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The derivation of a kinetic equation describing the transport of spin polarization through a 
system of impurity nuclei in fixed positions is examined. The problem of deriving a solution of this 
equation averaged over random positions of the impurity nuclei is also examined. A control 
equation is first derived. Its accuracy is evaluated by modeling the effect of the medium by a 
realistic random process. A simpler equation ofthe balance-equation type is then derived. The 
conditions for its applicability in real experiments on the magnetic resonance and relaxation of 
polarized/?-active nuclei are studied. A solution [i.e., a propagator P,, (t)] averaged over the 
positions of the impurity nuclei is derived for intermediate times satisfying Pt 5 1, whereois the 
Forster constant, which is proportional to the rate of transport over the average distance. This 
derivation is based on a concentration expansion. The problem of the long-term asymptotic 
behavior P,, ( t  - cc ) is discussed in detail. A semiphenomenological theory is formulated for 
calculating the propagator at all t and all concentrations. A new method is found for calculating 
the diffusion coefficient 9. This new method is based on a restructing of the concentration 
expansion. The results calculated in the leading approximation for 9 and for the first correction 
agree well with the 9 value which has been measured by the method of optical four-wave mixing 
in a related exciton-transport problem. For contemporary experiments, it is important to 
consider the preasymptotic terms in P, (t-  cc ) and in the memory function M(k-0). A 
coherent-medium method is formulated for calculating P,, . Explicit expressions are proposed for 
P, ( t )  for use in planning experiments on the delocalization of excitations in disordered systems 
by thee-NMR method and by the method of time-resolved fluorescence line narrowing. Criteria 
of importance for a critical comparison of th~3ry  and experiment are discussed. 

1. INTRODUCTION 

The problem of a random walk in a disordered system is 
one of the most interesting and most fundamental problems 
in physics today. It has attracted interest because of the ex- 
treme simplicity with which very complex problems can be 
formulated, because of the profound relationships with gen- 
eral problems of nonlinear statistics and field theory, be- 
cause of the wide range of phenomena which can be de- 
scribed by this approach, and because of the opportunities 
which have opened up for extremely informative experi- 
ments. 

The first reports of detailed experimental analyses of 
the problem of a random walk in a disordered system with a 
dipole-dipole interaction have recently appeared. The meth- 
od of P-NMR spectroscopy (the magnetic resonance and 
relaxation of polarized P-active nuclei) has been used.'-4 
Our purpose in the present paper is to take a systematic look 
at the physics underlying these studies. In particular, we 
discuss a kinetic equation which describes the transport of 
polarization through a system of impurity nuclei in a crystal, 
the problem of deriving a solution of this equation averaged 
over the impurity distribution, and the basic theoretical re- 
sults and hypotheses which can be brought before the court 
of experiment for judgment. Some of the results of a theorys 
originally derived for 0-NMR have now found use in optical 
studies of exciton transport.627 Accordingly, we will also 
take a look at the correspondence between the theoretical 
work in this field and the approach taken in Refs. 1-5. 

For definiteness, we will consider a specific system'-4 
everywhere below in our discussion of the relaxation of po- 
larized P-active nuclei. This specific system consists of a 6Li 
isotopic impurity in a LiF crystal with one added P-active 
'Li nucleus with a spin I, = 2, a g-factor go = 0.8267, and a 
decay half-life T,,, = 0.84 s. In the initial state, only the P- 
active nucleus is polarized, and the spin density matrix of the 
crystal is 

Here Po is the polarization of the P-actee nucleus, which is 
parallel to the external magnetic field Zollz. An important 
point is that over wide ranges of R0 and of the temperature 
the depolarization of thepactive 'Li nucleus results from an 
interaction which simultaneously changes the z components 
of the two spins by Am = 1 in different directions. These 
(flip-flop) transitions are effective only with the spins of the 
6Li nuclei (I, = 1, g, = 0.8220, k #O), which are present in 
a concentration cg 1, because theg-factors of 'Li and 6Li are 
almost exactly the same. The measurable quantity is the ani- 
sotropy of the P emission of 'Li. The theoretical problem is 
to calculate the polarization (p,(t)), of the 'Li nucleus, 
averaged over the random distribution of the 6Li impurity in 
the crystal. 

It was in this process, which was observed in Refs. 8 and 
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9, that it was first found possible to apply nuclear-physics 
methods to the study of condensed media for the direct ob- 
servation of the dynamics of the densities of additive inte- 
grals of motion. This is a fundamental problem in statistical 
rnechanic~.'~-'~ No less important is the circumstance that 
the dynamics of the density of additive integrals of motion in 
disordered systems is being studied. 

2. KINETIC EQUATION 

The transport of nuclear polarization through a system 
of impurity spins is described by the equation 

Pi= - j i i i  p< ( t = o )  = ( i l l  (2)  
I 

which was formulated in Ref. 13 (it was later proposed in 
Ref. 14 on the basis of the same arguments). Here 
pi ( t )  = Sp I;p(t) is the polarization of spin i in the 8Li-6Li 
system; i = 0 corresponds to 'Li; i#O corresponds to 6Li; 
and vji is the rate of the polarization transport from spin i to 
spin j, which is given by 

v i j=z i  ( I i + l )  wij, 

d t  Sp  [I i+I i -I i -  ( t )  I j+ ( t ) ]  
g i j ( . )  = J %COS a t  

- rn s p  (I i+I j - -z i - I j+)  

Here A, = w i  - wj, gi and w i  are respectively the g-factor 
and Larmor frequency of spin i, r, is t&e vector between spin 
i and spin j, 8, is the angle between Xollz and rV, 0, is the 
nuclear magneton, and g,- (w) is the normalized cross-relax- 
ation form function. The time dependence in the definition 
of g, stems from the ~ e c u l a r ' ~ . ' ~  Hamiltonian 
Ho = H, + HI, of the dipole-dipole interactions H, of the 
spins of the host ('LiI9F) and the interactions H,, of the 
impurity spins and the host spins. 

The total spin Hamiltonian of the system is 

Here Hz is the Zeeman Hamiltonian, H; is the interaction of 
the z components of the impurity spins with each other, and 
H, is the flip-flop interaction in the 8Li-6Li system, given by 

We wish to stress that only the z components of the local 
fields determined by Hamiltonians H,, and H; are nonzero. 

The derivation of Eq. (2)  which was proposed in Refs. 
13 and 14 is based on the hypothesis that the density matrix 
p ( t ) is in quasiequilibrium form: 

1 
p ( t )  =p'" ( t )  = --- I 3. 3ph ( t )  , I k z ] .  

S~ I  [ = lk(zh-kl)  
( 6 )  

A more systematic analysis is carried out in two 
steps. ",18 The first step is to derive a control equation for p,, 
which is the diagonal part of the impurity density matrix 

( [I ', ,p, ] = 0 for all k )  . The next step is to work from this 
control equation to derive Eq. (2) .  An important point for 
this analysis is that the magnetic moments and g-factors of 
the impurity spins are considerably smaller than those of the 
host spins, while the characteristic differences between the 
impurity spins are considerably larger. The fluctuation rate 
of the local fields at the impurity spins and these fields them- 
selves are therefore substantially higher than the fields creat- 
ed by the impurity spins at each other. From an analysis of 
elementary problems (equivalent to two-spin problems)19 
one would expect that Hamiltonian H, would be small. This 
suggestion and also the choice of parameters for the descrip- 
tion (p,) should be tested in some realistic model of the 
motion of local fields. If the choice is wrong, the terms which 
are the lowest-approximation corrections to the memory 
function will increase without bound as time elapses, despite 
the fact that they are of higher order in H,. 

We introduce the superoperator 9, which projects the 
total density matrix onto states which are diagonal for the 
impurity spins and equilibrium for the reservoir (i.e., for the 
host spins) : 

where the subscript D means to take the diagonal part. In the 
Nakajima-Zwanzig projection t e ~ h n i ~ u e , ' ~ , * ~  the exact ki- 
netic equation 

t 

-- a', - - J d r < P i ~ e x p  ( - ~ T ~ $ T ) P , ) ~ ~ ~  ( t - r ) ,  
at  

0 

is reduced in lowest order in HI to the control equation 
t *= - ~~T[H,[<H,(T))~,~~(~-~)II~, 

a t  0 

and H, can be replaced by Ho at the same accuracy level. 
According to ( 5 ) ,  the time dependence HI (7) is concentrat- 
ed in the operators 

Ik+ ( r )  =exp  ( - i H o r )  Ik+ e x p  ( i H , r )  -- ( IkT  ( T )  ) +. 
Here we have 

(10) ~k-z F z + Z d i ~ i z = z  G , ~ ( A ) ,  01-  k i i  

Pn2gkgr ( 1 - 3  cos2 fhi) 
f k i  = - 

firki3 9 

We have used the usual chronological- and antichronologi- 

547 Sov. Phys. JETP 72 (3), March 1991 F. S. Dzheparov 547 



cal-ordering operators here, and we have introduced a local- 
field operator $: (more precisely, a local-frequency opera- 
tor). The first sum in (10) is over all the fluorine sites; the 
second is over the lithium sublattice; and F, g, and L, g,  are 
the spins andg-factors of the 19F and 'Li nuclei, respectively. 

At present we do not have a microscopic theory of the 
reservoir in a form adequate for evaluating the accuracy of 
Eq. (9).  The evolution of the local frequencies $:(t) of the 
spins I,-this evolution is determined by the behavior of the 
z components of the reservoir spins-would thus naturally 
be approximated as a steady-state normal random process. 
This method, which dates back to the Anderson-Weiss line- 
shape theory, has been used previously for similar purposes 
in single-spin problems (see Ref. 19, which also has basic 
information on the theory of random processes). In this ap- 
proximation we have 

whereli (7) is some arbitrary function. Entities of specifical- 
ly this sort arise when the memory function in (8)  is expand- 
ed in a series in H, .  The method is based on the idea that 
z, 2 10 host spins contribute substantially to the local field 
at spin I,, so the distribution of local fields at any instant can 
be approximated well by a normal distribution. We are obvi- 
ously ignoring the effect of the impurity on the reservoir. 
This simplification is justified since the time scale for energy 
and polarization transport in the reservoir is no greater in 
order of magnitude than the flip-flop time of the reservoir 
spins, r7, and it is such that the relation Rr, < 1 holds. Here 
R is the rate of the impurity flip-flop, found from Eq. (2).  
Another important point is that in the initial state only one 
spin-not a macroscopic number of spins-is driven from 
equilibrium. 

It is natural to require that the correlation function of 
the local frequencies o:(t) be equal to the correlation func- 
tion of the local-frequency operators: 
(o:(t)wy) = ($:(t)$;) ,, where 

A direct calculation and a comparison with the results of a 
numerical simulation2' of correlation functions of the 
(FfFf  ( t ) )  , type show that the following equation holds 
with an accuracy sufficient for the calculations 

Here T2, , rcA , and DA -zr2,/rcA are respectively the phase 
relaxation time, the flip-flop time, and the spin diffusion co- 
efficient for the spins of species A (T,, 5 TcA ); z is the co- 
ordination number (z = 12 in LiF); and r,, is the distance 

between the nearest spins of the same species. Expression 
( 12) and also a satisfactory estimate of its parameters can be 
found by applying Eq. (2)  to the host spins, rather than to 
the impurity. In this case we find 

(Ai+Ai- ( t )  >, 
T,, = J dt 

o (Ai+Ai->T 
Here wi is defined in the way that vii is defined in (3) ,  but 
with I-A and g, -gA . Expression ( 12) reflects (first) the 
circumstance that the correlation function (A fAT ( t )  ) , is an 
even and smooth function of the time; at t 5 T2,, the t de- 
pendence is quadratic. Second, it reflects the circumstance 
that at t 5 rCA this correlation function is localized in a vol- 
ume - r i .  Third, it reflects the circumstance that at t$ rCA 
this correlation function satisfies a diffusion equation and 
thus falls off comparatively slowly. 

We can now estimate the accuracy of Eq. (9)  by evalu- 
ating the terms coming after the leading term in the expan- 
sion of the memory function of Eq. (8)  in the series in H I .  A 
direct calculation shows that these terms do not grow with 
the time and that the corrections which they make to the 
memory function of Eq. (2) ,  found by the procedure de- 
scribed below in the derivation of (2)  from (9)  [sic], do not 
exceed in order of magnitude a fraction E = max of 
the value of the leading term. Here 

E~=RTT, eZ=RTZ, E~=R(TZTTT)"Z~-'  ln ( i+q) ,  

T, is the phase relaxation time of the impurity spins, 
co t 

and R -z,af T, where z, and a, are the effective number of 
nearest neighbors and the interaction between them in the 
impurity system. 

It follows from the results of Ref. 23 that at small t we 
havez, = 1, and a, is the interaction at a distance r,,. At large 
t, the quantity z, may increase to z, - 10 (Sec. 3), but in this 
case a, corresponds to the average distance 7 = ( W c )  
-roc ' I 3 ,  where fl is the volume of the unit cell. To estimate 
T,, T,, , and rCA in this system, we can assume that the corre- 
lation functions of the transverse components of the reser- 
voir spins and the impurity spins are Gaussian. This conclu- 
sion follows from the results of Ref. 24 (from measurements 
of the 'Li NMR lineshape in LiF) and Ref. 25 (from mea- 
surements of the spin diffusion coefficient in CaF,). As a 
result we find 7 < 1 and that the error of Eq. (9)  at an impu- 
rity concentration c< 10% is & < 0.01. 

The condition for the observability of a process is usual- 
ly Rt - 1. Accordingly, using R T, < 1, we can put Eq. (9) in 
the following form at t% T,: 

CO 

PD = - jdr[Hl[(H*(r))T, pD(f) 
0 
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Certain questions concerning the conditions E ,  4 1 and 
E~ 4 1-conditions for the applicability of a perturbation the- 
ory in single-particle problems-are discussed in Ref. 19. 
Here we wish to stress that in the multiparticle case both of 
these conditions are required in order to keep the terms of 
higher order in H ,  small. In several elementary single-spin 
problems (and in two-spin problems which can be reduced 
to single-spin problems; see Refs. 26 and 27, for example), 
the corrections for H I  are kept small by the condition E ,  4 1. 
The condition E,  4 1 is required only to make the transition 
from a nonlocal equation as in (9 )  to a Markov equation as 
in ( 14). In the case T i ,  > T i  rT we find yet another condi- 
tion: E~ 4 1. However, for these relations between parameters 
it appears that we cannot assume that the impurity has only a 
slight effect on the reservoir, so the method of estimates 
which has been used becomes incorrect. This analysis leans 
heavily on the condition 

which is valid for three-dimensional reservoirs. 
Equation ( 14) is still too complicated for specific calcu- 

lations, and it contains much unobservable information. To 
find a simpler equation we note thatp, ( t )  is the density of an 
additive integral of motion. The time variation of the density 
of an additive integral of motion is the slowest process, and 
we would naturally expect that after a long time p, should 
be a function ofp,, i.e., should reduce to ( t )  [see (6)  1. 
According to ( 1 ), the initial state is also the same as p'" at 
p, +, = 0. If we take p'O' ( t )  as a lowest approximation, we 
find Eq. (2) after we substitutep, = p'O) into ( 14), multiply 
by If from the left, and take the trace. 

If, on the other hand, we simply substitute ( 6 )  into 
(14), we find that with I, = 1/2 we actually have 
pD ( t )  =p(')(t), and Eq. (2)  follows exactly from (14). In 
the case I, # 1/2, however, Eq. ( 14) takes p, out of the 
space with the basis (1,{1",) and puts it in the space with 
the basis (~,{IZ,},{I~~}),  where 

Taking 

as the next approximation, we can derive the system of equa- 
tions" 

i - j i i i j  - 2  i j  j j  , pi (0) =~io,  

h f i  

Here xi = (21, - 1 ) (21. + 3). Eliminating sV from this sys- 
tem of equations, we find the equation 

t 

Continuing this procedure, which might be called a "method 
of expanding projection operators," we can expand the La- 
place transform of the memory function in a continued frac- 
tion:I7 

Some operator coefficients on the order of unity have been 
omitted from this expression, and a dependence on only z, 
and A is indicated. It follows from Eqs. ( 16) that p, and s,, 
depend on the time in different ways and that we have 
skm/pk -0 as t- cc in a substantial spatial region. However, 
the pk and s,, contributions to Eq. (17) are of the same 
order in t; this circumstance is reflected in ( 18). The hypoth- 
esis which led to (6) is thus by no means flawless; partial 
justification for it can be found only after a direct evaluation 
of the correction. We note that K(11-0) is not an analytic 
function of H I .  

A calculation of the correction from Eqs. ( 16) shows 
that its numerical value is substantially smaller than l/z, in 
order of magnitude and does not exceed 1 % of the leading 
term in K, which is determined by Eq. (2)  with z, 2 6. Over a 
fairly large temporal region the quantities z, = 1 and z, = 2 
are important (see Sec. 3 in Ref. 23). This case has been 
analyzed numerically. The error of Eq. (2)  in two-spin prob- 
lems (z ,  = 1 ) is on the order of 1 % if the spins are identical 
or approximately the same in magnitude. If there is instead a 
large difference, e.g., I, = 1/2 and I, = 2, Eq. (2) is not ac- 
curate, since it generates limiting values p, (t-  a, ) which 
are 100% off in comparison with those found from (14). 
Even in this case, however, the first term of the concentra- 
tion expansion of (p,(t)). calculated from (2 )  has an error 
of only 10%. The difference in the p, (t-  cc ) values stems 
from the existence of nonadditive integrals of motion J in 
addition to BIZ, ( [JH,]  = 0, [JIZ, ] = 0 ) .  In the two-spin 
problem with I, = 1/2 and I, = 1, for example, we have 

while with I, = I l  = 1 we have 

These integrals are important if ( J ( t  = 0 ) )  #O. Table I re- 
flects the overall situation with regard to two-spin problems. 
When we move to three-spin problems or, in general, as z, 
increases, Eqs. (2)  become more accurate. 

In the expansion of the projection basis to 
( l,{IZ, },{I Z, U, },{I :If mZ}) which follows ( 15), the results 
given above remain valid if at large t we have z, 2 6 (the 
correlation IfIj"lZ, is important since, in contrast with 
I', Urn, it contains the product of only densities of additive 
integrals of motion). The estimates become unsatisfactory, 
however, as z, approaches z, = 2.7, which is the percolation 
threshold of three-dimensional systems. We would naturally 
expect that z, (t-  cc ) would be related to the diffusion coef- 
ficient 9 for the polarization in a disordered system by 
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TABLE I. The limiting valuesp,(t-+ m ) for the solution of the problem with two spins, I,,, and 
I , ,  withp,(t = 0 )  = 1 andp,(O) = 0. 

Note. At an intersection of the spin values, the result of the exact solution of Eq. ( 14) with initial 
condition ( 1 ) is shown at the left, while the solution of approximate equation (2)  is shown at  the 
right. 

~ = z . v ( F )  fZ /6 ,  where Y, = Y ,  (R,), and Y,(O) = v0. In the 8Li-6Li system 

where ~ ( 7 )  is the transport rate over the average distance. 
Ordinarily, theoretical estimates yield z, 2 15 (Refs. 5, 14, 
28, and 29). The smallest of the known values of was 
found for the diffusion of excitons in the experiments of Ref. 
30 (see also Sec. 6),  but again in this case we have z, > 8. 

In summary, we would expect that the error of Eqs. (2)  
and (3) in application to the 8Li-6Li system would be on the 
order of 1 % at all t and that we would have c( 10%. 

3. OCCUPATION-NUMBER REPRESENTATION AND 
CONCENTRATION EXPANSION 

To calculate observables averaged over the random im- 
purity distribution in the crystal, it is convenient to intro- 
duce the occupation-number In this rep- 
resentation, Eq. (2)  is replaced by 

or by the equivalent equation '3,23 

Here Fxy (t)  is the polarization of the lattice site x at time t 
under the condition that site y is initially polarized; Y,, = vii 
( r i  = x, r, = z)  and n, is the occupation number. Its value is 
n, = l (0)  when site x is (is not) occupied by an impurity 
spin. Site y may be polarized only if it is occupied by a spin, 
so we have set n, = 1 in (19). At sites xf y we have 
(n,), = c, and the occupations of the different sites are not 
correlated. That Eqs. (2)  and ( 19) are equivalent can be 
verified by noting that in unoccupied sites we have Fxy = 0, 
while in occupied sites, where n, = 1, Eq. (19) reduces to 
(2)  with r, = y. Equation (20) follows from ( 19) when the 
identity nxpxy = ?j,, is taken into account. We assume be- 
low that the transition rate is 

wehaves= 6,(= 3 = Io(Io + l ) / I , ( I ,  + l),S,, isthean- 
gle between Po and x - z, and ~ ( 3 )  = ( 1 - 3 cos2 9)2.  In 
descriptions of exciton transport it is customary to sets = 6, 
x = 1, and ( = 1 (Refs. 3 1, 28, and 29; see also Secs. 6 and 
7 ) .  In the theory of hopping conductivity one uses an iso- 
tropic exponential dependence of Y,, on Ix - zl (Refs. 32 
and 33). 

The problem in the occupation-number representation 
is to calculate the propagator P,, ( t )  = (p,, (t)).  averaged 
over occupation numbers, i.e., over impurity configurations. 
Corresponding to the polarization of the 0-active 'Li nu- 
cleus is P,, ( t )  = P,,(t) = (p,(t)),. 

A natural time scale in this problem is the Forster con- 
stant p = (256/243) ( r:/fl)2?c2vo (S1 is the volume of the 
unit cell), which is defined by 

This expression is valid at small values of c, i.e., in the low- 
concentration limit, in which we have c-0, but Bt remains 
nonzero [see Ref. 13 for a simple derivation of (22) 1. 

A convenient method for calculating P,, ( t )  under the 
condition 0 t  5 1 is a concentration expansion23 in cumulant 
form.'-4 From Ref. 23 we have 

m .m 

P ~ = + ~  ( t )  =cb:')  (y, x, t )  + z? z ' ... 

XC,,,~~~~+" (y, X, z l , .  . . , zh, t ) .  (23) 

Here b j k '  (y,zI, ..., zk,t) is the solution pi of Eq. (2)  for the 
case of a solitary (k  + 1)-spin cluster of impurity nuclei in 
sites y,z ,,..., 2,. The prime on the summation over z ,,..., z, 
means that all coincidences of summation variables are ex- 
cluded and that they are bounded by the one common 
(large) volume V. Before we take the limit V+ co, the 
expression in the 2' summation must be put in symmetric 
form. 

If v0t S 1, then b I k '  ( y,zl, ... Z, ) is a smooth function of 
the coordinates y and z;. It varies slowly over adistance - r,. 
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Under the condition c<  1 we can replace the sums over z, by 
integrals. The shifts zi +zi + y and the substitution 
zi +zi (v,t) lead to, for example, 

h 

where d (  = 3) is the dimensionality of the space, and S 
means to put in a form symmetric with respect to the integra- 
tion variables. The expression for P,, transforms similarly. 
As a result we find13 

The functions f and g depend on the coordinates, the time, 
and the concentration only through the arguments specified 
in (24). 

After a restructuring of expansion (23) into a cumulant 
expression we find the following result, which holds to with- 
in c2 inclusively in the 'LiG6Li system: 

With Zo = 0 and < = 3, we have a = 0.013, while with 
< = 1 we have a 5 3.10 - 3. The parameter a depends on Z, 
through v = vdv,  (X,); values of this parameter are shown 
in Table 11, which was constructed from the results of Ref. 
23. For the transport of excitons we find the following from 
the results of Ref. 28, put in a different form (d  = 3,s = 6) : 

where Do = ( 16/9)7r3 ( ri/fi)2~2y,) and a, = 0.0064. Equa- 
tion (23) of Ref. 31 leads to the same result in the leading 
order in c; explicit expression (26) (with a, = 0) was pro- 
posed in Ref. 34. 

The exceedingly small values of the constants a and a, 
show that (25) and (26) should hold well over a broad range 
of pyy (t) .  This expectation can be verified by comparing 
(26) in the case a, = 0 with numerical  calculation^^^ and 
also with optical measurements of exciton de t ra~ping .~ . ' ,~~  
Further support of (25) comes from a test inP-NMR (Refs. 
2 and 4).  

The cumulant version of the concentration expansion 
has proved extremely effective for describing a wide range of 
phenomena under the condition P,,(t) > 0. lPoo(0) (Refs. 

1-4, 36, 37). We might note a generalization of this version 
for describing polarization transport in the case of transla- 
tional motions of 8Li-6Li A corresponding 
generalization of the concentration expansion incorporating 
the motion of impurity nuclei was proposed in Ref. 39. 

4. LONG-TERM ASYMPTOTIC BEHAVIOR 

The concentration expansion gives us a solution of our 
problem under the condition /3t 5 1. The problem of deter- 
mining the long-term asymptotic behavior, P,, (Pt+ oo ), is 
considerably more complex and fundamental. In the case of 
a regular lattice (i.e., with c = 1 ) with a slight di~order,~'  a 
diffusive asymptotic behavior is realized in asymptotically 
exactly solvable  model^^'-“^ with a moderate disorder and 
also in several mathematical models (Ref. 44, for example). 
In our system, the fluctuations of the operator 2 from (20) 
are large (in fact, infinite in the small-c limit), but we have 

The models of Refs. 41-43, which we just mentioned, 
have similar properties, so the 8Li-6Li system can naturally 
be classified as a system with a moderate disorder, and we 
can assume that it has a diffusive asymptotic behavior. To 
find a correct quantitative formulation of this hypothesis, we 
must allow for the circumstance that site y in ( 19) is reliably 
filled with the 'Li spin, while the probability for finding a 6Li 
spin at x+y is c<1 and that under the condition 
( 9 t )  &max (7,l x - y 1 ) the solution of Eqs. ( 19) and 
(20) is proportional to the steady-state solution 

As a result we find 

TABLE II. The parameter a in expression (25) as a function of u = v,,/v, (R,) 

whereg, are the principal values of the diffusion 
From (24) we have 9, -Po. 

It is extremely difficult to satisfy this simple relation 
when deriving a microscopic theory. Although expression 
(28) is repeated in all the papers on the theory of a random 
walk in a disordered system, starting with (for example) the 
paper by Scher and Lax,32 the various authors have derived, 
in an equally systematic way, results other than (27) which 
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lead to the following expression in the case of dipole trans- 
port in three-dimensional space: 

where#(t) - (Pt)", 1/2<tc<1, and b-  1. In the low-c limit, 
we are left with only the exponential term here. That expres- 
sion (29) is not correct was pointed out back in Ref. 13, but 
even in Ref. 29, which was an effort to introduce a diffusive 
tail on Pyy (t)  in the GAF theory,28 it was only (29)-not 
(27)-which was found. This conclusion follows from, for 
example, Eq. (5.5) of Ref. 29. In those other papers, the 
memory function (more precisely, operator) Z,, ( A )  was 
introduced in the following way: 

and Z was calculated approximately. According to (24) 
with c< 1, the relation Po,@) = (A + &(A)  ) - ' should 
hold.28336 Using that relation along with (27), we find 

OD 

In other words, the memory function Z,, ( t )  must have a 
long-term diffusion In Refs. 28, 29, and 32 this func- 
tion fell off (in dipole transport) exponentially and was of a 
short-term nature. 

A suitable short-term memory function can be intro- 
duced by 

This function was proposed in Ref. 5 and later in Ref. 45 (see 
alsoRefs. 1 8 a n d 2 3 ) . ~ e r e E ~  = 1 - Cy,andCYisaprojec- 
tion operator which performs a configurational averaging 
under the condition n, = 1: C Y (  ...) = (...):. A memory 
function of this sort [a geometric function, in contrast with 
dynamic function (30) ] explicitly incorporates the circum- 
stance that the capacity of site y is larger by a factor of < /c 
than that of sites x#y.  Equation (32) [see also (33) and 
(38) ] converts at large t into the equation corresponding to 
the problem of heat transfer in a homogeneous medium with 
a specific heat c = c/n, to which a small object with a large 
specific heat m = /c and an initial temperature differ- 
ent from that of the medium has been added at point y. 

5. SEMIPHENOMENOLOGICAL THEORY 

An approach proposed in Ref. 5 for an approximate 
calculation of .MY corrects and substantially simplifies the 
semiphenomenological theory of Ref. 32, which was intend- 
ed for calculating Z (the terminology was different). Scher 
and Lax3' apparently regarded their analysis to be micro- 
scopic. In our approach, the conservation law 

z Px, ( t )  =l 

is taken into account by putting Eq. (32) in the form 

and by making the following assumptions: First, the first 
term in (square) brackets is the rate of polarization outflow 
from x to q, while the second term is the rate of inflow from q 
to x. Second, the polarization inflow rate from q to x does not 
depend on whether the polarization reached q. The pro- 
cesses of inflow to the site and outflow from it are now sepa- 
rated, and to determine the kernels NY,, we can treat the 
simple case in which an exact averaging can be carrried out. 
For this purpose we choose the process of the outflow of 
polarization from an arbitrary site: 

In accordance with the assumptions above, the average 
Fzx = (Fzx ): must satisfy the equations 

Using (341, we then find equations for the kernels, 
t 

from which the time to has dropped out, as it should for a 
steady-state process. The averages in (36) can be calculated 
easily by the technique of Ref. 13. If we omit the condition 
ny = 1 from (36), we find that in the limit c <  1 Eqs. (33) 
and (36) are equivalent to the Scher-Lax  equation^.^' Not- 
ing that we have ny = 1, we see that Eqs. (33) and (36) have 
a solution which is the same as (27), but-in contrast with 
(28)-it vanishes as x-y. In this region, these equations 
can be refined by working from expansions (23) and the 
exactly solvable problem of Ref. 46. In the occupation-num- 
ber representation number, that problem is 

As a result we find the equations5 
t 

cvzx exp ( -vZxt)  
jdr NEXy ( T )  Q,Y ( t - r )  = 

o l+c (exp (-v,,t) -1) 
Q x y  ( 0 ,  
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V Y X  
N = - x y y ,  Q , Y ( ~ )  = ( exp ( - nzvzxt ) ) 

cvx y 
Z P Y  

0 

Equations ( 3 6 )  and ( 3 8 )  and their solutions are the same at 
lx - y~)f.AmoreformalderivationofEqs. ( 3 3 )  and ( 3 8 ) ,  
as the lowest approximation in the projection technique, is 
given in Ref. 36. 

Equations ( 3 3 )  and ( 3 8 )  are exact in the case c = 1. 
Their solutions are the same as the exact solutions up to 
terms of order c' inclusively in the expansion in c. These 
equations given the exact asymptotic behavior at small and 
large values of fit when applied to problem ( 3 7 ) .  These 
equations are also exact in the limit in which the transport 
between sites x# y is considerably more rapid than the ex- 
change with site y. In the 8Li-6Li system, this limit corre- 
sponds to high fields X0, with v o )  v,. 

At low concentrations, a solution of Eqs. ( 3 8 )  is 

The kernels N gx ( t )  are localized at 1 z - x 1 <i; and fall off 
more rapidly than any power ( f i t )  " at f i t )  1. The latter 
result is obvious from the fact that with A  = 0  all the deriva- 
tives 

along with ( d  / d A )  "N:x ( A ) ,  are finite. 
To analyze the long-term asymptotic behavior of the 

solution of Eqs. ( 3 3 )  and ( 3 9 ) ,  we introduce the auxiliary 
propagator Gx, ( t ) ,  which is the solution of the problem 

The functions .i.,, here are defined by the first equation in 
( 21  ) for all z and x. In integral form, Eq. ( 4 0 )  is 

e x .  ( t )  =LQ (t)+ C J dti J dtzQ (t-ti) fixz ( f l - t , ) ~ . ~  (f). 

It follows from this representation that we have 

ex, ( t )  =6,,Q ( t )  ( t )  ( 4 2 )  
A 

h t f i t  2 1, G :, ( t )  is a smooth function of x - q, and we have 
G :, -c, while we have Q ( t )  -cO according to the discussion 
accompanying Eqs. ( 2 9 ) - ( 3  1 ). 

h 

Since the kernels N,, (7- co ) fall off rapidly at large fit, 
we have 

where 

Solving Eq. ( 4 3  ) by Fourier transforms, we find 

where the integration is over a unit cell of the reciprocal 
la t t i~e ,~ '  and 

V(k) =IZ e-'kxfi,o (l=O)=B (k, h )  =O) .  ( 4 5 )  

h 

The asymptotic behavior G(Pt-+ ) is determined by the 
asymptotic behavior V( k-0); this point has already been 
taken into account, in the estimate of the correction term 
from ( 4 4 ) .  In this region we have 

n2 C 
o (6,) = 12 vO6 I +/ do. sin 6.x (rY.1 ikn I ', 

Here and n are unit vectors with polar angles ak ,pk  and 
8, ,p,, respectively. The calculation of expressions like ( 4 5 )  
and ( 4 6 )  is presented in more detail in Ref. 43. In this man- 
ner we find 

exp (-xa2/ ( 4 a a t ) )  
= (1' (4naat) '  

) ( I + o ( I I , ( ~ ~ ) ~ ~ )  1, 
a=i 

where 
3 

a-i 

,u = 0.889, and q, = 2.09. 
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From this point on, the analysis is based on the idea that 
in this transport process the propagator Pxy ( t )  adjusts rap- 
idly (exponentially in the time) to the slowly varying solu- 
tion in (27), (28) (this solution varies as a power law in t ) .  
From Eqs. (33) we find 

where 
f / Z  t. 

. P x y  (ti-tz) - NzyY ( tz)Pyy (ti-tz) I ( I f 0  ( l l f i t )  ) 

= - I  dti ~.:(t-ti)P,, ( t i )  (1+O (1/Pt) )  

Correspondingly, 

Here Nj;, = Nj;, (A = 0). It is clear from Eq. (33) that in 
the limit p t  - UJ we have 

It follows that 

If we now substitute (52) into (50), then substitute (49) 
and (50) into (48), solve the resulting equation for 
PX,, (Pt- rn ) by an iterative method, and then substitute 
the result into ( 52), we find 

P=+O ( ~ t - - )  =ex: ( f i t )  (I+O (11fit) ) . (54) 

To find an approximation of Pxo for all t we consider 
the expressions 

pxO( t )  = ( I -Po,  ( t ) )  'I 'xo(tf.tt) 7 x*O? (56) 
h 

where Yxo ( t )  is defined in the same way as GO,, by (47), but 

without the correction terms O( ...). Here we have made use 
of the normalization condition (to within small quantities 
- c )  and the condition that Pxo adjusts to a quasisteady 
asymptotic behavior. We have introduced delays 7- and r,,  
which eliminate the nonphysical singularity of Yxo ( t )  at 
small t. It is natural to choose the delay r in such a way that 
Eq. (55) is the same as the exact equation 

at small values of at.  As a result we finds 

Corresponding to the 'Lk6Li system is the set of values5 

E=3, p=0,889, (p=2,09, pfi.t=5,11, Qoo( t )  =exp (- (Pit) I"), 

(58) 
while for the detrapping of excitons with isotropic v,, (Ref. 
6) we would have 

The most important property of (57) is that at largeor 
we have 

Po0 ( t )  > E  ( p ~ t )  -", 
while at small values ofpt the opposite inequality obviously 
holds. The diffusive asymptotic behavior is thus reached 
through a damped oscillation, as was verified in the experi- 
ments of Ref. 6. The importance of this effect is that it indi- 
cates that we are approaching an asymptotic regime which 
can be used in experimental and numerical studies. The 
damped oscillation is a consequence of the long-range nature 
vx, - I X  - Z I  - 6  [which generates a term - ul kI3 in expan- 
sion (46) 1, the sign vacation of this expansion, and the fact 
that the expansion of N(k,/l) in small values of A has no 
nonanalytic terms [it is actually sufficient that such terms be 
O(A In A )  1 .  If the transition rates fall off more rapidly with 
the distance, e.g., with s>8, a damped oscillation is again 
possible. For example, it exists in the case c = 1, although in 
this case the preasymptotic term is on the order of t -5'2 

rather than t - as in (47 ) (Ref. 43 ) . 
Note that the coefficient u in (46) is the same as the 

coefficient of lkI3 in the expansion of the Fourier transform 
of the average operator 

< K ( k )  >,=c ( v  ( 0 )  -v (k) ) , 

and the same as the corresponding coefficient in the expan- 
sion in k of the quantity 

This coefficient stems from vxq as Ix - ql - UJ. It is the sum 
of a large number of small terms and accordingly undergoes 
a self-averaging. In Sec. 7 below we will show that u, in con- 
trast with 9, is not renormalized in the exact theory. 
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6. DIFFUSION COEFFICIENT 

Gochanour et ~ 1 . ~ ~  have proposed a method for calcu- 
lating the diffusion coefficient 9. In that method, they cal- 
culate not only the leading approximation a,,, but also 
(in contrast with other approaches, including some taken 
later) the first correction to it, A9,,,. This correction 
turns out to be small: A90GAF/90GA, = - 0.1 1. 

The study by Gochanour et is based on a calcula- 
tion of the autocorrelation function of Po,, but Eq. (27) of 
Ref. 28 was not satisfied, and an exponential asymptotic be- 
havior P,(t+ co ) was found instead of a diffusion behav- 
ior.6,48,49 For one- and two-dimensional systems, that meth- 
od incorrectly predicts both P,(t+ co ) and the Laplace 
transform of P,(A -O), in terms of which gGA, is ex- 
pressed [in Ref. 28, the expression was Poo(A 4 0 )  -A ', 
while in the diffusive behavior we would have 
P,(A+O)-R -'I2 with d =  1 and P,(A+O)-1 1nA I 
with d = 21. Direct measurement of the exciton diffusion 
coefficient by Gomez-Jahn et ~ 1 . ~ '  at Pt- 10, by optical 
four-wave mixing, in which the observable was the Fourier 
transform of the propagator P(k,t),  led to a value smaller 
than the prediction of Ref. 28 by a factor of nearly 2. All 
these flaws of Ref. 28 were carried over to the later analysis 
in Ref. 29. The value of the diffusion coefficient in the semi- 
phenomenological theory of Sec. 5 is the same as the value of 
a,, in the Scher-Lax theory.32 It is larger than the value 
found in Ref. 30, again by a factor of nearly 2. 

Accordingly, we present below a new method for calcu- 
lating the diffusion coefficient. This new method does not 
suffer from these flaws, and it leads to satisfactory agree- 
ment with the experiments of Ref. 30. We also show that a 
correct comparison of theory with those experiments re- 
quires consideration of the preasymptotic ( - lkI3) term in 
an expansion of the type in (46). 

We restrict the discussion to the limit of low concentra- 
tions, and we first consider the case of isotropic 
Y,, = vor ;/Ix - zI6. 

If we omit the condition n, = 1 in Eq. (20), we find the 

This equation describes a process in which the excitation is 
initially not at an impurity nucleus, as in (20) (where this 
circumstance was caused by the equality n, = l ) ,  but at 
some arbitrary lattice site. The excitation subsequently 
moves to (nearest) donors and then migrates exclusively 
along them. The diffusion coefficients for the propagators 
G = ( g  ). and Pare therefore identical. Introducing a mem- 
ory operator, and using the conservation law 8, G,, ( t )  = 1, 
we find 

G (A) = [h+iM(h) ] -', M (A) =D (A) -N(A) , D,.=G,,Do, 

Do = EN,.. (63) 

h 

The propagator G, which we used back in Sec. 5, is a semi- 
phenomenological approximation of G. This conclusion fol- 
lows from a comparison of representation (32) with the cor- 
responding representation for G. 

From Eq. (62) it follows directly 

n y ~ x y = n y P x y = n y ~ x y  (ny=l) 
(1-nx)Cxy= (1-nx)6,, exp (- 2 n.v,,t). 

5 

In the small-c limit we find thus, as in (22), 

= exp (- (66) 

In our isotropic case, with d = 3 and s = 6, we find 

We evidently have G,(t) -cO and GxZy ( t)  < c, so we find, 
as in (30), 

Goo (A) =[A+Do (A) I-'. (67) 

The diffusion coefficient is 53 = lim 9 (A), where 
1-0 

Let us examine a concentration expansion of Goo(A) and 
9 (A). Within terms -c3 inclusively, with d = 3 and s = 6, 
we find 

1 
Goo (A) = -(1-'/,n"u+'/,~~-'/~n'~u~), 

A 
(69) 

9 (A) = 2 (A) 5 ' h , r ~ ( i + d , u + ~ u ~ ) ,  
6 h  (70) 

where u = ( A 2 ,  do = 62/3/(4~1/2)  = 0.46573, 
d ' = 0.01521 and d2 = - 0.2036(8). 

In deriving (69) we used explicit expression (66). 
Expression (70) was derived by the method described in Sec. 
3. In the case at hand, it leads to the expansion 

a , .  z, k=o 

but now, in contrast with (23), 5 i k +  "(y,x,z,, ... z,J) is the 
solution of Eq. (62) for an isolated ( k  -t 1 ) cluster of impu- 
rity nuclei, at sites x,z,, ..., z,. The error in d, reflects the 
error in the calculation of the corresponding sextuple inte- 
gral [after (71) is substituted into (68), after the sums are 
replaced by integrals, and after the spherical symmetry is 
taken into account, the first term reduces to a single integral, 
the second reduces to a triple integral, and m = 2 corre- 
sponds to a sixtuple integral]. 

Working from expansion (69 ) , using ( 67 ) , we find an 
expansion for Do: 

Do (A)  =A(biu+b2uZ+ b3u3), (72) 

where b, = ( 1 / 2 ) ~ ' / ~ ,  b, = lr/4 - 1/2, and 
b, = (1 /8) l r ' /2 (~-  3). When wenow solve Eq. (69) for2 
and find a relation A = Ao(G,), again as an expansion in 
c[i.e., in (POGO,) 'I2], substitute the result into (72), and 
expand it in a power series in (BOG,) "I2, we find, using (67), 
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an equation for the function G,(A) : 

Goo- [h+Do (ho(Goo)) I-' (73) 

Solving Eq. (73), we find that PoGoo(A = 0) is equal to 
1.273, 1.8 19, and 1.918 when one, two, and three terms, re- 
spectively, are retianed in the expansion of Do in (DOG,) 
The exact value is 2. A corresponding calculation for 
Goo(t) = exp( - (Pot)") with a = 3/10 (i.e., for a quadru- 
pole-quadrupole transport) leads to values 1.434,3.82 1, and 
8.467, respectively, for PoG,(A = 0).  The exact value is 
PoG,(A = 0) = r ( l  + l / a )  = 9.261. In this case, how- 
ever, it was necessary to carry out an additional restructur- 
ing of the expansion of Do in a continued fraction in 
(DOG,) "; otherwise, Goo would have turned out to be com- 
plex in the second step (more on this below). It can be seen 
from these examples that there is promise in the self-consis- 
tent method which was proposed in Ref. 28 for restructuring 
series in un = (&/A) "/2 in an expression having a finite limit 
as A + 0. We see that this method (or a simple modification 
of it) has a good numerical convergence, which can be moni- 
tored by observing the behavior of the successive approxima- 
tions found through the use of the first terms of the concen- 
tration expansions. 

The primary distinction from Ref. 28 so far is that a 
concentration expansion has been used (in accordance with 
the suggestions of Refs. 5 l,52, and 29) instead of a diagram 
technique to derive expansions (69), (70), and (72). In ad- 
dition, we have applied the method not to Po, as in Ref. 28 
but to Goo, which is known exactly. 

We have reported a test of this method in some exactly 
solvable samples, since neither the general conditions for the 
applicability of the method nor the results of any test of it 
were reported in either Ref. 28 or later papers.29*52 Inciden- 
tally, it has been pointed out that there is an obvious limita- 
tion: If Eq. (69) is to have a single-valued solution for A, the 
function G,(A) must be m o n ~ t o n i c . ~ ~ , ~ ~  

In actual calculations it is convenient to formulate this 
method in a different way. Assuming A = ( 1 - y)/G,, and 
introducing the new variable y, we have Do = y/g,, and the 
equation 

m 

becomes 

The G A F m e t h ~ d ~ ~  is now equivalent to the following proce- 
dure. We first solve Eq. (74) for y in the form 

We can do this by iterating Eq. (74) and re-expanding the 
right side in a power series in f. Using y = 1 - AG,, we find 
then the equation 

for the autocorrelation function Goo. In the aforementioned 
restructuring of the expansion into a continued fraction in 

(floGo0)" the transformation under consideration was 
(A = 0):  

with a = 3/10, g, = 0.8975, g2 = - 0.2051, and 
g3 = 0.0055. 

In the GAF rneth~d,~ '  to calculate a we must now re- 
place A by Ao(G,) in expansion (70) and in this manner 
obtain an expansion of a (A) in powers of 6. The result can 
be put in the form 

When terms of up to order c, c2, and c3 are retained, the 
following respective values of x are found: xi = 0.447, 
x; = 0.346, and x; = 0.5 12( 1 ). The second correction 
turns out to be significantly larger than the first: 

We recall that the values x,,, = 0.355 and x,,, = 0.315 
were found in Ref. 28 from an equation equivalent to Eq. 
( 19), with terms on the order of c and c2 in the expansions 
for P,, and P,. The difference - XIGAF l/x2GAF 
= 0.13 was small, but x,,, was found to be larger by a 

factor of nearly 2 than the number corresponding to the ex- 
periments of Ref. 30 (more on this below). 

A small value of the first correction to 9 in the GAF 
method thus does not lead to a rapid convergence of the 
results based on the first terms of the concentration expan- 
sion, either in the original version2' or after a switch to Eq. 
(62) which eliminates some of the flaws mentioned above. 
The essential reason for this circumstance is that the func- 
tions Do(A) and 9 ( A )  are extremely different. The GAF 
method actually involves replacing A by the function 
Ao(G,) in a (A). That substitution is effective in a calcula- 
tion of Do(A), since Ao(Goo) is calculated along with Do. 
However, there are no grounds for believing that this substi- 
tution would be effective in a calculation of the entirely dif- 
ferent function (A). 

It is thus natural to attempt to calculate 9 by simply 
making use of the method which proved successful in the 
calculation of G,. That method cannot be applied directly 
to expansion (70), since the latter is not in the standard form 
(69) that begins with a 1/A term. Comparing (70) with the 
expression for 9 ( A )  in the Scher-Lax theory32 [cf. (46) 1, 

x 1. Goo (hf ~ x o )  /Goo 0") 7 asL (A) = i16Z .XO (79) 
I 

and with the analogous representation for 9 in lowest order 
in the version of the outlined GAF theory, 

6' (A) = '/.Z x2vxo[h+D0 (h)+~~.ol- ' lGo~(h) ,  (80) 
X 

we can assume that the common factor of A in (70) is the 
beginning of an expansion in c for l/Goo(A). We therefore 
rewrite 9 ( A )  as 

556 Sov. Phys. JETP 72 (3), March 1991 F. S. Dzheparov 556 



(D (A )  =AGO, ( A ) u V 6 ( l f  d , u f  d,uf  . . .) = (p,F)"6.  (81) 

The expansion ofFin  c, i.e., in u = (&/A) is 

where h, = 1.0452 and h, = 0.6620(10), and where we can 
apply to this expansion a method based on Eqs. (74)-(76). 
As a result, when we retain two and three terms from (82), 
we find x, = 0.2163 and x, = 0.186( 1 ), respectively. Using 
the same method to calculate g,, , we find values which are 
1.3 18, 1.077, and 1.046 times the exact value x,, = 0.3725, 
when terms up to c2,c3, and c4, respectively, are retained. 
These results demonstrate the good convergence of the 
method again in this case. From this comparison we can 
estimate the error of the method in the calculation of x3 to be 
lo%, since in the case of x,, it is even smaller, although the 
relative change in x,, as we go from c2 to c3 is larger than the 
corresponding change in x. 

The value found in this manner, x = 0.186, is half the 
value of x,, and smaller by a factor of nearly 3 than the 
number x,, = 0.49 which follows from the method pro- 
posed in Ref. 14 for describing spin diffusion. 

To compare the number which we found with the ex- 
periments of Ref. 30, we need to allow for the circumstance 
that the function x from (21 ) for the case of electric-dipole 
interactions is 

where d, are unit vectors along the directions of the transi- 
tion dipole moments, nV = rV/rii, and an average (...), must 
be carried out over the random isotropic distribution of vec- 
tors d, (Refs. 53 and 54). This anisotropy was incorporated 
in Refs. 28, 30, and 53 by means of the substitution 
C - C ( ~ ~ ) ,  = 0.845c, as in the calculation of the Forster 
constant 0 = ( x ' / ' ) ~ w  Here3' 
9 + R g  = 0.8454/39 = 0.7999. Analysis of (79) and 
(80) shows, however, that the renormalization factor in 
these cases is R = (X1/2)~'6(x5/6)d = 0.899. When we take 
this factor into account, we find that the value 
x3 = 0.186( 1 ) above becomes x ,,,,, = 0.167 ( 1 ). 

In the next section of this paper we show that 

as in the semiphenomenological theory. In an analysis of the 
experimental results in Ref. 30, the value ~7 = 0 was as- 
sumed, and the value x,,, = 0.147 ( 15) was found as a re- 
sult. Taking the correct value 

into account, we find x,,, = 0.168( 17), which is the same as 
Ittheor . 

The results presented in this section of the paper seem to 
mean that this study has yielded the first regular method for 
calculating the diffusion coefficient for multipole transport 
in a disordered system, and a value has been found for x 
which agrees with experimental results within the experi- 
mental error and the methodological error of the calcula- 
tion. 

7. PREASYMPTOTIC BEHAVIOR FOR DIPOLE TRANSPORT; 
THE COHERENT-MEDIUM METHOD 

In this section of the paper we show that Gxf , and P,,, 
are the same as x - y, we show that the coefficient a of I kl "n 
(46) is exact, we find the relationship between the asympto- 
tic behavior of G(k,t) and P(k,t) as Pt- cu with g k  ,t- 1, 
we find G(k,t) for this case, and we refine the parameters of 
(57) using the value found for 24 in Sec. 6. As in Sec. 6, we 
consider only the small-c limit in this case. 

Using the identity 

- - 
where we have used G,, n, = P,, n,, we introduce --- 
8 O = GNQ. We obviously have 

From (64) and (65) we find G :, = cP,, . With x# y we find 

Ifx-y but x#y, then 

- - - 
Using G,, n, = P,, n, = n, P,, n,, we find 

As x +  y, this expression approaches z because of the term 
Y,, + co in the denominator on the right. Consequently, in 
the low-concentration limit we find, as x + y, 

To'analyze the preasymptotic behavior of the autocorrela- 
tion function P,,(t+ co ), it is thus sufficient to analyze 
G,, (t- co ). At small k and large t we find from (84) that 
the Fourier transform is 

G (k, t) =Q (t) 4- dr exp (--ikx) (Px, ( t - r )  mz0?. (T) ). 

where we have made use of the circumstance that as t in- 
creases the function G,,(t) falls off considerably more rapid- 
ly than px, ( t)  does. In the sum over z here, values 2-7 are 
important. The contribution of this region - to the sum over x 
can be estimated by using p,, < n,P,. At large values of 
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I X  - zI, the propagator pxz depends only weakly on z. Tak- 
ing all these circumstances into account, we can write 

G  ( k ,  t )  =P ( k ,  t )  +O ( P o ,  ( t )  ) +O ( a k Z p - ' P  ( k ,  t )  ) , 
pt-m, 9 k " - 1 ,  

P ( k ,  t ) = G ( k ,  t )  +O((f i t ) -d'")SO(9k2~- iG(k,  t ) ) ,  (86) 

where 

G ( k ,  t )  =exp ( -M (k, h=O) t )  ( I+O ( I l p t ) )  . (87) 

This relation will be proved below. 
We now consider the asymptotic behavior of G,, ( A )  as 

/ X  - y I + cc . It follows directly from Eq. (62) that 

As x - y + cc , the region z z x ,  in which G,, (n, = 1 ) varies 
slowly, and also the region z z  y, in which v,, varies slowly, 
contribute substantially to the last sum. Taking these points 
into account, we write 

z nXn.vx.~. ,  = nxn, { v , , [ ~ . , +  ( z - x )  'V.G., (n,= I )  + . . .] 

Taking the symmetry vxz = v, into account, we finally find 

The first term here is obviously the leading term, so we can 
write 

G,, ( A )  =cA-~v,,, Ix-yl +-w. (89) 

On the other hand, it follows in a completely analogous way 
from representation (63) that we have 

Gxy (A) =A-'Nx7 ( A ) ,  I X-y 1 +-W. ' (90) 

Consequently, for all A we have 

Nxl (A) =CYX., Ix-zl (91) 

As was mentioned in Sec. 5, the term - lkI3 in the ex- 
pansion of memory gerator  (46) is due entirely to the 
asymptotic behavior Nxo a 1x1 - 6  as x-. CC.  It thus follows 
from (9 1 ) that the coefficient o is given exactly by the repre- 
sentation (46), while the leading term ( - k2) in the expan- 
sion is renormalized in the more accurate theory. In the iso- 
tropic case we thus have 

M ( k ,  A=O) =9k2-o lk1  3+o ( k 3 ) ,  9 = x B 0 ,  (92) 

and from (46) we find 

A simple formula for joining the expansions of Po, at 
large and small values ofpt was proposed in Sec. 5. Using the 
new value of the diffusion coefficient found in Sec. 6 and 
carrying out a refinement which makes the formula valid for 
terms up to -pt under the condition P t<  1, we can write 
this formula in the form 

The parameters z = ppr and E are determined by the equa- 
tions 

which follow from the circumstance that at small values of 
p t  we have [see (25) and (26)] 

1  
Po, ( t )  = 1 - ($ ) '% + (---- - a )  pi t+0(  

2(E+1) 

In the isotropic model of exciton transport we would 
have a =a, = 0.0064. Using the value 
7t = 0.186 ( 1 ) = 0.5 xs, found in Sec. 6, and noting that p is 
proportional to 9, we find 

When the anisotropy in the exciton transport is taken 
into account through the introduction of a renormalization 
factor R = 0.899 (Sec. 6), we find the new values 
p =PI = 0.714&, andp = R.0.390/0.714 = 0.491, without 
any change in e, or ppr .  

New parameters of polarization transport in the 'Li- 
6Li spin system are found from (58) through a similar re- 
placement of the old value p=0.889 by 
p = 0.5.0.889 = 0.445. This replacement corresponds to 
the assumption that, as in the isotropic model, a more accu- 
rate value of the diffusion tensor is half its value in the Scher- 
Lax theory. As a result we find 

A previous attempt has been made3 to use expression 
(93). With E = 0.276 and the phenomenological value 
p = 0.889 which was used in Ref. 3, however, one degrades 
rather than improves the agreement with experiment. The 
parameter values in (97) lead to a more satisfactory agree- 
ment. 

If expression (93) is to be accurate in the first two terms 
of the expansion of P,(pt+ co ) (so a damped oscillation 
will exist), it is sufficient (as mentioned in Sec. 5) that the 
terms in M(k,A-0) which are not analytic in A be 
o(A In A). Alternatively, in the time domain, it is sufficient 
that M(k,t- cc ) = o ( t  -'). These conditions follow direct- 
ly from the expression 
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!2 
GXO ( h )  = ----r j d 3 k  exp ( i k x )  [ h + M ( k ,  A )  ]-I, 

(2n) 

and from the Tauber theorems which relate the asymptotic 
behavior as R -0 and t - co (Ref. 43). Alternatively, they 
follow from the analysis corresponding to Eqs. (40)-(47). 
It is not a trivial matter to test these conditions. 

In the analysis developed in Sec. 6, no terms which are 
not analytic inR arise in M(k,R-0) at all, as in the original 
GAP theory. So far, however, that method is still in a primi- 
tive stage, and invoking it to answer this question would 
seem to be premature. 

Another possible approach is to study the T-matrix ex- 
pansions and the method of a coherent (or effective) medi- 
um for the propagator G. This method is also interesting as 
an alternative method for deriving G or P. An approach of 
this sort, which was developed by Kirkpatrick,55 is a regular 
basis for solving random-walk problems in systems with dis- 
ordered links between the nearest sites of a regular lattice 
(link problems). The conditions for the applicability of that 
approach are not yet clear. It is usually assumed that the 
coherent-medium method is good (i.e., yields satisfactory 
values of ) if there are a large number z, of effective near- 
est neighbors. As it turns out, however, the coherent-medi- 
um method leads to the exact value of the diffusion coeffi- 
cient in one-dimensional systems which can be solved 
exactly in asymptotic limits, with z, = 2 (Ref. 41). After 
some modification, it is equally successful in the model of 
isotropic random hops42 and in the version of that 
which simulates dipole transport. In these systems, the co- 
herent-medium method leads to the correct long-term 
asymptotic behavior of the memory functions,42 
M(t-.oo)-t - ' - d ' 2  . Several attempts have been underta- 
ken to generalize that approach to our problem (a site prob- 
lem). Many of these attempts are reflected in a recent pa- 
per,56 but they do not involve a construction based on 
T-matrix expansions, and they do not contain a regular ap- 
proach. 

To construct a T-matrix expansion of memory operator 
M(R), we rewrite Eq. (62) in the form 

Here we have introduced translationally invariant operators 
B and B z  which do not depend on the occupation numbers 
but which have not yet been determined. Multiplying the 
identity 

by Pz from the left, and introducing 

Tz=F"C=To"Go, tz=F"Goz=tozGo, Go= (A+B)-', ( 100) 

we find the equation 

The equation is conveniently written and solved in matrix 
form: 

We use 

where N, is the total number of sites in the crystal. Introduc- 
ing the projection operator C of configurational averaging, 
we then find 

In the limit of low concentrations we naturally have Bz-c, 
with 

and we are left with 

Kirkpatrick's theory55 is structurally equivalent to the sub- 
stitution of an iterative solution of Eq. ( 101 ) into the second 
or third equation in ( 103). The construction of the T-matrix 
t = t " G ,  ', which describes a scattering by one site z, not 
by one link as in Ref. 55, is based on our analysis, and we 
have written all the important equations in closed operator 
form. 

The coherent-medium method corresponds to the con- 
dition ( t  ;) = 0 (or B = M,),  which reduces in the case c 4  1 
to the following equation for B: 

559 Sov. Phys. JETP 72 (3), March 1991 F. S. Dzheparov 559 



Here we have introduced regularized transition rates Vxq 
("regularized" here means smoothed over short distances), 
and Roxq is the regular part (smooth at small values of 
x - q) of the propagator Go,, . 

Under the condition ( t  ) = 0 the first nonvanishing 
contribution to M, is 

It is on the order of t  4, like the first correction in Kirkpa- 
trick's method. 

An advantage of the coherent-medium method is that 
its leading approximation can be found from the following 
graphic arguments, which bring out the relationship be- 
tween the coherent-medium method and mean-field theo- 
ries. If the operator 

is a good approximation of the exact propagator, then we 
would naturally expect that it would not change, on the aver- 
age, when one of the "representatives of scatterers" B z  is 
replaced by an actual one, n,A ". The result is the equation 

which is equivalent to the equation ( t  ") = 0. 
Going back to the analysis of the asymptotic behavior 

M(k,A -+ cc ), we find that the factor (A + B) - or Ro on the 
right in (106) might be a source of dangerous terms in Mo 
("dangerous" in that they cannot be expanded in integer 
powers ofA and are no smaller than A In R in order of magni- 
tude). The reason is that the hypothesis that there are no 
dangerous terms in B leads to the presence of such terms in 
( (A + B) - I),, . However, it follows from the asymptotic 
behavior in (47), the localization of the functions Fxq in 
terms of x - q, and the presence of a conservation law, 
which can be expressed as 

that there are no dangerous terms in the product 
R, (A)A~(A) .  More precisely, the hypothesis that there are 
no such terms in B turns out to be noncont:adictory. A term- 
by-term analysis of the expansion of Min t leads to a similar 
conclusion. That analysis is conveniently carried out in the 
Fourier representation with the help of the expression 

w h ~ r e  k and p are quasimomenta, and the functions f,, f, and 
f, are nonzero at vanishing values of their arguments. This 
analysis has also incorporated the circumstance that the 
range of the quasimomenta is finite and that the only source 
of damgerous terms is the divergence of the propagator 
Go-(A+ ~ok2)-1atsmallkandA,sinceint~(A) (asin 
Mo) there are no dangerous terms. 

8. CONCLUSION 

The basic content of this study consists of the theoreti- 
cal arguments which can be made to support the assertion 
that a fundamental law of nature-the diffusion law-is also 
valid in disordered systems with dipole interactions. We 
have restricted the discussion to a comparison of simple sys- 
tems describable by kinetic equation (2).  

The derivation of Eq. (2) in Sec. 2 is based to a large 
extent on the modeling of the effect of the medium as an 
admixture of a stochastic process. Even this extremely limit- 
ed problem does not yet have a completely microscopic solu- 
tion, in agreement with Kubo's comment5' regarding the 
unavoidability of stochastic elements in physical kinetics. 

Aleksandrov's study19 of the conditions for the applica- 
bility of a perturbation theory has been improved here, 
through a reformulation of that theory in a projection tech- 
nique, through a generalization to multispin problems, and 
through the use of a realistic random process with smooth 
local-field trajectories and a slow diffusive decay of correla- 
tions. The model2' used makes it possible to compare the 
form functions of the various important correlation func- 
tions with the results of a moment analysis of these func- 
tions. This model leads to qualitatively correct high-fre- 
quency asymptotic results, which are exponential according 
to the present ~nde r s t and ing . ' ~ ,~~  These properties are also 
of importance for finding a competent estimate of the rela- 
tive roles played by the various multispin and multiquantum 
processes, a theory for which was derived in Refs. 59 and 60, 
among other places. 

The slow decay of the correlations gives rise to a nonan- 
alytic HI dependence of the Markov approximation for the 
memory operator of Eq. (8) ,  but this event occurs at orders 
higher than H : ,  and it does not affect our analysis of the 
conditions for the applicability of a perturbation theory. Yet 
another reason for the appearance of a nonanalytic HI de- 
pendence [at the order H : ,  but for Eq. ( 17) 1 was pointed 
out in our discussion of Eqs. ( 17) and ( 18 ) . 

Analysis of the transformation of kinetic equation ( 14) 
to the considerably simpler form in (2)  shows that Eq. (2) ,  
which describes the transport of the density of additive inte- 
grals of motion, and which is essentially a hydrodynamic 
equation, is also highly accurate in the kinetic stage of the 
evolution. One might expect that in the kinetic stage, with 
po- 1, a nonlinear equation forp, (m)-the population of the 
state of spin i with magnetic quantum number m-would be 
preferable. At large t, that equation can be approximated 
well by a linear equation of the type in (2).  Equations of this 
sort have been suggested in several places for describing pro- 
cesses of a spin-diffusion type, starting with the pioneering 
paper by Bloembergen6' (see, for example, Refs. 15, 19,62, 
and 63), but the accuracy of those equations appears to be 
unknown. Our deviation of balance equation (2)  from con- 
trol equation (14) is similar to Mori's method,64 but it 
differs from the latter in that it is applied to a kinetic equa- 
tion rather than to a Liouville equation, and it also differs in 
the type of projection operators used. Mori's method appar- 
ently does not lead to an expansion of memory function ( 18) 
in a continued fraction l/z,. 

The problem of deriving a solution of Eq. (2)  averaged 
over a random impurity distribution is exceedingly compli- 
cated, no matter how simple it may look superficially. The 
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actual status of this problem, including its relationship with 
field theories and superfield theories, is seen when it is for- 
mulated in functional-integration terms.50251 One can find a 
corresponding analysis of some simpler but related problems 
in Refs. 65 and 66, among other places. In particular, it is 
only the major conceptual complexity of this problem which 
can explain the fact that papers have previously appeared 
with the assertion that the long-term asymptotic behavior 
(the diffusion coefficient or the conductivity, which is pro- 
portional to the diffusion coefficient, in problems of the hop- 
ping transport of electrons) is determined by the average 
operator (2 ), (Refs. 67 and 68). That conclusion is errone- 
ous, since it is reached without the use of a kinetic equation; 
it is reached by formally taking the limit of a weak impurity- 
impurity interaction, without a genuine evaluation of the 
dimensionless parameters or a selection of the important 
slow modes, for which a kinetic equation is usually formulat- 
ed. The complexity of the problem is also seen in the circum- 
stance that none of the existing methods for calculating the 
propagator in the limit Bt- CG and the diffusion tensor are 
beyond question, and experiments play a really major role at 
the present stage of development. 

The concentration expansion presented in Sec. 3 is so 
far the only source of reliable information for realistic sys- 
tems at moderate times. The result of Sec. 6, which is based 
on Ref. 69, shows that this expansion can also be used for a 
quantitative analyusis of the long-time asymptotic behavior. 
The methods used here are similar in spirit to the general 
ideas of the Pad6 approximations and to expansions in con- 
tinued fractions.'" They are effective when diverging or 
poorly converging series are restructured in such a way that 
the analytic properties of sums of these series can be taken 
into account correctly. An important point is that the theory 
of Sec. 6 can be generalized in an obvious way to the case of 
anisotropic v,, . The only difficulties which arise here stem 
fromthe increase in computer time required in the numerical 
calculations of the concentration expansion. An important 
advantage of the theory is that there is an a posteriori esti- 
mate of the acuracy of the diffusion-coefficient calculation 
on the basis of the first two approximations. However, this 
circumstance does not rule out the need for a theoretical 
proof (which we do not have) that the long-term asymptotic 
behavior is diffusive. In Sec. 4 we dwelt at length on a correct 
formulation of this hypothesis, since errors on this matter 
continue to be published to this day. 

The semiphenomenological theory of Sec. 5 is based on 
the fact that by introducing an irreducible operator in the 
form in (30) it is not possible to make the memory a short- 
term memory. Here we are essentially contradicting the pur- 
pose for which this operator is usually introduced in many- 
body The derivation in Sec. 5 makes it possible to 
circumvent this problem and to derive equations which have 
a simple physical meaning. This theory, which was original- 
ly derived in Ref. 5, remains today the only theory which 
gives a uniform, qualitatively correct approximation of the 
propagator p,, ( t )  for all c and t. Equations (38) and (46) 
generalize the Scher-Lax diffusion tensor g?.,, with small c 
to arbitrary c. Again in a more recent paper29 we read the 
claim that a description has been found for all c and t .  That 
paper presents a diffusion coefficient which is close in mag- 
nitude but does not satisfy condition (27). The agreement 
between the experimental results of Ref. 30 and the theory in 

Sec. 6 indicates that the diffusion tensor may have a value 
half that of g,, in the case c< 1 and also that we would also 
like the theory to be more accurate for all c. 

We have paid close attention to the preasymptotic be- 
havior of the functions P, ( t )  and M(k,A) and also Eqs. 
(57) and (93), since they are necessary for planning and 
analyzing experiments and also because the corresponding 
experimental results are important to the theory. At the mo- 
ment we known of no approaches along which the memory 
function M(k,t) would fall off as t - 2  or more slowly. The 
absence of a damped oscillation would mean specifically that 
there is a long-term memory of this sort. Accordingly, mea- 
surements of damped oscillations would provide important 
information about possible directions for developing the the- 
ory further. 

A contradictory picture is evolved at present. In the 
case of transport on a regular lattice, the damped oscillation 
is large,43 larger in fact than the effect predicted by (57) and 
(59). In disordered systems, both experiment6 and study of 
a system which can be solved exactly in an asymptotic limit4, 
point to a completely significant effect. In the model of Ref. 
43 the damped oscillation should grow with increasing dis- 
order. This circumstance is seen in the fact that in the expan- 
sion 

the quantity a, goes negative with increasing disorder, while 
a, increases. Analysis of the results of Ref. 6 in the region 
Dt-25 again reveals no contradiction of the possibility of a 
damped oscillation greater than that predicted by (57) and 
(59 1. 

On the other hand, according to (93) and (96) (after 
we use a more realistic 9) the damped vibration is small, 
but in the theory presented above the coefficients a, and a, 
were not calculated. If they were known, we could refine Eq. 
(93), through the substitution 

(for example), followed by a determination of E,  a,, and a, 
from a, and a,. There are certain indications in the calcula- 
tions of Ref. 7 against the presence of a damped oscillation, 
but those indications are contradictory. On the whole, it is 
clear from the derivation of (57) and (93) that at present no 
claim can be made that these equations give more than a 
qualitative description of the damped oscillation and a for- 
mulation of questions which need to be solved experimental- 
ly or in a suitable numerical simulation. Experiments and 
numerical simulation will apparently have the last word on 
the matter. Experimental studies of the transport of nuclear 
polarization in the RLi-6Li system will play a unique role in 
testing predictions of the microscopic theory, since calcula- 
tions of the microscopic parameters in exciton systems are 
considerably less accurate. 

I wish to thank V. E. Shestopal for assistance in compil- 
ing Table I and in the numerical comparison of the three- 
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