In writing the first condition we 
express $' in terms of I. For this purpose we note that the 
potential well corresponding to the optimum fluctuation is 
approximately square,132 and we adopt the approximation 

The second term in the expression for E ,  incorporates the 
shift of the origin for the energy scale [see (9)  1. The relation 
I El I ) I E,l between these energies is determined by the in- 
equality 1/2 1 JS (7i  % T. The latter expresses the condition 
that the thermal energy is small in comparison with the max- 
imum energy of the coupling of the electron with the mag- 
netic moments of the impurity ions. Only in this case can the 
effects of the magnetic interaction be seen against the back- 
ground of the thermal disorder. 

The same inequality, 1/21 JS I7i% T, guarantees satisfac- 
tion of the condition Ef > E l .  It means that there exists a gap 
in the density of states at El < E < Ef (Fig. 1 ). It should be 
kept in mind, however, that the conclusion that there is a gap 
applies only to the case of the Gaussian fluctuations under 
consideration here. When we take non-Gaussian fluctu- 
ations into account, we can say no more than that there ex- 
ists an exponentially deep valley in the density of states 
between Ef and E l .  The most important feature of the pic- 
ture which has been drawn is a peak in the density of states at 
energies E-  El .  An estimate of the density of statesg, at the 
peak yields 

When we substitute (37) in, we find 

We conclude this section with a brief look at the hypo- 
thetical case I v lg  I ~ 3 s ~ .  In this case the terms in the original 
Schrodinger equation, (22), which are small in proportion 
to the parameter 

are discarded. It is easy to see that in the saturation regime 
there is nothing in this case which is different from that in the 

FIG. 1 .  Density of states in the tail in a semimagnetic semiconductor at 
temperatures T I  and T,. The dot-dashed line shows the density of states in 
the absence of an exchange interaction ( T I  < T,). 
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case which we have already discussed: The density of states 
is described by Eqs. ( 1 ) and (2)  with the renormalized pa- 
rameters from (9). 

For the polaron regime, the form of Eq. (22) now de- 
pends on the parameter IT/ IE  I. When it is small we have 

An approximate solution, within a numerical factor, yields 
an argument of the exponential function in the density of 
states which falls off with the energy: 

At large values of the parameter, IT / IE  I $1, Eq. (22) be- 
comes the Schrodinger equation for a free magnetic polaron: 

This equation has no parameters which are associated with 
fluctuations of the concentration n ( r )  . This equation yields 
a peak in the density of states at the energy of a free polaron 
[see (27) 1: 

Thecondition J (S + 1 )Sii/l2T> B, which is the condition 
for the existence of a polaron state, along with the condition 
IT/IE I > 1, which is the condition for the validity of Eq. 
(41 ), is summarized by the inequality 

In the thermodynamic fluctuation regime we have a pa- 
rameter I T  / I  E ) < l. In this case Eq. (22) reduces to the form 
in (38), with an effective potential increased by a factor of 9. 
The result for @,(E) is given by (40), in which E, must be 
replaced by E, /34'5 . 

We thus see that in the hypothetical case of small values 
of the impurity potential, I v l 4  I J%[, the density of states 
has a peak (Fig. 2).  This peak occurs either at E- Ep or near 
E-E,, depending on whether inequality (43) does or does 
not hold. 

FIG. 2. Tail on the density of sLates in a semimagnetic semiconductor 
under the condition l u l 4  lJSs. Here Em,, = E, for the case 
\E , I>S(S  + 1)lJlii/12andEm,, = E ,  for IE,I < S ( S  + 1)IJIii/12. 

4. DISCUSSION OF RESULTS; CONCLUSION 

The basic result of this study is the prediction of a non- 
monotonic energy dependence of the tails on the density of 
states in semimagnetic semiconductors. The observed devi- 
ation from a monotonic behavior is described by several en- 
ergy parameters, which we will now estimate. For definite- 
ness we assume the typical values 
-va- ' -3 /4 /~Sa-~1-1 .5  eV, E,-1-10 meV, and 
Tia3-0.1 From expressions (9) ,  (37), (33), and (38) we 
then find 

If v > 0, then we obviously have E, < E,. We will not consider 
the unlikely case of the exact equality v = JJS 1/2, in which 
we would have E ,  = 0. Figure 1 shows the relative positions 
of the characteristic energies in the spectrum. Estimates 
(44) show that there exists a wide temperature range 
E"< T< \El 1 in which the structure of the spectrum in Fig. 
l-i.e., I El I ) T, I Ef 1 ) T, I E,I % T-might be observable. 

Let us explain the evolution of the spectrum with in- 
creasing temperature shown in Fig. 1. At extremely low val- 
ues of T the localization of a charge carrier in the tail is 
accompanied by a complete polarization of the spins in the 
corresponding region and by a downward energy shift of the 
state to E < El. Consequently, at T<E,, there are essentially 
no states with energies Ef < E < 0. With increasing T, the 
spin polarization effects weaken. Accordingly, there is no 
downward shift of the states with E > Ef which are localized 
comparatively weakly, while the more localized states with 
E < E;. undergo a shift as before. At the same time, the weak- 
ening of the polarization effects with increasing T leads to a 
destruction of the least bound states near the peak. The ener- 
gy E, thus shifts downward. In the limit of very high values 
of T, the density of states corresponds to the ordinary law, 
(1 ) .  

It should be stressed that the nonmonotonic behavior of 
the tails on the density of states stems from the interaction of 
localized charged carriers with the spins of magnetic ions. 
For this reason, the nonmonotonic behavior of the tails 
could be seen only in processes involving initially localized 
carriers. Luminescence might be one such process. Accord- 
ing to our results, the emission should be dominated by carri- 
ers which are localized in the peaks in the density of states at 
E- E l .  This conclusion means that the emission spectrum of 
a semimagnetic semiconductor should have a peak at ener- 
gies approximately (El ( less than the band gap. The emission 
intensity should fall off with the temperature in accordance 
with (38). Experimentally, peaks in the photoluminescence 
of semimagnetic semiconductors have been observed in sev- 
eral places10 at energies slightly below the width of the band 
gap. These peaks have been interpreted in those studies as 
resulting from the existence of excitons or impurity levels. 
We would pin our hopes for an experimental test of our inter- 
pretation of the photoluminescence peaks on an observation 
of the specific temperature dependence of the photolumines- 
cence decay [see ( 38) 1. 

States in the peaks in the band tails might be seen as 
attachment levels in photoconductivity. A distinguishing 
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feature of such levels would be the temperature dependence 
of their concentration, which is similar to (38) .  

There is another prediction, which concerns the spec- 
trum of the magnetization which arises during exposure of a 
semimagnetic semiconductor to polarized light. Specifical- 
ly, the magnetization should reach a maximum at photon 
energies which generate charge carriers directly in the peaks 
in the band tails. The production of charge carriers with high 
energies would be accompanied by a depolarization of these 
carriers over the time taken for their trapping in the tails. 
The number of carriers produced by photons with lower en- 
ergies, in contrast, would be exponentially small. Recent ex- 
periments on optical magnetization" have indeed revealed a 
peak at energies a few tens of millielectron volts less than the 
width of the band gap. 

To avoid any misunderstanding, we will point out that 
the nonmonotonic behavior of the density of states described 
above should not be seen in the optical-absorption tails dur- 
ing interband transitions. Such transitions can be treated in 
Franck-Condon approximation, since the characteristic 
times for spin flips are comparatively long (longer than the 
extreme values of the reciprocal phonon frequencies). The 
absorption tails are determined by fluctuations created in 
the absence of localized charge carriers. Since fluctuations in 
the concentration and the spins are independent in this case, 
one can assert that the energy dependence of the tails of the 
interband absorption would be described by expressions like 
( 1 ), in which we would have to replace v2 by v2 + (JS/l) ' .  

On the other hand, a peak in the tail on the density of 
states might be manifested in the absorption if it were occu- 
pied by carriers, as it apparently is in degenerate semimagne- 
tic semiconductors. 

We note in conclusion that the exchange interaction 
with fluctuations in the concentration of magnetic ions 
could have important effects not only for band states but also 
for shallow impurity states. 
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