
Theory of stimulated spin echo in polymer systems 
N. F. Fatkullin 

Kazan State University 
(Submitted 9 April 1990) 
Zh. Eksp. Teor. Fiz. 99,1013-1026 (March 1991) 

A theory of stimulated spin echo with pulsed magnetic-field gradients is developed on the basis of 
the density-matrix formalism. Two effects vital for polymer systems of sufficiently large mass are 
predicted: an influence of spin-flop processes on the diffusion damping mechanism and an 
influence of pulsed magnetic-field gradients on the rates of the relaxation processes. The spin- 
diffusion coefficients are calculated for polymer melts; in contrast to low molecular liquid-phase 
systems they differ significantly from the macromolecule self-diffusion coefficients. 

1. INTRODUCTION 

Stimulated spin echo (SSE) with pulsed magnetic-field 
gradients is a traditional method of investigating the transla- 
tional mobility of molecules with magnetic nuclei (see, e.g., 
Refs. 1-3). Its essence reduces to the following. The spin 
system of a substance is acted upon by a series of five magnet- 
ic-field pulses, of which three are 90-degree RF  pulses and 
two are magnetic-field gradient pulses. Let T, be the time 
between the first and second RF  pulses, 7, the time between 
the second and third R F  pulses, S the duration of the gradi- 
ent pulses, and g the amplitude of the gradient pulse. As is 
well known,'-3 the response of the spin system of the investi- 
gated substance-the spin-echo amplitude-is measured at 
the instant t = 2r1 + r2 after the start of the experiment. 

The SSE amplitude is measured as a rule phenomeno- 
logically, using either specially modified Bloch equations or 
methods of the "phase accumulation" type (see Refs. 1 and 
2). Such calculations lead to the following expression for the 
normalized SSE amplitude of magnetically homogeneous 
systems: 

where T, and T, are the spin-lattice and spin-spin relaxa- 
tion times, respectively, q, ,, and q,,, are the phase shifts of 
the k th spin of the system during the actions of the first and 
second gradient pulses, and N, is the total number of spins in 
the system. 

The phase shifts p ,, and p,, contain information on 
the spatial displacements of the 

where y is the gyromagnetic ratio, g is the magnetic-field 
gradient vector, r, (7) is the radius vector of the k th spin at 
the instant T, and (...) stands for statistical averaging over all 
random realizations of the trajectories of the system's k th 
spin. 

The first two factors in ( 1 ) are connected with relaxa- 
tion damping and the third with diffusive damping of the 
SSE. The following procedure is customarily employed to 

separate the diffusive and relaxation damping. The SSE am- 
plitude A(0) is measured at zero magnetic-field and then the 
quantity 2 (g) = A (g)/A (O), called the SSE diffusive damp- 
ing amplitude, is calculated for a specified magnetic-field 
gradient A (g ) . 

It  is easily seen from ( 1 ) that the diffusive SSE damping 
satisfies the equation 

This quantity is in effect the incoherent dynamic Van 
Hove factor (see, e.g., Ref. 4) of the system and contains 
information on the spatial displacements of the system spins. 
The parameter y8g is the analog of the wave vector and a 
reciprocal measure of the spatial resolution of the experi- 
ment. 

The described theoretical basis for relations (1)  and 
(3),  however, oversimplifies the real kinetics of the spin sys- 
tem. The point is that relation ( 1 ) takes into account only 
the following processes: 

1 ) spin-spin relaxation, which affects A (g) between the 
first and second and after the third R F  pulse; 

2) spin-lattice relaxation, which decreases the ampli- 
tude A(g) between the second and third RF  pulses; 

3) spatial displacements of the spins between the first 
and third R F  pulses. 

Flip-flop processes that cause spin diffusion are also 
possible, and the magnetic-field gradients can influence the 
spin relaxation. 

Allowance for these processes may seem at first glance 
inessential for the following reasons. The characteristic 
times for performing the experiment are T, z 10- s, S < T,, 
T,Z 10- ' -1 s and the characteristic relaxation times are 
T2,--10-3-10-2 S, T t ~ l O - l - l  s (seeRef. 3). Thecharac- 
teristic flip-flop times are T2 5 rf 5 T,, i.e., rf ~ 0 . 1 - 1  s. 
Within these times the nuclei in liquid-phase systems are 
displaced by a distance r ( r f )  z 10'-lo4 A. Flip-flop pro- 
cesses induce exchange of magnetic polarization between 
spins that approach one another. This leads to additional 
displacements of magnetic polarization (of the spin diffu- 
sion). Flip-flop processes, however, are caused by short- 
range dipole-dipole interactions. Additional magnetic-po- 
larization displacements due to !ip-flop processes are 
therefore of the order of a,= 1-2 A, i.e., of the distance 
between nearest neighboring magnetic nuclei. It might seem 
thus that allowance for the effects in question can lead only 
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to corrections of order [a,/r(.rf) ] < 1 to the measured ma- 
cromolecule self-diffusion coefficients. 

An influence of pulsed magnetic-field gradients on spin 
relaxation, on the other hand, is at first glance possible only 
during the time S of action of the magnetic-field gradient. It 
is customary to attempt to make this time S < T, < T ~  as short 
as possible. One can also naturally expect the corresponding 
corrections to be small. 

The action of the aforementioned factors can nonethe- 
less be predominant. The point is that the macromolecule 
terminal relaxation time T, depends strongly on the molecu- 
lar mass, T, - N 3, where N is the number of Kuhn segments 
in the macromolecule (see Refs. 5-8). This means that for 
macromolecules of sufficiently large mass we have T, ) rf, 
so that the time of stochastiation of the spatial spreading of 
the nonequilibrium magnetization in the sample will not be 
T, by rf, which leads indeed to a qualitatively different be- 
havior. The ensuing questions are in fact the subject of the 
present article. 

2. AMPLITUDE OF STIMULATED SPIN ECHO WITH PULSED 
MAGNETIC-FIELD GRADIENTS 

We choose the Hamiltonian of the spin subsystem in the 
form 

A A 

where H, = En &on I 3 s  the Hamiltonian of the Zeeman in- 
teraction of the spins with the constant magnetic field, con is 
the frequency of the Larmor precession of the nth spin, the 
summation is over all the spins of the system, 

is the dipole-dipole interaction operator of the system spins, 
r,, ( t )  is the vector j2ining the spins numbered n and m at 
the instant of time t, I, is the spin-vector operator, 

is the Hamiltonian of the 90-degree RF momenta that rotate 
the spin system through an angle ?r/2 around the x axis, 

Kg = hlg.  (t1.'[6 (1 )  + S (t-r,-T,) 1 

is the Hamiltonian of the magnetic-field-gradient pulses 
along thez axis, andz, ( t )  is the spatial coordinate of the nth 
spin at the instant of time t. 

Note that the R F  and gradient pulses are assumed to be 
much shorter than the times T, and T,, and also that the 
gradient pulses act on the system after the first and second 
RF pulses. 

We describe the state of the spin system with the aid of a 
density matrixb(t) satisfying the evolution equation 

a - 
i h - p ( t ) = [ A ; p " ] .  

at 
( 5  

The initial state of the nonrenormalized density matrix 
takes in the high-temperature approximation the form 

where p = (kT) - ' is the reciprocal temperature. 
The functions r,, ( t )  that describe the relative spatial 

spin displacements and are contained in (4)  and (5)  will be 
treated as stationary random processes with known correla- 
tion functions. Note that this approach and relation (6)  are 
standard and well-corroborated approximations in NMR 
theory (see, e.g., Refs. 1, 2, and 9).  

The measured evolution of the system's macroscopic 
magnetic moment is proportional to the mean value of the 
macroscopic spin component: 

h A A 

where I + = 2, (I: + iI{ ) and b ( t )  is the solution of Eq. 
(5)  with initial condition (6) .  

In view gf the presence of multiparticle interactions in 
the operator Hdd, no exact solution of Eq. (5)is known. The 
standard means of theoretically analyzing expressions of 
type k7) in such situations is perturbation tkeory i n ~ h e  oper- 
ator Hd, , while the action of the operators Hrf and H, can be 
taken into account exactly with %o particular difficulty. The 
unwieldy form of the operator Hdd, however, complicates 
greatly the calculations of the higher-order terms of the per- 
turbation-theory series. As a rule, therefore, only the first 
nonzero moment of the perturbation-th50ry series, corre- 
sponding to second order in the operator Hd, , lends itself to 
an effective theoretical analysis. For a number of physical 
situations, for example for low-viscosity liquids, for which 
the short-correlation-time approximation can be used, high- 
er orders of perturbation theory reduce to second order. In 
these cases the second-order perturbation theory results de- 
scribe adequately the spin-system dynamics. 

A feature of polymer systems is the existence of a corre- 
lation-time spectrum. The terminal relaxation time, as noted 
above, increases monotonically with the molecular mass. 
Even in this case, however, one can hope that the physical 
effects rekected in second-order perturbation theory in the 
operator Hdd describe correctly the real situations at least 
qualitatively. For quantities determined by local motions of 
the macromolecules, with times .r,=: 1 0  l o - 1 0  s, how- 
ever, the short-correlation-time approximation is certainly 
valid. One can count here also on a qualitative agreement. 

Omitting the details of the unwieldy and standard cal- 
culations, we write for the stimulated-echo amplitude nor- 
malized to the total number of spins in the system and calcu- 
kted to second-order perturbation theory in the operator 
H d d  : 

where Pf, ( r 2 )  is the probability of a flip-flop transition of 
the magnetic polarization from the nth spin of the system to 
any other in a time 72, 2P 12,, (7,) is that part of the contribu- 
tion to the spin-spin relaxation probability which is connect- 
ed with the dipole-dipole interactions, P ;,, (7,) is the anal- 
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ogous contribution to the probability of the spin-lattice 
relaxation, and Pfnm (r2) is the probability of a flip-flop 
between the nth and mth spins. 

The following natural relations are obtained for the to- 
tal probabilities of the above processes: 

where PI, ( r2)  is the total probability of spin-lattice relaxa- 
tion of the nth spin between the second and third RF pulses; 
2p2, (7,) is the total probability of the spin-spin relaxation 
between the first and third and after the third RF  pulses. 

To understand expression ( 8 better, we compare it 
with the "classical" expression(9) expanded in a Taylor se- 
ries: 

Comparing (8)  with (10) at zero magnetic-field gradient, 
i.e., p,, = p2, = 0, and taking (9) into account we find 
readily the correspondence 

2PZn(.ti) -+2~,/Tz,  
(11) 

Pin ( '62 )  *~1/Ti. 

Expression ( 8 1, which is accurate to second-order per- 
turbation theory, differs from its "classical" analog ( 10) in 
two respects: 1) by the presence of terms proportional to 
Pfn ( T ~ )  and Pfnm ( r2 ) ,  which are connected with the influ- 
ence of the flip-flop processes on the amplitude A(g); 2) by 
the splitting of the probabilities of the relaxation processes 
[see (8)-( 11) ] into partial probabilities of type P ' and P ". 
This splitting is due to the influence of the gradient magnet- 
ic-field pulses on the relaxation processes and leads to defac- 
toring of the spin-echo amplitude. 

The qualitative cause of the indicated effects is the fol- 
lowing. The spatial inhomogeneity of the system's magnetic 
field along the z axis, which sets in after the second RF  pulse, 
is equalized in the presence of dipole-dipole interactions not 
only on account of spatial displacements of the spins them- 
selves, but also on account of spin-polarization exchange in- 
duced by flip-flop processes. Note that this takes place only 
in the interval between the second and third RF  pulses, when 
the system's magnetic moment is oriented on the average 
along the z axis. At other instants of time the spin-flop pro- 
cesses contribute only to the spin-lattice-relaxation pro- 
cesses, as taken phenomenologically into account in ( 1 ). 

As to the probabilities of the relaxation transitions, the 
point is that the dipole-dipole interactions are two-particle, 
while the relaxation transition itself is of quantum character, 
as indicated for example in Eqs. ( 12) and ( 13) that follow. 
Typical relaxation times are TI =: 10 - ' -1 s and T, =: 10 - - 

s. Therefore spins numbered n and m, which under- 
went mutual relaxation transitions, were separated at the 
initial instant from one another by distances of the order of 
the molecule paths traversed during the times T, and T2. In 

the absence of magnetic-field gradients the mutual orienta- 
tions of the spins are determined only by Gibbs statistics. In 
the presence of a gradient, spins located at different points of 
space are rotated through different angles about the z axis. 
The Gibbs statistics is violated, as is manifested by the defac- 
toring of the spin-echo amplitude. 

Expression (8)  for the amplitude A (g), as already not- 
ed, was oktained in second-order perturbation theory in the 
operator Hdd . Its physical meaning, however, is very simple. 
It is clear therefore that the next higher orders of perturba- 
tion theory will lead only to more exact equations for the 
probabilities Pfn (T,), Pfn, ( T ~ ) ,  P ,', (rl ), etc. in the right- 
hand side of (8) ,  but the structure of this relation will not 
change further. 

We call attention also to the difference between the in- 
fluences of the relaxation and flip-flop-processes on the spin- 
echo amplitude. This influence is manifested by different 
signs in front of Pf,, (r2) and in front of P:,,',, ( T ~ )  and 
P ;,,, (r2) in relation (8) .  The point is that flip-flop processes 
induce during the time r2 a spin diffusion, whereas relaxa- 
tion processes decrease the total number of spins that form 
the spin-echo signal. 

The expressions for probabilities of type P2 in second- 
order perturbation theory turned out to be 

+ 6~:: ( r)  exp (ioor) + L:: ('6) exp ( ~ ~ w o T ) ]  dr,  

4 
X [- Lrm ( r )  +~L . I  ( r )  exp (iwor)] dr, ( 12) 

9 

where 

1-3 c0sZ en, (T)  1-3 COS' en, (0) 
rnm3 ( T)  rnmYO) 

sin B,, (a)cos On, (a)exp[ -icp,,, ('6) I 
LZ (TI=( 

rnm3 (7) 

X + 

sin On, (0) cos Brim (0)  exp [ icpnm (0) I 
rnmYO) .- >. 

~ a r ) = (  ( r>  exp [ 2icpnm (TI I 
rnm3 ('6) 

(w0zwn =am is the resonance frequency) are dipole-di- 
pole correlation functions in standard notation (see, e.g., 
Refs. 1, 2, and 9) .  

Similar expressions are obtained also for probabilities of 
type P,: 

11 

x [ZL~: ( r )  exp ( i o ~ r )  
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1 + - L:: ( r )  exp (2io.r) ] dr, 
2  

z2 (13) 
3 

P ~ ~ ~ ( G ) = ~ I ( I + ~ ) ~ ' ~ ~ '  (.rz- I r 1 )L:: (r)exp(fio.r)dr. 
- 1 2  

The expression for the probability of a flip-flop transi- 
tion from the nth spin to any other turned out to be: 

where a,, = on - a,. 
It will be seen from what follows that particular interest 

attaches to flip-flop transitions between spins of different 
molecules. In these cases the dipole correlation functions 
L fm (7) attenuate within short times T~ z 10- lo -10- S, SO 

that it is possible to determine correctly with the aid of ( 14) 
the average time T~ of a spin-flop transition to any other spin 
of a neighboring macromolecule: 

m 

Using (a) ,  we calculate the amplitude of the diffuse 
scattering of a spin-echo signal: 

x ( g ) = A  (g) lA  (O)=B.,(g)+-Lf(g), (16) 

where 

is the contribution of the influence of spin-flop processes and 

is the contribution of the effect of pulsed magnetic-field gra- 
dients on the rates of the relaxation processes. 

It is appropriate to note that at the presently attainable 
values of the gradient g we have ySgao& 1, where a,- 1 A. 
For neighboring spins of one and the same macromolecule 
the phase shifts q, ,, ~ q ,  ,, and their contributions can be left 
out of ( 16) when summing over the interspin interactions. 

For short times T, and T2 the second term of ( 16) is 
small, since relation ( 1 1 ) leads to the estimate 

where a is the fraction of the contribution of the intermole- 
cular dipole-dipole interactions to the probability of relaxa- 
tion processes, with a ~0 .1 -0 .25  in typical situations; N, is 
the total nilmber of spins. With increase of the duration of 

the experiments, rI 2 TI, this factor reaches saturation and 
may turfi out to be substantial: P:, (~, ; . r , )za/N, .  The 
same holds also for the time T,, which must however be relat- 
ed to spin-spin relaxation time T,. Since T, & T, in concen- 
trated polymer systems (see Ref. 3), it is possible to deter- 
mine satisfactorily two different characteristic times: 

1. The aforementioned time T~ which is determined by 
( 15 ) and amounts to rf =a - I TZ 

2. The characteristic time rdf -a - ' TI of defactoring of 
the spin-echo signal, defined as the typical time for satura- 
tion of the parameter P Ern (r1;r2).  Recall that in experiment 
attempts are made to choose T, as small as possible is fixed, 
or else an extrapolation to zero is used. 

Since w, -- w, z w, & wnm ~ 0 ,  it can be seen from ( 14) 
and from the estimates above that rf grdf .  At any rate, this 
inequality is always valid for sufficiently strong external 
fields that lengthen zdf and do not affect 7,-. Therefore each 
of the contributions A ,  (g) and Adf (g) in ( 16) can in princi- 
ple be measured separately. 

3. SPIN DIFFUSION IN POLYMER MELTS 

The second term of ( 16) can be neglected for a diffusion 
time t, = T, + T, 4 rdf. As a rule S 4 t ,  and, taking (2)  into 
account, the amplitude of the diffusion damping can be writ- 
ten in the form 

m 

This expression describes spin diffusion. The first term 
describes the motion of the spin polarization together with 
the nth spin of the system, whereas the second is connected 
with polarization exchange between the nth and mth pro- 
tons of the system in a time T,. 

Expression ( 18) can be made much more compact by 
introducing, for convenience, the concept of effective quasi- 
particles that carry spin polarizations, so to speak spin exci- 
tons. These quasiparticles appear in the system after the ac- 
tion of the first gradient pulse and are carried by the spins of 
the system. The factor 1 - Pf, (T, ) in ( 18 ) is equal to the 
probability that a particle created on the nth spin remains on 
it for a time 7,. After a time rf on the average, in the time 
interval between the action of the second and third RF 
pulses, the quasiparticles hop over to one of the nearest spins 
of the system. The factor Pfnm (7,) is equal to the probability 
of observing at the instant I-,, on an mth spin, a spin exciton 
created on a spin numbered n. 

Spin-relaxation processes actually decrease the total 
number of quasiparticles in the system, while the second gra- 
dient pulse measured the path traveled by the quasiparticle. 

It is useful to understand clearly how the quasiparticles 
introduced above are similar to and differ from the magnons 
of magnetically ordered media. Magnons are due to bulk 
spin-spin interactions. They describe the deviation of a spin 
system from the quantum-mechanical ground state. In our 
case, however, the quasiparticles are due to interaction with 
an external magnetic field (gradient pulse of a magnetic 
field) and describe the deviation of the spin system from 
thermodynamic equilibrium. Figuratively speaking, the 
quasiparticles in question resemble magnons to the same ex- 
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tent that motion of particles of a real system are similar to 
phonons of solids. 

It is easily seen from an analysis of the structure of ( 18) 
that in terms of the spatial variables of the quasiparticles the 
spin-echo amplitude can be represented by an expression 
formally equivalent to ( 3 ) : 

where the summation is over all the system quasiparticles 
that contribute to the echo amplitude; (... ), denotes, in con- 
trast to (3 ), averaging over all the random quasiparticle tra- 
jectories, and not of the system spins; rs ( t )  is the radius 
vector of the sth quasiparticle. 

Assume a diffusion time t, )T,.. Since the motion of 
different macromolecules is not correlated, Eq. ( 19) takes 
the well-known diffusive asymptotic form (see, e.g., Ref. 4): 

A,, ( g )  =exp ( - - Y ~ ~ ~ ~ ~ ~ D D ~ D ) ,  (20) 

where D, is the spin-diffusion coefficient, in other words the 
quasiparticle self-diffusive coefficient. 

Each quasiparticle is displaced together with the spins 
in the time T,. to a distance r(rf ); it makes next another 
jump, due to flip-flop, to a distance on the order of a,=; 1-3 
A. 

To calculate the spin-diffusion coefficient we expand 
the relations ( 19) and (20) in Taylor series. Comparing the 
series terms quadratic in g, we get 

1 
Dsp = - - - - ( < r 2 ( ~ f ) > + a 0 2 ) ,  

6~~  
(21 

where (?(rf ) )  is the rms displacement of the macromole- 
cule spins in the time T,. . 

In liquids, solutions, and melts we have r('rf) 2 lo2 A 
for typical values T,. ~ 0 . 1 - 1  s. The additional displacement 
a,=. 1-3 of the quasiparticle during the flip-flop time can 
therefore be neglected. 

In solids, on the other hand, the situation is reversed. 
Here r(7j)  ~ 0 . 0 1  A is of the order of the atom-oscillation 
amplitude; therefore a,) r(Tf). Expression ( 15) for 7,- for 
solids also requires some modification, since the short-corre- 
lation-times approximation is inapplicable (see, e.g., Ref. 
2). 

From ( 15) we obtain the estimate 

where r,-a,Z 1-3 A is the shortest distance to the spins of 
the "foreign" macromolecule, T, z l o 9 - l o - '  s is the time 
of "intermolecular" correlation, z is the possible number of 
nearest neighboring spins, something of the type of the coor- 
dinate number, and p is the bulk density of the macromole- 
cules. It is clear hence that the time T,. is independent of the 
molecular mass of the macromolecules. 

One can separate in polymer systems the following 
characteristic times of macromolecule motion (see Refs. 3 
and 5-8) : 

1 ) Tube replenishing time T, -- T ~ V  3/Ne, where 
T,=. 10- s is the segmental-motion time and Ne z 25-30 is 
the number of Kuhn segments in a macromolecule of critical 
molecular mass. 

2) Rouse-relaxation time TR =.rfl2. 
3) Time Te ZT,,N: to reach the entangled-motion re- 

gime. 
The rms displacement of the macromolecule segments, 

and hence of the spins, has the following time dependence? 

6DPt, tBT , ,  

where Dp = I  2Ne /T,,N is the macromolecule diffusion coef- 
ficient and I is the Kuhn-segment length. 

Depending on the relation between the time T~ and the 
times T,, TR , and T, we can separate the following four 
cases: 

A. Slow flip-flop processes, i.e., r,& TR 

In this case we obtain with the aid of (21) and (23) the 
following expression for the spin-diffusion coefficient: 

1 up2 
DSp=D, + - - - D,. (24) 

6  T ,  

It can be seen that the spin-diffusion and self-diffusion 
coefficients of macromolecules are practically equal. 
Allowance for the spin-flop processes leads only to the small 
correction a i / 6 ~ ~  Note that this takes place for all polymer 
melts with sufficiently small molecular masses measured in 
Kuhn-segment units: 

B. Intermediate flip-flop processes, i.e., T, & r, & TR 

The spin-diffusion coefficient calculated similar to the 
preceding case turns out to be 

The spin-diffusion coefficient is larger than the macromole- 
cule-diffusion coefficient and is characterized by a weaker 
molecular-mass dependence Dsp 2 N- "2 and by a weak 
temperature dependence, since the temperature depen- 
dences of the times T, and 7,. are reciprocals of one another. 

The time TR gives rise naturally to one more critical 
molecular mass: 

It is clear from the foregoing that the situation in ques- 
tion obtains for intermediate molecular masses 
N , * , < N < N Y .  

C. Fast flip-flop processes, i.e., T,$T,& T, 

Using (21 ) and (23 ) we obtain 

Just as in the preceding case we have Dsp ) Dp, but the 
spin-diffusion coefficient is independent of the molecular 
mass and D, can decrease with rise of temperature. The 
latter is due to thermal averaging of dipole-dipole interac- 
tions which cannot be offset in this case by the increased 
translational mobility of the macromolecules. 
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D. Ultrafast flip-flop processes, i.e., T,& r, 

This situation can apparently not be realized, at any 
rate in macromolecule melts. 

The spin-diffusion coefficient would equal in this case: 

Just as in the case of fast flip-flop processes,the spin- 
diffusion coefficient is independent of the molecular mass of 
the macromolecules, while the temperature dependence is 
similar to that in the case of intermediate flip-flop processes. 

To conclude this section, we note that the results can be 
generalized by the dynamic-scaling method to include ma- 
cromolecule solutions (see Ref. 10). 

4. EFFECTS OF DEFACTORING OF SPIN-ECHO AMPLITUDE 

For a diffusion time t, k rdf, an important role is as- 
sumed in ( 16) by the second term, which we shall call, to be 
specific, the defactoring amplitude. It follows hence from 
relations (16) and (17) that 

The probability factor P ;, (r1;r2), as already noted, 
increases monotonically with time and reaches saturation at 
tD zrdf. Each exponential of (30) decreases with time. The 
first exponential describes spatial displacements of individ- 
ual macromolecules. The second, cross-exponential, de- 
scribes relative displacements of the polymer chains whose 
spins have induced mutual relaxation transitions. 

The amplitude 2, (g) also has a similar structure, but 
with a basic difference. The two exponentials in the ampli- 
tude 3, (g),  which describes spin diffusion, have different 
weights. In fact, 1 - Pnf (7,) is the probability that a spin 
numbered n will not experience even a single flip-flop transi- 
tion by the instant 7,. Clearly, 

lim [ I-Ptn ( ~ 2 )  I = O .  
z2- m 

The relative role of the second exponential in ( 18), on the 
other hand, increases with time. The physical cause is migra- 
tion of the spin polarization over different macromolecules. 

The exponentials in question have in the amplitude 
Z,,-(g) opposite signs but weights of equal modulus. The 
cause is the influence of the pulsed magnetic field gradients 
on the spin-relaxation rate. 

We denote by t ' the time when the spins numbered n and 
m underwent mutual relaxation transitions. The cross-expo- 
nential can then be written in the form 

The dipole-dipole interactions are short-range, so that 
one of the radius vectors r, ( t  ') can be replaced in (31) by 
r, (tl).Infact, Ir,, ( t l ) l = :  1 A g  1r(t1) - ~ ( O ) ~ = : I O ~ - I O ~ A .  
Next, recognizing that the motions of different molecules 
are not correlated (see Refs. 5-8) we can "factor out" rela- 
tion (31): 

( exp( iy6g  [ r m ( t D )  - r , (O) ]  ) )=(exp{iyGg [ r , ( t D )  - - r m ( t l )  I )  ) 
X<exp{iySg [r, ( t ' )  -r,  ( 0 )  I ) ). (32) 

In the case of macromolecules of low molecular mass, 
i.e., such that T,<rdf - t  ', the motion of the individual ma- 
cromolecules is likewise fully stochasticized. Consequently, 
the first exponential of (30) can also be factored out similar 
to (32): 

( exp{ iy& [ r , ( t ~ )  -r,(O)l ) ) = ( e x p { i y 6 g  [ r ,  ( t , )  -r,(t') 1) > 
X(exp( iy6g  [ r n ( t r )  -r ,  ( 0 ) ]  ) >. (33) 

Substituting (32) and (33) in (30) we find that for 
systems with sufficiently small molecular masses the defac- 
toring amplitude zdf (g) is zero accurate to quantities of or- 

2 2 2  der exp( - y2g S a0 ) =:exp( - lo4) .  Note that this situa- 
tion is similar to the case of slow flip-flop processes, 
discussed above in connection with spin diffusion. 

For macromolecules with large molecular mass, i.e., 
Tf > rdf, the cross-exponential decreases, as seen from (32), 
with a diffusion coefficient of order D, : 

( exp( iy6g  [ r ,  ( t , )  -rn ( 0 ) ]  ) )=exp ( -y26Zg2D, , tD) ,  (34) 

where 

Ddf = <r2 ( t d f )  ) - D s p .  
6'Cdtdf 

The first exponential of (30) describes the displace- 
ments of the macromolecules themselves. In the case consid- 
ered ( [r, (t, ) - r, ( 0 )  ] 2, 4 6Ddf tD . It therefore decreases 
significantly more slowly than the cross-exponential. The 
latter makes is possible to take in (30) only the first expo- 
nential into account: 

Summing over m and assuming all spins to be relaxion- 
ally equivalent, we transform (35) into 

where 

It follows from the properties of P z,,, (r,;r,) discussed 
in Sec. 2 that at times t, k rdf the value of P "  (r1;r2)  =:a 
reaches saturation. 

The diffuse-damping amplitude 2 (g) [see ( 16) ] con- 
tains, besides the amplitude Zdf (g) , a contribution from the 
spin-diffusion amplitude 2, (g) .  As already noted, its con- 
tribution for times t, > rdf is of the order of the contribution 
of the cross-exponential to adf (g),  i.e., negligibly small. 
Therefore 

and the spin-echo amplitude for diffusion times t, krdf  
again contains information about the true macromolecule 
displacements, and not about the spin diffusion, as was the 
case for times rf gt, 4 rdf The measured diffusion coeffi- 
cient will therefore be equal to the self-diffusion coefficient 
of the macromolecules. 

568 Sov. Phys. JETP 72 (3), March 1991 N. F. Fatkullin 568 



5. DISCUSSION OF RESULTS 

The amplitude i ( g )  of the diffusion damping of the 
stimulated spin echo signal was shown to be equal to the sum 
of two amplitudes, the spin-diffusion amplitude (g) and 
the defactoring amplitudeidf (g).  The amplitude A ,  (g) re- 
flects the influence of the flip-flop processes in the spin sys- 
tem on the spin-echo signal and describes the spin diffusion. 
The amplitude idf (g) is connected with the influence of 
pulsed magnetic-field gradients on the rates of the relaxation 
processes. Each of these amplitudes gives rise to characteris- 
tic times: the average time .rf of the flip-flop processes and 
the characteristic defactoring time rdf of the spin-echo am- 
plitude. 

For liquid-phase systems of sufficiently low molecular 
mass [see ( 25 ) ] our expression ( 16) for the amplitude 2 (g) 
is equivalent to the universally known expression (3).  For 
polymer systems with close enough molecular masses the 
situation is the following: 

1 ) For diffusion times t, 4rf the spin-echo amplitude, 
just as (3),  contains information on the spatial displace- 
ments of the macromolecules. 

2) For diffusion times 7,- 4 tp 4 rdf the amplitude 2 (g)  
describes spin diffusion. The spin-diffusion coefficient D, 
differs here substantially from the macromolecule spin-dif- 
fusion coefficients Dp, see relations (26), (28), and (29). 

3) For diffusion times t, % rdf the amplitude 2 ( g )  
again becomes equivalent to (3)  and describes diffusion of 
the macromolecules. 

The most important physical quantities, which are the 
objects of radiospectroscopic research into polymer systems, 
are the relaxation times T, and T, and the macromolecule 
self diffusion coefficient Dp . The present results point to a 
possibility of adding to this list the spin-diffusion coefficient, 
which contains for polymer sufficient of sufficiently large ' 

mass additional information on the molecular processes in 
the system. 

To conclude, we point out a report" of anomalous be- 
havior of the diffusion coefficient in anomalous lattices, 
measured by the spin-echo method. Note that the anomalies 
described in Ref. 11 agree qualitatively with the notions de- 
veloped in the present paper concerning spin diffusion. 
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