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It is shown that bistable behavior of the electron system in doped compensated (by deep centers) 
semiconductors with polar optical scattering is possible in strong electric fields at room 
temperature. This bistability is manifested by an S-shaped current-voltage characteristic. The 
bistability mechanism is due to a combination of the runaway effect (typical of polar optical 
scattering), the impact ionization of deep centers, and the electron-electron scattering. A 
systematic analysis of the last effect is made going beyond the Landau collision integral 
approximation and allowing for the processes characterized by a large transferred energy. Such 
processes transfer electrons from the low- to the high-energy region and can ensure retention of a 
low-resistance state with a high characteristic electron energy and a correspondingly high degree 
of ionization of the deep level. A study is made of the influence of the side valleys that limit the 
runaway effect. The proposed model accounts for the experimental data on electrical breakdown 
and reversible switching in CdTe. 

INTRODUCTION 

The switching phenomena in strong electric fields (S- 
shaped current-voltage characteristics) have always attract- 
ed special interest because of the interesting physics and also 
due to technical applications. One can mention here the ef- 
fects that occur in glassy chalcogenide semiconductors and 
are of thermal origin1 or the various phenomena in diode 
structures.' The S-shaped current-voltage characteristics 
have been observed also in the case of strongly nonequilibri- 
um low-temperature states of electron systems in bulk crys- 
tals of several materials (InSb, Ge, etc.), described, for ex- 
ample, in Ref. 3. Our aim will be to analyze nonlinear 
electrical properties of CdTe crystals which exhibit both im- 
purity breakdown4 and reversible switching at room tem- 
p e r a t ~ r e . ~ , ~  

The behavior of CdTe in strong electric fields has been 
investigated intensively on many occasions, particularly be- 
cause the characteristic features of the energy band structure 
of this material facilitate the Gunn effect. However, al- 
though the Gunn effect is indeed observed in pure cadmium 
telluride,' in samples with high impurity concentrations the 
Gunn effect is replaced or supplemented by electrical break- 
down4 accompanied by an S-shaped current-voltage charac- 
teristic.' It was suggested in Refs. 4 and 5 that the Gunn 
effect is suppressed by the impurity scattering and by the 
interband breakdown. However, as pointed out in Ref. 5, 
this still does not account for the origin of the S-shaped cur- 
rent-voltage characteristic (maintaining a low-resistance 
state in weak fields). 

It was reported in Ref. 6 that a similar reversible switch- 
ing effect occurred in CdTe:Cl at room temperature. The 
concentration N,, of shallow donors with an energy level at 
Ec - 15 meV was - 10'7-1018 cm-3, but the electron den- 
sity in the conduction band reached only no - 10'3-10'5 
cm - 3; the activation energy of the conduction process var- 
ied from sample to sample within the range 0.05-0.03 eV. An 
analysis of the electron structure of heavily doped and com- 
pensated CdTe crystals demonstrated8 that the compensa- 
tion was due to an intrinsic compensating defect in the form 

of the doubly charged cadmium vacancy V$,+ with a level at 
E ,  -Ec - 0.6 eV. The application of strong electric field 
pulses of 10'-lo4 V/cm intensity resulted, after a short delay 
td from the beginning of a pulse, in a considerable reduction 
in the voltage across a sample (which occurred in a very 
short time of < 10 - ' S) accompanied by a rise of the current. 
The delay time td decreased rapidly on increase in the field 
(values oft, right down to 10 - 6  s were observed). A typical 
current-voltage characteristic is shown in Fig. 1. 

The authors of Ref. 6 studied the dependence of the 
switching effect on the thickness d of a sample, on its tem- 
perature T, and on the rate of heat removal. It was found that 
the dependences of the switching field on d and T began to 
appear only for thick samples (d > 300 p m )  with poor re- 
moval of heat when the pulses were relatively long ( > lo-' 
s).  However, in strong fields when the delay time ap- 
proached t, -0, the switching phenomena were unaffected 
by d or T. 

The absence of the thickness dependence (at least in 
strong fields) and the fact that the contacts did not influence 
the switching led the authors of Ref. 6 to conclude that the 
observed effects were not due to double injection from the 
contacts (such injection is frequently used to account for the 
S-shaped characteristics) .9 

50 700 V, volts 

FIG. 1 .  Typical current-voltage characteristic of CdTe:Cl crystals, re- 
corded at 300 K using voltage pulses of - 2 p s  duration; the thickness of 
the sample was - 100pm (Ref. 6 ) .  
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As for a possible influence of the simple heating of a 
sample, estimates indicate that for a mobility of p = lo3 
c m 2 . ~ - l . s - l  and a density of n = 1014 cm - (correspond- 
ing to a conductivity of 0- R - ' . c m  ') in fields of 
E- lo4 V/cm the heat P released per unit volume corre- 
sponded to a power density - lo6 W/cm3 (a  direct estimate 
from the current-voltage characteristic in Fig. 1 for contacts 
of -0.01 cm2 area also gave P- lo6 W/cm3). Clearly, this 
power density was insufficient for significant heating of a 
sample in - 1 ps. On the other hand, an S-shaped current- 
voltage characteristic was obtained earlier5 at a comparable 
rate of heat evolution when the pulses were of - 10 ns dura- 
tion. 

This circumstance, together with the absence of a 
strong temperature dependence of the resistance, indicated 
that the observed effect could not be due to a purely thermal 
mechanism. 

A considerable rise of the conductivity (Fig. 1 ) could 
only be due to, as pointed out in Ref. 6,  the ionization of 
some deep level (because the shallow-donor levels would 
have been practically completely ionized at T- 300 K) .  The 
highest density of states was associated with the presence of 
a compensating defect level at E, [in the case of the inter- 
band breakdown considered as a possibility in Refs. 4 and 5, 
the density of states (as deduced in a discussion below) 
should be less than the density of states of the compensating 
level E, 1. Since by itself the process of impact (collisional) 
ionization in the presence of just one level could not give rise 
to an S-shaped current-voltage characteristic, it was suggest- 
ed in Ref. 8 that the ionization occurred in a three-level sys- 
tem (which may be characterized by S-like behavior).'' 
However, this hypothesis did not fit the real experimental 
situation in heavily doped compensated CdTe (Ref. 8),  be- 
cause even after an allowance for the large-scale potential 
relief (with an activation energy of the percolation level - 30-50 meV) the shallow levels should be largely ionized 
at T- 300 K and there were no deep levels with a significant 
density of states in the interval between Ec and E,. 

We can thus see that, in spite of systematic experimen- 
tal investigations of the electronic properties of CdTe report- 
ed so far, the nature of the reversible switching effect ob- 
served at room temperature remains unclear. We shall 
propose a purely electronic mechanism which can account 
for the experimental results if we postulate a combination of 
the runaway effect in a strong electric field in the case of 
polar optical scattering, impact ionization of a deep compen- 
sating level, and electron-electron scattering. It is the elec- 
tron-electron scattering that can maintain a low-resistance 
state in weak fields. 

We shall now consider in greater detail the physical sit- 
uation. Since in the polar optical scattering case the mean 
free path 1 of electrons increases on increase in their energy E,  

1 cc E, in a sufficiently strong electric field an electron with a 
sufficiently high energy acquires the energy faster from the 
field than it loses it to optical phonons. This results in a 
strong heating of the electron subsystem, giving rise to the 
runaway effect. The distribution function of electrons in the 
range of energies exceeding a certain value E, (we shall show 
later that E~ a E - 2 ,  is constant: f (E) E ,  B2 = const. Experi- 
ments indicated in the case of CdTe the polar optical scatter- 
ing predominates at temperatures T> 300 K. 

A strong influence of the runaway effect on the behav- 

ior of CdTe in strong fields was pointed out in Refs. 4 and 5. 
The runaway of electrons made it possible to observe the 
Gunn effect in pure samples using relatively weak fields 
(E- 12 kv/cm),' although the side valleys were located at 
E, - 1.6 eV above the bottom of the conduction band. On the 
other hand, observation of the Gunn effect indicated that the 
scattering to the side valleys was indeed the mechanism that 
limited the runaway and determined the "limiting" energy 
E = E, . A detailed numerical modeling of the runaway effect 
in CdTe, carried out allowing for the various scattering 
mechanisms, was reported in Ref. 11; it was found there that 
a field ofjust E- 12 kV/cm was sufficient to transfer at least 
half of all the electrons to the high energy range E-cL. 

We could therefore expect that in a field of E> lo4 
V/cm the runaway effect would ensure a sufficiently high 
density of high-energy electrons n , with an energy E > E, 

capable of ionizing the compensation level and causing the 
impurity breakdown. Moreover, the relationship between 
n, and the value of E should be single-valued, so that the 
dependence of the total electron density on E should be also 
single-valued. 

The necessary single-valued behavior could be ensured 
by electron-electron collisions contributing a nonlinearity 
to the kinetic (transport) equation of the distribution func- 
tion f (E). This inhomogeneity would be easiest to under- 
stand in the limit T,, -0 (T,, is the electron-electron relaxa- 
tion time) when the electron-electron processes control the 
form off ( E )  and determine the electron temperature T,, 
which may differ from the lattice temperature. In this case if 
the field is sufficiently strong so that the runaway effect ex- 
ists (E* < E~ ), we can expect two stable states: 1 ) the bulk of 
electrons is concentrated in the region E -  T, where the mo- 
bility and consequently the energy acquired from the field is 
low: T,, - T; 2)  the bulk of the electrons is concentrated in 
the runaway region so that T,, - E ~  > T. In the correspond- 
ing range of energies (in the main valley) the mobility and, 
consequently, the energy acquired from the field are high. 
This circumstance and the "drag" by particles from the low- 
mobility region (&- T) by the high-energy electrons can en- 
sure maintenance of the values of the temperatures T, > T. 

The possibility of a many-valued electron distribution 
under the conditions of the runaway effect in the presence of 
electron-electron collisions was pointed out by Levinsoni2 
in the specific case of low-temperature behavior of InSb 
(where the effect was somewhat different). In fact, he con- 
sidered an overheating instability which was analyzed in its 
general form in the review of Volkov and Kogan. l 3  

However, the electron-electron collisions could control 
completely the form off (e )  only when their density was 
high. This could be achieved for almost complete ionization 
of the deep centers (n-N- 1017-10'8 cm -3) ,  but it was not 
true of the initial situation (n -no - 10 3-10i5 cm - 3 ) .  Esti- 
mates of the differential conductance corresponding to the 
lower branch of the current-voltage characteristic in Fig. 1 
indicated that n increased by no more than an order of mag- 
nitude because of the ionization corresponding to this 
branch. Therefore, the electron-electron processes could 
not be allowed for by a simple introduction of the electron 
temperature," but would require special analysis. 

In particular, we shall see later that a special role is 
played by the processes in which a high-energy electron from 
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the runaway region and characterized by E-E, is scattered 
by a low-energy electron with E' - T and transfers the latter 
to the runaway region where E > E, . These processes involve 
a relatively small energy transfer E, <E - E, ; their probabili- 
ty is not characterized by the transport time re,, but by an 
"escape" time re ,  which is considerably less than r, (the 
reduction is in the ratio E,/E,, which is accurate to within a 
logarithmic factor). 

The arrival of an electron in the runaway region (where 
the distribution is controlled by the electric field) due to 
such processes is obviously proportional to n,/r, (where n, 
is the total density of electrons with energies E- .C~ in the 
runaway region). On the other hand, the escape to the low- 
energy region because of the electron-electron processes 
should be proportional to n,/r,, (since it occurs only in the 
energy range E - E, ) and if E, <E, this escape effect is small 
compared with the arrival rate. On the other hand, it is ob- 
vious that l/r, a l/re, a n l ,  where n, is the density of elec- 
trons with the energies E- T, whereas the escape from the 
runaway region because of the electron-phonon processes is 
independent of n,.  Therefore, there is some critical value 
n, = n, such that if n, > n, the arrival of electrons in the 
runaway region due to the electron-electron processes can- 
not be compensated by the escape due to the emission of 
optical phonons; the density of high-energy electrons then 
rises to values n, = n - n, (we are assuming that 
n, + n, = n).  The critical value of n, depends on the elec- 
tric field: if E, <E, , we have n, a r, a E, /E, cc E '. The rise 
of n, with decrease of E occurs right up to a certain critical 
value E,, such that 1/r, (E) = l/.r,, (i.e., when the total 
flux over the spectrum from the low-energy region to the 
runaway region due to the electron-electron processes van- 
ishes); we then have 

We shall show that in the lower branch of the current- 
voltage characteristic the value of n rises with the field be- 
cause of the ionization processes, beginning from n = no, 
and that in some field E,, it reaches n (E,, ) = n, (E,, ), and 
this is followed by switching to the falling part of the current- 
voltage characteristic, where n (E) = n, (E) a E ,. The 
switching to the upper branch occurs in the field E = E,, , 
which acts as the lower critical field. The behavior of the 
system corresponding to the upper branch is complicated by 
the presence of the low-mobility side valleys to which elec- 
trons scattered on increase in the field. Therefore, in strong 
fields E) E,, the upper branch is N-shaped and the complete 
current-voltage characteristic should thus demonstrate the 
S-N-like behavior. 

1. IONIZATION PROCESSES 

In our system the change in the electron density n be- 
cause of the impact ionization of the deep level, considered 
using the simplest model situation, can be described by the 
equation 

where 
er. 

n>= j v ( e ) f ( ~ ) d a  

[A ,  and B,  are the thermal ionization and recombination 
coefficients, A, is the impact ionization coefficient, and Y(E)  

is the density of states; estimates indicate that if n- 10" 
cm - the Auger recombination process can be ignored]. For 
simplicity, we shall confine ourselves to the hydrodynamic 
description without analyzing the energy dependences of the 
various coefficients in the case of a nonequilibrium electron 
distribution (on the assumption that the values of these coef- 
ficients are governed by certain characteristic energies; in 
particular, the coefficient A ,  is determined by the contribu- 
tion of electrons with energies E > E, ) . 

We shall also assume that the ionization processes are 
much slower than the establishment of an equilibrium in the 
electron system, so that the kinetic equation for f ( E )  can be 
solved by assuming that n is given. (It  follows from the anal- 
ysis given below that this is justified, at least when the ioniza- 
tion cross section is less than the transport cross section of 
the electron-electron scattering when the energy is E-cL .) 
This in turn means that the relationship between n, and n 
can be regarded as given by Eq. ( 1 ) . 

In the steady-state case (dn/dt = 0) if A,n , <A,, we 
have 

whereas in the case of predominance of the impact ionization 
process ( A ,  n , >A, ) and if n ) no, Eq. ( 1 ) reduces to 

2. RUNAWAY EFFECT 

We shall estimate the density of high-energy electrons 
n, by turning to the kinetic equation for the part of the 
distribution function f ( ~ )  symmetric in respect of the mo- 
mentum. We shall assume that the most important scatter- 
ing mechanism is that involving polar optical phonons 
(which represents the case of CdTe and T z  300 K)," when 
the relaxation time is proportional to (see, for example, 
Ref. 14). This scattering can obviously be regarded as quasi- 
elastic if ~ ) h ~  (ho is the energy of an optical phonon, 
which in the case of CdTe is h, ~ 2 4 0  K) .  The process of 
energy relaxation is then slower than the relaxation of the 
momentum (see, for example, Ref. 14) and the distribution 
function is almost isotropic. In moderately strong fields we 
can assume that the energy acquired in the distance equal to 
the mean free path is small: e E l ( ~ )  9.5. These circumstances 
allow us to regard the evolution of the electron distribution 
as energy diffusion (by analogy with Ref. 15) with the diffu- 
sion coefficient 

The first term allows here for the energy diffusion process 
associated with the stimulated electron-phonon processes 
and rp is the "escape" relaxation time in the case of the spon- 
taneous processes; the quantity ( T / r p h o  ) k, - is the reci- 
procal of the momentum relaxation time and the factor 
k, z l n ( ~ / h ,  ) allows for the difference between the trans- 
port and "escape" relaxation times.I4 We shall adopt the 
approximation T)fiw,; strictly speaking, if T- 300 K, this 
strong inequality is not obeyed, but because we shall be al- 
ways interested in the range of high energies E )  T, such an 
approximation is quite reasonable. 
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If we allow for the spontaneous electron-phonon pro 
cesses and also for the electron-electron collisions, we finc 
that the kinetic equation satisfying the requirement that thc 
total flux of electrons of the spectrum j, should vanish, be- 
comes 

where jee is a flux along the spectrum due to the electron- 
electron collisions; the specific form of this flux will not be 
considered. We can see from Eq. (4)  that right up to an 
energy 

TAo,k,'" 
E l  - 

eEl,  

[ I ,  =I(& = T )  ] the expression for D, is dominated by the 
first term and ifj,, = 0, we have f ( ~ )  a e-"=, whereas for 
E > we obtain D, a E2/rP. If E > E', the formal solution of 
Eq. (5 )  can be written in the form 

Naturally, Eq. (6) represents in practice an integral equa- 
tion because the flux jee obviously itself depends onf: The 
simplest situation corresponds to jee -0. We then have 
C = f ( ~  = 0); if < E < E ~ ,  a nonexponential fall off(&) oc- 
curs, whereas for E > E~ we obtain f ( ~ )  zconst (runaway 
effect); the "tail" of the distribution is limited by the inter- 
valley processes at E - E~ and we have 

Estimates for CdTe, which agree with the results of ma- 
chine calculation," indicate that if E- 1.2 X 104V/cm, then 
half the electrons are in the runaway tail. However, as point- 
ed out in the Introduction, the relationship between 
~ ( E - E ~  ) and, therefore between the ratio n, /n and the field 
E, is single-valued and it cannot account for the S-like be- 
havior. 

3. ELECTRON TEMPERATURE APPROXIMATION 

We shall need later a more detailed knowledge of the 
distribution of electrons between the main and the side val- 
leys. Obviously, the distribution function in the main valley 
does not terminate abruptly at E = E,, but is governed by the 
occupancy of the side valleys AE, (measured from the side- 
valley energy E, ). The value of AE, depends on the rate of 
the electron-phonon intervalley transitions and on the losses 
to the side valleys; from now on we shall assume that the 
influence of the electric field on electrons in the side valleys 
can be ignored. Obviously, AE, cannot exceed the depth of 
the side valleys E,,. Then in the case of CdTe we have 
E,, <E, (we shall use this inequality in subsequent calcula- 
tions ) . 

The electron-electron processes are easiest to allow for 
in the situation when re, -0, because then these processes 
determine the electron distribution (the upper limit to re, 
will be considered in detail later). In this case we have 
f ( ~ )  = f(0) exp ( - E/T, ), where T, is some electron tem- 
perature. In the case of the side valleys the distribution func- 
tion is 

where E' = E - E,. 

It should be noted that the condition of smallness of re, 
is clearly the most stringent in the range E > E, , where the 
efficiency of the electron-electron processes rises because of 
an increase in the phase volume ("inclusion" of the side val- 
leys); the electron-electron exchange of energies between 
the main and side valleys is hindered because of the consider- 
able difference between the effective masses. However, since 
the variation off(&) in the range E > E, occurs on a scale 
< E,, <E,, it follows from the results of the subsequent anal- 
ysis that the contribution of the electron-electron processes 
to the electron flux over the spectrum rises in the range 
E > E~ (for a given value of,, ) and the rise is by a factor 
-&,/A&, , which relaxes the requirements that Tee has to 
satisfy. On the other hand, even if in the range E < E, the 
electron-phonon processes predominate over the electron- 
electron processes (see Appendix 1) in the situation when 
the electron-electron processes predominate if E > E,, the 
electron temperature model makes it possible to describe 
correctly such details as a redistribution of electrons 
between the side valleys. 

The electron temperature Te can be found from the en- 
ergy balance equation:" 

Here the first term describes the energy balance in the main 
valley and the second term describes the losses to the side 
valleys; nu z f,v,, v,, and rp, are, respectively, the density of 
electrons, the density of states, and the electron-phonon 
scattering time for the side valleys. We shall ignore the dif- 
ference between the upper limit of integration with respect to 
E' and the value of E ~ .  We shall also bear in mind that the 
presence of the side valleys is important only if T, WE,, so 
that we can assume that T, ) E ~ ,  , i.e., that f, (E') =: const. 
For this reason we have f, - f ( ~ ~  ) and nu - ~ v , / Y ( E ,  ) (n is 
the density in the main valley). 

Here and later we shall describe the main valley by the 
model of an isotropic parabolic spectrum, because it seems 
to us that an allowance for the nonparabolicity or anisotropy 
cannot alter qualitatively the investigated phenomena (as is 
confirmed, in particular, by an analysis of the runaway effect 
for the real spectrum of CdTe reported in Ref. 11 ). Substi- 
tuting f a exp( - E/T, ) in Eq. (7) ,  we obtain 

1-~2/2T,+e1/2T. 
exp ( - e L / T , )  = 

I + e L / T , - ~ 2 / 2 T , + ~ L 2 / 2 T . 2 + a  ( E ~ & ~ / ~ T . Z )  ' 
( 8 )  

where a = E,, Y , T ~  (E, )/E, Y ( E ~  ) rPu (E," ). We can see that 
if T < E ~  <E,, then Eq. (8)  has three roots: T,, - T, 
T,, - ~ , / 2  (these roots correspond to vanishing of the nu- 
merator), and T,, -&,. 

If E, - T, then 
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The temperature Te3 in the a < E,/E, case is described by 
Tes - E ~  '/E2a where n,/n -a, whereas for a > E,/E,, the en- 
ergy Te3 is given by the equation 

We can easily see that the root Te2 represents a solution 
which is unstable for a given value of E, , i.e., in a given field 
E. In fact, if we write down schematically the energy balance 
equation (7)  in the form 

where Q is the power acquired from the electric field [repre- 
sented by the term proportional to DE in Eq. ( 7 )  ] and P is 
the loss power, we can see that for Te = Te2 we have 

which corresponds to the overheating instability of Ref. 13. 
It is clear from Eq. (9)  that the roots Tel and Te2 exist 

only if E, > 8T, which gives us an estimate of the upper criti- 
cal field Ec2. In turn, in the limit E, - w (i.e., when E-0), 
we are left only with the root T,, - T. The value of the lower 
critical field E, is then found from the condition Te, = T,, 
or, which is the same, from the condition 

It therefore follows that as in the case considered in Ref. 12, a 
combination of the runaway effects and of the electron-elec- 
tron interaction can ensure that the current-voltage charac- 
teristic is S-shaped even in the absence of any ionization ef- 
fects. Obviously, the transition or switching from the first 
branch ( T, - T) to the third ( T, -E, ) results in a steep rise 
of the effective ionization rate and, consequently, increases 
the conductivity; following Eq. (3) ,  we can assume that 
n-N. 

A special feature of the situation considered here (as 
compared with the general overheating instability of Ref. 
13) is the role of the intervalley processes. It follows from 
Eq. ( 10) that in the case of the upper branch of the current- 
voltage characteristic if E, & E,, we have Te -&, and also 
n,/n cc I/&,, SO that for a fixed value of n the number of 
electrons in the main valley is (n - n,, ) cc E, cc 1/E ,; since 
we are ignoring the mobility in the side valleys, the conduc- 
tivity decreases on increase in E. 

In other words, although for E = E;,, + 0 the differen- 
tial conductivity is positive [o, = dj/dE = a( Te ) 
+ E(do/dT, ) (dTe/dE), where o is governed by the condi- 

tion Q = aE ,; if E = E,, , it then follows from Eqs. ( 11 ) and 
( 12) that dTe/dE = w and do/dTe > 01, whereas for 
E )  E,, , we have ud < 0. It means that the upper branch also 
has a falling region corresponding to the Gunn effect and the 
whole current-voltage characteristic is S-N shaped. 

4. ANALYSIS OF THE ROLE OF THE ELECTRON-ELECTRON 
CONDITIONS. DISCUSSION OF THE REAL SITUATION 
CORRESPONDING TO THE LOWER BRANCHES OFTHE 
CURRENT-VOLTAGE CHARACTERISTIC 

As pointed out in the Introduction, although in the situ- 
ation of effective ionization of the deep centers (which is 

reached when Te -E, ), we have n - N- lo1* cm - 3  and the 
electron-electron collisions may control the energy relaxa- 
tion process, this is obviously not true initially 
(n-n,-1013-1015 cmP3).  We shall therefore consider in 
greater detail the limitations imposed on T,, and the role of 
the electron-electron processes. 

It is known that the influence of these processes on the 
momentum (or energy) relaxation can be described by the 
Landau collision integral (see, for example, Ref. 16). The 
corresponding electron flux over the spectrum considered 
ignoring the anisotropy can be written in the form 

i..=v ( e )  E j de l  v ( e t )  [ f ( e )  - - a f 
f ( 8 ' )  -1 2e10t1 U-U11. 

de' d  e  

Here, u is the electron velocity, a, is the transport cross sec- 
tion for the Coulomb scattering {a, -A?re4/[max(~,~') 12, 
where A = In ( Ip - p' I/&) is the Coulomb logarithm, and x 
is the reciprocal of the screening radius of the system}; a, is 
related to the electron energy relaxation time re, (equal to 
the transport momentum relaxation time) by the expression 

- 
Tee ' a a, nu. 

If we substitute jee from Eq. ( 13) into Eq. (5)  and find 
the solution of Eq. (5) in the form 
f = f(0) exp( - E/T, ) + f, , we can show that in the case of 
relaxation of the solution with Te - E ~  and f, we must 
satisfv the condition 

However, we shall draw attention to the fact that in the 
derivation of the expression for the Landau collision inte- 
gralI4 it was essentially assumed that the problem is de- 
scribed by a single energy scale and that the energy trans- 
ferred in a collision event is small compared with this scale. 
This makes it possible to carry out an expansion in terms of 
that small energy transfer which is responsible for the differ- 
ential form of Eq. ( 13). However, in the situation discussed 
by us the runaway effect has in the absence of the electron- 
electron collisions three characteristic scales: 1 ) E - E ~ ,  
which represents the runaway effect where f-const; 2) 
E - E,, which represents demarcation of the region of fall of 
f ( ~ )  from the runaway region; 3) E - T, which is the region 
where the bulk of electrons is concentrated when E, ) T. In 
this connection one should mention the processes in which 
an electron from the runaway region with a characteristic 
energy is scattered by a low-energy electron with an 
energy E" - T, and transfers the latter to the runaway region 
E > E, ,  where the distribution is controlled by the electric 
field. In describing these processes the transfer energy AE 
cannot be in general regarded as small, because Aa > E, > E'. 

We can show (see the Appendix 2) that the contribu- 
tion of such processes to jee when E-E, is of the order of 

where 5 differs from a, by the absence of the logarithmic 
factor A. We shall allow for the fact that since for E > E,, we 
have f ( ~ ' )  - const - f ( ~  - E, ) = fL and for E < E, the func- 
tion f ( E )  falls rapidly on increase in E, we obtain, denoting by 
n, the density of electrons in the range s < E, : 
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where ?,, - ' ~ h n , .  It should be noted that if E,  <E, , this 
contribution exceeds by a factor - ( E ,  / E ,  A )  an estimate 
obtained from Eq. ( 13). This is due to the fact that the con- 
tribution of "low-angle" processes (A&<&", &') jeCL is gov- 
erned by the transport relaxation time re,, whereas jee is gov- 
erned by the "escape" time, i.e., by the probability of a single 
scattering event with a finite energy transfer. In the case of 
the Coulomb scattering the latter diverges for small trans- 
ferred momenta q since q - ' oc (A&) - ' cc E, - '. 

We shall now write down Eq. (5 )  allowing both for jfe 
and forj,, in the case when n, -n (i.e., in the situation corre- 
sponding to the lower branch of the current-voltage charac- 
teristic when the bulk of electrons is concentrated at low 
energies) and E - E, : 

where re, - ' ( E )  = u, ( E ) u ( E )  n, . We are allowing here for 
the fact that if n, - n and E' $ T, the second term in Eq. ( 13 ) 
can be ignored relative to the ratio T/E,. A comparison of 
Eqs. ( 17) and (5)  shows that, since low-angle electron-elec- 
tron scattering, together with the electron-phonon pro- 
cesses, results in the escape of electrons from the runaway 
region, the processes characterized by a finite energy trans- 
fer "assist" the formation of the runaway region by the elec- 
tric field. 

We shall use, as before, a parabolic model of the elec- 
tron spectrum (which may be justified at least when E, <E, ) 

and we note that then &/re, a E c rp Tp '. Bearing this in 
mind, we find [by analogy with Eq. (6)  1 that 

where L, is determined allowing for the small-angle elec- 
tron-electron processes: 

E 
Ez - - ) - E2(  i + Erp ) . 

t e e  (&) f i rno  

For low values of n the difference between 2, and E, can 
obviously be ignored. If E < L, , we can easily see that the first 
term in Eq. ( 18) can be ignored compared with the second. 
If E > L, , then bearing in mind that f ( ~ )  - fL in Eq. ( 18) and 
using the normalization condition 

C-n/v (T )  T, (20) 

we obtain 

We shall first consider the situation when 
E t i 0 0  

<<-, 
T e e ( & )  TP 

(22) 

which corresponds to the lower branch of the current-vol- 
tage characteristic. We then have L, = E,  in Eq. (21) and 
the argument of the exponential function is 
- 2fik d'2/(eElo). The total number of electrons in the 
runaway region n, = ~ , Y ( E ~  ) E ~  is then given by 

n, I I ( E ~ )  EL p=- nz-nip-, 
v (T) T nc-n1 

where 
EZ A ~ o k e e  T e e  (EL,  n=N) nc(E)=-N- 
EL ~ P ( E L )  EL 

It is clear from Eq. (24) that n, should not exceed the 
value n, and that in the limit n +n, we have n, + W .  This 
condition sets the limits of the validity of our assumption to 
n, -n and n, 4 n, , so that in this section we shall ignore the 
scattering of high-energy electrons by one another. 

We can determine n, using the normalization condition 

Here, the coefficient y (generally dependent on E) allows 
for a redistribution of the high-energy electrons to the side 
valleys (see the Appendix 1); we recall that, as assumed 
above, the electron distribution is established faster than the 
ionization processes. We can easily show that Eqs. (23) and 
(25) lead to 

n-n, 
> n$'" 

Obviously, this applies also in the case when the inequality 
(22) is not obeyed, i.e., when 5, differs from E, . Then L itself 
depends on T,, and, therefore, on n, ; this circumstance re- 
sults in the replacement of Eq. (24) with 

It therefore follows that the electron-electron processes 
can increase the number of electrons in the high-energy re- 
gion also when the condition (14) is disobeyed. We shall 
now analyze the current-voltage characteristic with 
allowance for this situation. 

It is obvious that the rise of E in the lower branch of the 
current-voltage characteristic is accompanied by an increase 
in n because of the ionization processes and, consequently, 
because of the conductivity urn n. Bearing in mind that, on 
the one hand, in this situation an ionizing defect is a negati- 
vely charged centers and, on the other, allowing for the fact 
that the velocity of electrons in the side valleys is small, we 
shall ignore the contribution of the latter to the ionization 
process. Substituting n, = n, into Eq. (3)  and describing 
n, by Eq. (26a) [on the assumption that n < n, (E) 1, we 
obtain 
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Next, we obtain the condition for an instability point E,, 
where da/dE a dn/dE + w : 

The point E,, corresponds to the transition or switch- 
ing to the second (falling) branch of the current-voltage 
characteristic, which is due to reversal of the sign in Eq. 
(28); for this branch we have n - n,, so that a reduction in E 
[leading to an increase in n, (E) ] is accompanied by an in- 
crease in n (and, therefore, in a). 

It follows from Eq. (26a) that Eq. (28) is valid right up 
to the values 

in the case of higher values of n,, we have to describe n, 
using Eq. (26b) and then the equation for n reduces to 

We can easily see that in the case of this branch the 
derivative on the right-hand side of Eq. ( 1 ) with respect to n 
is positive if n <A, /N/B, both in the case described by Eq. 
(26a) and for Eq. (26b). Consequently, this branch, con- 
trolled by the ionization processes, is unstable against fluctu- 
ations of n when the distribution of E is homogeneous. 

In the range of weak fields this branch is limited to a 
certain critical field E,, found from the condition 

N+nc (E,,) =2 [n,  (E, , )N/a]  'Iz? (31) 

or-when an allowance is made for Eqs. (24) and (27)- 
from the condition 

EL 1 f i rno qee(eL,  n=N)  
------. - A - - ---- E. 
ez  (Eci) a %(EL) EL 

(32) 

We can see that if &< 1, then E~ (E,, ) Z E ~ / A .  If 
E-. E,, , we obtain 

do dn dn 
-CC----ap+ CC. 

dE dE dn, 
the transition then takes place to the rising branch, where 

It should be noted that if E = E , , ,  then 
n, cc B,n2/A,Na B,an/A,, i.e., the number of high-energy 
electrons is of the same order of magnitude as the total num- 
ber of electrons. If {< 1, then the electron temperature (at 
least that in the main valley) is established at the upper 
branch of the current-voltage characteristic. We can then see 
that in the range of fields from E,, to 21'2Ec, the density n 
rises (and, therefore, the conductivity a increases) by the 
factor { I .  

We have ignored here the behavior of the coefficient y 
describing the redistribution of electrons between the val- 
leys. It follows from the estimates (see the Appendix 1 ) that 
it rises on increase in E. On the other hand, the number of 
electrons in the main valley (which for the upper branch is of 
the order of n2 ) in the case when E$ E,, is of the order of 
Na/( l  + y )  a (1 + y) if we allow for Eq. (33). There- 

FIG. 2. Schematic representation of the current-voltage characteristic 
using the adopted model for the case of a homogeneous distribution of the 
current in a sample; E, - E,, is the field corresponding to the formation of 
a filament. 

fore, following the results of Sec. 3, we find that the upper 
branch has a falling region whose nature is governed by de- 
tails of the intervalley kinetics. The final form of the current- 
voltage characteristic is represented schematically in Fig. 2. 

5. FILAMENTATION OFTHE CURRENT 

If the current-voltage characteristic is S-shaped, the ho- 
mogeneous distribution of the current breaks down and a 
filamentation-type instability is o b s e r v e d , ' ~ ~  a result of 
which a current filament appears at some value of the field 
E = Es in the constant-current case (which applies to the 
low-resistance state). The boundary of the filament can be 
described obviously by adding a gradient term to the kinetic 
equation, so that this equation becomes 

Here, D, ( E )  is the spatial diffusion coefficient, ,LL(E) is the 
mobility, and q, is the electrical potential whose appearance 
is associated with local deviation from the electron density 
n = J ~ E Y ( E ) ~ ( E )  (in this analysis of the boundaries of the 
filament we shall ignore electrons in the side valleys because 
their relative contribution is small if the field is weak) from 
the concentration of ionized impurities ii. Assuming that the 
characteristic screening length (governed primarily by the 
density of the low-energy electrons n ,  ) is less than the fila- 
ment thickness [which is clearly of the order of the diffusion 
length of the high-energy electrons 
L,  - D, (E- E= )rpEEL/+im0 1, we find that the quasineutrali- 
ty condition is ( i i  - n) gn.  In this case in the ionization 
equation we can ignore the difference between ii and n. If 
then n , and n in Eq. ( 1 ) are expressed in terms of the solu- 
tion of Eq. (34), which corresponds to a certain potential p, 
Eq. ( 1 ) can be regarded as the equation for p which makes 
the problem self-consistent. The role of the potential p then 
reduces to a redistribution of the low-energy electrons ensur- 
ing that the electrical neutrality condition is obeyed. 

The necessary condition for the parameters in Eq. ( 1 ) is 

where x is the coordinate at right-angles to the boundary of 
the filament (the thickness of the boundary itself is assumed 
to be small compared with the filament diameter). The 
expression (35) represents the condition of stability of the 
filament boundary, which can be used to determine the value 
ofEs. To the nearest order of magnitude, this condition can 
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be regarded as the requirement that the spatial flux of the 
high-energy electrons to the "cold" region, proportional to - D, [n, ( x -  - 03 ) / L D  ] 1, should be compensated in the 
"hot" region by the upward flux along the spectrum 

which leads to 

(:-i)%-(:-*)Z. 
Using Eq. (32), we then obtain 

6. DISCUSSION OF RESULTS 

It is clear from the above analysis that the proposed 
model can describe qualitatively the observed current-vol- 
tage characteristic. In the specific case of CdTe [electron 
mobility - lo3 cm2.V-'es-', r, ( E -  T-300 K )  - lo- ' )  s, 
and 1, - 300 A 1, we obtain the following order-of-magni- 
tude estimates: Ec2 - lo4 V/cm and Ecl - lo3 V/cm, which 
are again in agreement with the experimental results. 

We shall now consider the problems ignored in our sim- 
plified model. We shall begin with the problem of heat re- 
lease. Under the conditions of the low-resistance state in a 
filament when E = E, - Ecl and n - 1017 cm - 3  the power 
transferred to the lattice is 

Therefore, even in a time interval - 10 - 6  s the temperature 
may rise by - 100 K if we ignore the removal of heat from a 
filament. On the other hand, it follows from Eq. (6a) that, 
since I, ( T )  a T/(  T / h ,  ) = const, we have E~ a T. There- 
fore, for a fixed value of E the rise in Tincreases nc and then, 
in accordance with Eq. (30), the value of n falls and so does 
the conductivity a (in this case in the vicinity of Ecl we have 
du/dT+ 03 1. 

These circumstances (ensuring concentration of the 
current in a region with lower temperatures) lead to an in- 
stability of the filament geometry (which may result in a 
shift of the filament to a less heated region or may cause 
splitting of the filament) accompanied by slight changes in 
the total cross section area of the filament. It follows from an 
analysis of the energy balance in a filament, carried out al- 
lowing for heat evolution and the phonon thermal conduc- 
tivity, that if P- 10' W/cm3 and D,, - 1 cm2/s (where D,, 
is the thermal diffusivity), then for AT=: 100 K the evolu- 
tion of heat is compensated by the removal of heat if the 
filament radius is - l o - )  cm. On the other hand, when the 
total current is -2 A for c-1017 ~ r n - ~  and a- lo2 
S1- ' .cm - ', the total cross-section area of the filament 
s- l o p 4  cm2. 

It therefore follows that the mechanism under discus- 
sion here can ensure a feedback preventing a strong local 
heating because an increase in T reduces the mobility. 

On the other hand, the thermal ionization process in- 
creases the conductivity when the temperature rises. In par- 
ticular, if&, -0.6 eV, n, -cmP3, and N- 10'7-10's cm-3 an 

increase in the temperature to -600 "C should raise a by 
almost two orders of magnitude. This mechanism clearly 
stimulates switching in relatively weak fields if the pulse du- 
ration is sufficient (large values oft, ) .6 An important factor 
can then be an inhomogeneity due to a large-scale potential 
relief (ignored in the model adopted by us), which is impor- 
tant for samples with the conduction activation energy 250 
meV. However, in this case the thermal mechanism clearly 
combines with that discussed above and ensures the neces- 
sary critical carrier density. 

Obviously, the local heating which can cause modifica- 
tion of the impurity system is involved in the process of 
"conditioning" of p-CdTe in fields E > 2 X lo4 V/cm (Ref. 
17); the subsequently observed reversible switching effect17 
is clearly due to the proposed electron mechanism. 

It should be pointed out that although, according to our 
model, the nonlinearity of the lower branch of the current- 
voltage characteristic is entirely due to the ionization of the 
deep centers, such a nonlinearity may be also associated with 
the activation of carriers to the percolation level by an elec- 
tric field.'' Another possible source of this nonlinearity is 
the influence of the electric field on the thermal ionization of 
deep centerslg (although it is not quite clear whether this 
effect can appear in fields E < lo4 V/cm. However, all these 
effects can only increase n corresponding to the lower 
branch of the current-voltage characteristic and, therefore, 
help to reach the critical density at which the switching oc- 
curs. 

It is clear from Fig. 1 that at the switching or transition 
point the value of a, is finite, i.e., that the switching occurs 
in fields somewhat less than the critical value. Obviously, 
this is the reason for the existence of a delay time, which is 
necessary for the development of an appropriate fluctuation. 
The nature of such a finite fluctuation is however not yet 
fully understood. 

We shall now identify the factors which can, in princi- 
ple, help maintain the low-resistance state. One of them is 
the screening of the polar optical scattering under the condi- 
tions of a high electron density; however, estimates indicate 
that even if n - loL8 cm - this effect cannot alter greatly the 
scattering efficiency. Another factor is a reduction in the 
effectiveness of the ionization processes when the centers 
become liberated; however, the ionization processes do not 
represent the main mechanism of the energy losses. 

We note finally that since the width of the band gap of 
CdTe is E, - 1.5 eV < E, , it follows that, in addition to the 
ionization of the impurity centers, we can expect also the 
band-band ionization (interband breakdown) which clearly 
accounts for the observed recombination r ad i a t i~n .~  How- 
ever, since &= - Eg - 0. l eV 4 E,, the phase volume of these 
processes is relatively small. 

We have therefore demonstrated that the electron sub- 
system of doped compensated semiconductors with polar 
optical scattering can exhibit bistability in strong electric 
fields. We proposed a new purely electronic mechanism of 
the switching effect, which combines the runaway effect, im- 
pact ionization, and electron-electron scattering, and which 
accounts for the experimental data on CdTe reported in 
Refs. 4-6. In contrast to the purely thermal mechanism,' 
this electronic mechanism does not require the existence of a 
delay time and the switching time is governed by the charac- 
teristic energy relaxation times and amounts to 10- "-10 - " 
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s. It seems that this mechanism can appear also in other 
"dirty" 11-VI compounds with sufficiently high side valleys. 

The authors are grateful to L. E. Vorob'ev, I. B. Levin- 
son, M. E. Levinshteyn, K. D. Tsendin, and I. N. Yassievich 
for discussing this investigation and making valuable com- 
ments, and to Yu. M. Gal'perin for reading the manuscript 
and making helpful suggestions. 

APPENDIX 1. ANALYSIS OF A REDISTRIBUTION OF 
ELECTRONS BETWEEN THE VALLEYS UNDER CONDITIONS 
OF PREDOMINANCE OF THE ELECTRON-PHONON 
PROCESSES 

An allowance for the transitions from the main valley to 
the side valleys and back again, involving the participation 
of optical phonons, yields the following estimate of nu : 

where AE = min (D,r0,, E ~ ,  ) and rO, is the time of the 
phonon-assisted transition from the main valley to the side 
valleys; we shall assume that D,rp, < fiw,~,,, where rp, is 
the electron-phonon relaxation time representing the trans- 
fer to the side valleys. The density of electrons of energy 
E - E ~ ,  T, governing the losses in the side valleys, is of the 
order of 

and therefore the power transferred to phonons is 

which exceeds by the factor - E ~ / E ,  the losses in the main 
valley when f(a) z const. 

APPENDIX 2. ANALYSIS OF ELECTRON-ELECTRON 
PROCESSES WITH A FINITE TRANSFER OFTHE MOMENTUM 

We shall use a reasoning similar to that employed in the 
derivation of the Landau collision integral,14 but we shall 
not assume that the transferred momentum q is small com- 
pared with the momentum of one of the colliding electrons 
(p'). We then obtain the following expression for the flux of 
particles across a surface E (p) = const due to collisions of 
electrons with the momentap' andp": 

where W is the scattering probability. If we assume that 
p'>p1' and g<pf, and bear in mind that integration with re- 
spect to g is governed by the lower limit g,, , which is the 

minimum transferred momentum necessary to supply an en- 
ergy exceeding& to a low-energy electron, we find that (com- 
pared with Ref. 14) 

Since in the range E < E, the function f (E" ) falls rapidly on 
increase in E", we can assume that it differs from zero only 
when E '  - T, so that q,, -p and -E. Moreover, bear- 
ing in mind that in the runaway region we have 
f ( E ' )  zconst, we can show that the first term in Eq. (A2.2) 
can be ignored compared with the second, which gives us the 
estimate described by Eq. ( 15). 

I' This equation is readily obtained if the kinetic equation f + div J, = Ois 
multiplied by E and integrated with respect to e' bearing in mind that in 
the quasiequilibrium distribution case we have j,, = 0. 
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