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A theory is derived for optical bistability in the exciton spectral region in ring-cavity geometry. 
The theory is based on generalized Keldysh equations describing coherent excitons and photons 
which are slightly nonuniform in space and time. Optical switching in an optical-bistability 
regime of excitons is studied for the first time. It is shown in the mean-field approximation that 
triangular pulses incident on the cavity acquire a temporal deformation and that there is the 
possibility in principle that these pulses will convert into stochastic "photon flares." A spatial 
turbulence might be observed in a system of coherent excitons and photons in a crystal. 

1. INTRODUCTION 

Optical bistability has been the subject of numerous 
theoretical and experimental studies and has essentially be- 
come an independent field of nonlinear physics. This topic 
has attracted interest because it is one of the clearest exam- 
ples of optical self-organization in systems far from thermo- 
dynamic equilibrium and because it opens up vast opportun- 
ities for practical applications, primarily in optical 
information processing and the development of a new gener- 
ation of computers with optical logic. Optical bistability is 
described most comprehensively in a monograph by Gibbs.' 
In that book, the theoretical foundations of optical bista- 
bility are presented, bistable materials and devices are de- 
scribed, various types of optical switching are discussed, and 
instabilities and other phenomena are analyzed. There are 
also some fairly comprehensive reviews of optical bistability 
in semiconductors in Refs. 2 and 3. 

Optical nonlinearities are known to be particularly pro- 
nounced in the exciton spectral region in semiconductors. 
As a result, the nonlinear interaction of light with matter is 
seen most vividly in specifically this frequency region. The 
circumstance that the typical exciton relaxation times in 
semiconductors are very short ( t -  10- "-10- ' l  S)  may 
play a decisive role in the development of optoelectronic de- 
vices in which ultrafast switching is required. 

The exciton bistability was first studied by Elesin and 
K ~ ~ a e v . ~  Analyzing a Bose-Einstein condensation of exci- 
tons in semiconductors caused by a strong coherent electro- 
magnetic field, they derived a cubic equation for the exciton 
density. Analysis of that equation revealed that the exciton 
density is a nonmonotonic function of both the intensity and 
the frequency of the field; i.e., there are both an amplitude 
hysteresis and a frequency hysteresis. A theory of optical 
bistability in the exciton spectral region was later developed 
in our own studies5-" and in studies by other investigators 
(Refs. 12-15, among others). A common shortcoming of 
these studies is that they dealt with only a static optical bista- 
bility. From the practical standpoint, the most important 
topics for study are those related to the optical dynamics, a 
dynamic optical bistability, various types of optical switch- 
ing, auto-oscillations, and so forth. There has been no pre- 
vious study of these topics in the exciton spectral region. 

Dneprovskii et al.3*16 first observed an optical bistabil- 

ity during the resonant excitation of excitons through an 
exciton-exciton interaction at relatively low values of the 
exciton density (n,, - 1015 cm - ) and the intensity ( 1 
kW/cm2). The observation of an optical bistability at such 
low levels of the crystal excitation opens up some fundamen- 
tally new possibilities for the development of optical ele- 
ments which could operate over a broad temperature range 
and which would draw only a small amount of power. 

The coherent nonlinear phenomena which occur in the 
exciton spectral region have some important features which 
distinguish them from the nonlinear effects seen in the model 
of two-level atoms. For example, at relatively low densities, 
at which the excitons can be regarded as bosons, the Hamil- 
tonian of the exciton-photon interaction is quadratic, and 
the relationship between the amplitude of the electric vector 
of the electromagnetic field, E, and the amplitude of the exci- 
ton wave, a, is linear. The nonlinearity in the case of excitons 
stems from a dynamic and kinematic exciton-exciton inter- 
action. 

Keldysh has derived" equations describing coherent 
excitons and photons which are slightly nonuniform in space 
and time. He took the exciton-exciton interaction into ac- 
count. These equations have served as a foundation for the 
study of many aspects of the coherent nonlinear propagation 
of light through dense condensed media in the exciton part 
of the spectrum. In Refs. 5 and 18-20, for example, a theory 
of a self-induced transparency and a theory of static optical 
bistability in the exciton spectral region were derived. Final- 
ly, we have recently d e m ~ n s t r a t e d ~ ' - ~ ~  that there is the pos- 
sibility in principle of a new cooperative effect: a self-pulsa- 
tion on the long-wavelength fundamental absorption edge of 
a crystal during the resonant excitation of excitons present in 
a high density. The Keldysh equations, generalized to the 
case in which a coherent pump is applied and in which there 
is damping, were used to derive the conditions for the ap- 
pearance of nonlinear periodic and random auto-oscillations 
in a system of coherent excitons and photons in the spatially 
uniform case. 

At the present stage of research on optical bistability, 
on various types of optical switching, and on self-pulsations, 
these effects are being considered in connection with specific 
optical instruments and a corresponding experimental ge- 
ometry. For the most part, the theoretical and experimental 
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research on these cooperative effects in the model of two- 
level  atom^^^-^' has been carried out in the geometry of a 
ring cavity and a Fabry-Perot cavity. 

In contrast with Ref. 21, where a study was made of the 
static optical bistability of the (exciton density)-light type 
and of self-pulsations in an unbounded crystal, without the 
appropriate consideration of the boundary conditions and 
the specific experimental geometry, the present paper is con- 
cerned with the light-light optical bistability in a ring-cavity 
geometry. Working from generalized Keldysh equations in 
the mean field approximation, we show, for the first time, 
that two types of light-light hysteresis are possible, depend- 
ing on the pulse shift of the field transmitted through the 
cavity. The first type is a clockwise hysteresis, and the sec- 
ond is a hysteresis with a self-intersection. Various types of 
optical switching between the branches of the hysteresis loop 
and a dynamic optical bistability in the exciton spectral re- 
gion are studied for the first time. It is predicted that "pho- 
ton flares" might occur under conditions corresponding to a 
dynamic optical bistability. We also examine the nonlinear 
dynamics of the light emerging from the cavity, and we find 
the power spectrum of the auto-oscillations which arise. 

There is an important distinction between this problem 
and the theory of optical bistability in the model of two-level 
atoms, in which the nonlinearity stems from a trilinear term 
in the Hamiltonian of the light-light interaction, and the 
evolution of the atom-plus-field system is described by the 
Maxwell-Bloch equations. The nonlinearity in the exciton 
part of the spectrum stems from an exciton-exciton interac- 
tion, and the space-time evolution of the coherent excitons 
and photons is described by Keldysh equations, which are 
equations of the Ginzburg-Landau type. As a result, there 
are two types of hysteresis which must be taken into con- 
sideration in the exciton part of the spectrum: an internal 
"density-light" hysteresis and an external (i.e., observable) 
"light-light" hysteresis. Whether the latter is manifested de- 
pends on whether the former exists; whether the former ex- 
ists is determined in turn by the detuning from a resonance 
between the frequency of the electromagnetic pump field 
and the frequency of the mechanical exciton. 

As we will see below, a variation of this detuning makes 
is possible to qualitatively alter the transmission regime of 
the cavity. This circumsfance is a unique manifestation of an 
exciton nonlinearity and is substantially different from the 
optical bistability in the model of two-level atoms, where an 
increase in the detuning from resonance leads to a degrada- 
tion of the optical bistability. 

2. DYNAMIC EQUATIONS FOR COHERENT EXCITONS AND 
PHOTONS IN THE MEAN-FIELD APPROXIMATION 

The starting point for this theoretical look at the nonlin- 
ear transmission of light through a ring cavity during reso- 
nant excitation of excitons is the system of Keldysh equa- 
tions.'' We have generalized these equations to the case in 
which excitons and photons leave the corresponding coher- 
ent modes, through the introduction of damping rates ye, 
and y,, . For waves which are propagating along the x axis, 
this system of equations is 

where a(x,t) is the macroscopic amplitude of the coherent 
excitons, E + (x,t) is the positive-frequency part of the alter- 
nating electromagnetic field, g is the exciton-exciton inter- 
action constant, d is the dipole moment of the transition 
from the ground state of the crystal to the exciton state, Rex 
is the limiting frequency of mechanical excitons, m is the 
translational mass of an exciton, v, is the volume of the unit 
cell, and Vis the volume of the crystal. 

For the discussion below it is convenient to transform to 
the dimensionless quantitiesz and 8 + , through the substi- 
tutions 

We write the amplitudes of the excitons and the field as 
modulated plane waves with a carrier frequency n and a 
wave vector k: 

where A and e are slowly varying functions. 
Substituting ( 3 )  and (4)  into (1)  and (2) ,  and using 

the approximation of smooth envelopes, we find 

In general, the amplitudes A and e are complex quanti- 
ties. We introduce A, = Re A, A, = Im A,  e, = Re e, 
e, = Im e. We also introduce a = y,,, /ye,, T = ye, t ( a  di- 
mensionless time), and 6 = (n - n,, )/ye, (a  dimension- 
less detuning from resonance). Working from Eqs. (5)  and 
( 6 ) ,  and ignoring spatial-dispersion effects, which are un- 
important in the pertinent part of the spectrum, we find 

c2k dei  d2/vo Q + 2n ---- - 
Q dx 

A,. 
hyex  ye, 

Equations (7)-( lo),  s system of nonlinear differential 
equations, describe the space-time evolution of coherent ex- 
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FIG. 1. Ring cavity. Mirrors 1 and 2 have a reflectance R; mirrors 3 and 4 
have a reflectance of 100%; the distance between mirrors 1 and 2 is L; that 
between mirrors 2 and 3 is I. 

citons and photons in condensed media in the approxima- 
tion of smooth envelopes. These equations are the starting 
point for the analysis below. 

We assume that a sample of length L lies between the 
entrance and exit mirrors of a ring cavity. These mirrors 
have a transmittance T. The two other mirrors are assumed 
to be ideally reflecting (Fig. 1 ). The corresponding bound- 
ary conditions (E, is the pump, and E, is the field at the exit 
from the cavity) are 

(1-R)'"E,+RE+(L, t-At) 
=E+(o, t) ,  (1  la )  

E, (t) = (1-R)ILE+ (I,, t) , (1 lb)  

where R = 1 - Tis the reflectance of cavity mirrors 1 and 2, 
and At is the delay time introduced by the feedback. Intro- 
ducing the dimensionless entrance amplitude ( y )  and the 
dimensionless exit amplitude (x )  of the fields, and using 
(4),  we find the following boundary conditions on the nor- 
malized amplitudes: 

Ty+R[e,(L, t--At)cos F-ei(L, t-At)sin F]=e,(O, t) ,  

(12a) 
R[e,(L, t-At)sin F+ei(L, t-At) cos F]=ei (0, t ) .  

(12b) 

where 

F = k,(L + 21) + kL is the phase shift of the field in the ring 
cavity, and k, = k/~ '_ /2  is the wave vector of the field in 
vacuum. 

It is not possible to find exact analytic solutions of this 
system of nonlinear partial differential equations. However, 
the basic features of the nonlinear transmission of the light 
can be determined in the mean field model, which is widely 
used in the theory of optical bistability.' Mathematically, 
this model corresponds to the replacement of ~ $ E ( x ) d x  by 
E(L)L.  In this approximation, Eqs. (9)  and ( l o )  can be 
integrated along the coordinate: 

where 

Ao Q 
a2=-- 

dZ/vo co 
, Ao=4n- 

2 '  
Q ~ c k ,  c = -  

ye, yex E ,"$ 

These results, along with Eqs. (7)  and (8)  and boundary 
conditions ( 12), describe the dynamics of coherent excitons 
and photons in the mean field approximation. 

3. OPTICALSWITCHING 

Equations (7) ,  (8)  and ( 13), ( 14) fall in the category 
of nonlinear ordinary differential equations which describe 
open dynamic systems. However, not all the stationary 
states are stable; whether they are depends on the relations 
among the parameters. These states can be determined from 
the condition A = e = 0. From Eqs. (7)  and (8) we immedi- 
ately find an equation for the density-light bistability, which 
was first studied by Elesin and Kopaev4 and o u r s e l ~ e s : ~ ~ ~  

where z = A  5 + A  : is the dimensionless exciton density. A 
bistability of this type is a "thing in itself." To reveal the 
internal hysteresis, we need to study the intensity of the out- 
put light as a function of the intensity of the incident light. In 
other words, we need to study a light-light bistability. Using 
(7) ,  (8) ,  and (12), we find the following from (13), (14) 
for the steady state: 

I-R cos F +-)x+c$]'  at,^,'" 
I-R 

where r ,  = ye, L /c,, A = (a2 - c2k ')/2fly,,, and 
C = ( 1/2) (A,/y,, ) (kL / T )  is the optical-bistability pa- 
rameter. Equation ( 16) is the equation of state in the theory 
of the optical bistability in the exciton spectral region in a 
semiconductor ring cavity. 

Figures 2 and 3 show the nonlinear x ( y )  dependence, 
i.e., the amplitude of the output field as a function of the 
amplitude of the incident field for various values of the pa- 
rameters. With increasing detuning (8) from the resonance 
between the frequency of the electromagnetic pump field 
and the frequency of the mechanical exciton, this functional 
dependence changes from single-valued to multivalued. The 
change occurs when the transmission becomes bistable. 
With increasing S, the optical bistability becomes progres- 
sively more obvious. 

When the phase shift in the cavity satisfies F =  217n, 
where n is an integer, the optical hysteresis in the system has 
a clockwise traversal direction. At certain values of 6 and C, 

FIG. 2. Various types of "light-light" hysteresis with F =  2n-n and (a)  
6 = 2 0 a n d ( b ) d = 5 0 ( C = 2 0 , ~ ,  =3.117,1/L=2.94,y, , /ye,  = 5 ) .  
The dashed part of the curve corresponds to dz/dx < 0. 
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FIG. 3. The same as in Fig. 2, for F = 2 m  + z-12 and S = 20 (the part of 
the curve shown by the dashed line corresponds to dz/dx < 0 ) .  

the hysteresis loop converts into a close approximation of a 
switching step. This effect may find applications in optical 
logic cells for optical computers. In addition, when the phase 
shift has a value F = ~ / 2  + 277n, a self-intersection occurs 
on the hysteresis curve. These features are characteristic of 
optical bistability in the exciton spectral region when the 
exciton-exciton interaction is taken into account. They dif- 
fer substantially from the corresponding effect in a system of 
two-level atoms, in which the hysteresis has a counterclock- 
wise circuiting direction, and the bistability worsens with 
increasing detuning from resonance. These features have 
been detected experimentally by Dneprovskii et a1.,16 who 
observed an optical bistability as the result of an exciton- 
exciton interaction in semiconducting CdSe. 

Since thex(y) plot has a narrow, high hysteresis loop at 
certain values of 8, a switching of the system does not require 
a substantial change in the pump. The large height of the 
hysteresis means that a reliable switching can occur and that 
there will be no random operations of the logic cell. In con- 
trast with bistable systems based on two-level in 
which it is frequently possible to adiabatically exclude cer- 
tain variables or others and to thus simplify the system of 
equations substantially, only a numerical analysis of the 
switching processes is possible in the case at hand. 

We have carried out a numerical simulation in which 
Eqs. (7) ,  (8)  and (13), (14) were solved exactly with the 
boundary conditions for a ring cavity. The initial values of 
e, , e, , A,, and A, were chosen to correspond to the value of y 
near the threshold for an upward (or downward) switching. 
An abrupt change Ay in the pump is specified at the time 

FIG. 4. Dynamics of the switching from the upper branch of the optical- 
bistability curve to the lower branch for C = 40 and 6 = 90. a-Photons; 
b--excitons. 

FIG. 5. Dynamics of the switching from the lower branch of the optical- 
bistability curve to the upper branch for the same parameter values. a- 
Photons; b--excitons. 

t = 0; this change is of such a magnitude that y + Ay lies on 
the other side of the corresponding switching threshold. 

Figures 4 and 5 show downward and upward switching, 
respectively. We see that after a time ( 1-1.5) y, ' the system 
goes from the upper branch of the optical bistability curve to 
the lower branch (Fig. 4) or from the lower branch to the 
upper one (Fig. 5 ) .  In contrast with two-level systems, 
where the switching times are substantially different for 
switching downward and upward, they are comparable in 
magnitude for the case of an optical bistability due to an 
exciton-exciton interaction. Since the typical relaxation 
times of the excitons in semiconductors are very short 
(reX - 10- 10-10-12 s), optical switching in the exciton part 
of the spectrum is in the picosecond range. 

4. NONLINEAR DYNAMICSOF COHERENT EXClTONS AND 
PHOTONS; DYNAMIC BlSTABlLlTY 

Up to this point we have been discussing the steady- 
state transmission of light through a semiconductor during 
resonant excitation of excitons. We turn now to the dynamic 
properties of the system of coherent excitons and photons as 
described by Eqs. (7),  (8)  and (13), (14). 

At detunings S < 8, = 31'2 ( C  + 1 ) (Fig. 2a), at which 
there is no optical bistability, the x ( y )  curve has a region 
with a negative slope. This region corresponds to an interme- 
diate branch of the z(x)  curve in a triple-valued region, 
which is un~ tab l e .~  We will refer to this region below as the 
"instability window." 

A numerical analysis for values of y and S correspond- 
ing to this window yields the following results. At the edges 
of the window one observes a sharp transition from stable 
solutions to an undamped nonlinear periodic oscillation. To- 
ward the center of the window, we find period-doubling bi- 
furcations; the oscillation becomes more complex; new har- 
monics appear in their spectrum; and, finally, in the central 
part of the window the oscillation converts into a stochastic 
self-pulsation (Fig. 6)  with a continuous power spectrum. 

Finally, Fig. 7 shows the time evolution of the light 
leaving the ring cavity in the case S > 8, , in which an optical 
bistability occurs in the system. We see from Fig. 7 that in 
this case there is an infinite chain of damped pulses. 

The nonlinear periodic stochastic oscillation which 
arises can be utilized to convert the steady-state electromag- 
netic radiation incident on the cavity into pulsating radi- 
ation. 
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FIG. 6. Time evolution of this system for S < S, and F = 27rn (point Cin 
Fig. 2a). a-Time evolution of x; b-spectrum of the power P. 

In experiments on optical bistability one observes not a 
static optical bistability but a dynamic one, which is found 
by comparing the time-dependent external pump-a Gaus- 
sian or triangular pulse- with the corresponding temporal 
response of the system. An optical bistability of this type was 
first studied by Bishofberger and Shen." A theoretical and 
experimental study was made of the behavior of a nonlinear 
Fabry-Perot interferometer filled with a Kerr medium and 
exposed to pulses of various shapes. L ~ g i a t o ~ ~  obtained ex- 
cellent agreement of theory with experiment. 

As to optical bistability in the exciton region of the spec- 
trum, this problem has not been solved as yet. We have car- 
ried out a numerical simulation in which nonlinear differen- 
tial equations (7 ) ,  ( 8 ) ,  ( 12)-( 14) were solved numerically. 
These equations describe the dynamics of coherent excitons 
and photons, with boundary conditions corresponding to a 
ring cavity. The external pump y ( 7 )  was a function of the 

FIG. 7. Time evolution of x and z for 6 > 6, for point P in Fig. 2b. a- 
Photons; b--excitons. 

time, specifically, an isolated pulse, either triangular or 
Gaussian. It was thus possible to find the correspondence 
between the static hysteresis and the dynamic hysteresis and 
to determine how the properties of the two types of hystere- 
sis depend on the pulse length. 

The experiment was carried out for the basic situations 
possible in the system, as given above: ( 1 ) F = 2 m ,  6 > 8, .  
There is a static optical bistability in the system, without a 
window. (2)  F = 2 m ,  S < 8, .  There is no static optical bista- 
bility, while there is an "instability window." ( 3 )  
F = 71/2 + 271n. The curve of the static optical bistability 
has a self-intersection point. The results of this simulation 
are shown in Figs. 8-10. Each figure has three curves: a plot 
o fy( r ) ,  a plot of x ( r ) ,  coordinated in time, and a plot of the 
output light as a function of the incident light, x(y) ,  i.e., the 
dynamic optical bistability. The first of these cases leads to 
the simplest result: With a pulse length T = 100 we find a 
"parallelogram" hysteresis with a clockwise direction, as 
observed experimentally in Ref. 16. 

The second case also leads to a clockwise hysteresis, but 
both the upper and lower branches have regions with large- 
amplitude self-pulsations. Optical surges of this type were 
also found in a regime of dynamic optical bistability in Ref. 
34, but they were of a regular nature there. It can be seen 
from Fig. 9 that they are random in our case. The reason for 
this randomness is that the system of coherent excitons and 
photons goes into a regime of stochastic self-pulsation at 
certain parameter values. The third case (Fig. 10) leads to a 
hysteresis which has a self-intersection point. The unstable 
part of the static hysteresis, corresponding to dz/dx < 0, be- 
comes stable in the dynamic hysteresis, and vice versa. 

Finally, we note an important aspect, which is of a fun- 
damental nature. The self-pulsation in the system of coher- 

FIG. 8. Dynamic hysteresis ( T  = 100, S = 67).  a-Time evolution Y(T) 
(dashed line) and x ( r )  (solid line); b-corresponding x(y)  dependence 
(optical-bistability regime). 
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tions has been observed, in the form of moving transition 
fronts. Corresponding phenomena may occur in a system of 

FIG. 9. The same as in Fig. 8, for 6 = 53. Flares of random self-pulsations 
can be seen. 

ent excitons and photons which we have studied in the ap- 
proximation of the mean field theory is a clear example of the 
onset of temporal structures in nonlinear dynamic systems. 
The Keldysh equations are equations of the Ginzburg-Lan- 
dau type. A theory of a spatial turbulence has been derived3* 
for equations of this type. A new class of order-chaos transi- 

FIG. 10. The same, for 6 = 20 and F =  ?r/2 + 2 ~ n .  Hysteresis with a self- 
intersection point. 

coherent excitons and photons. Along with the dynamic tur- 
bulence, spatial turbulence may develop, and order-chaos 
and chaos-order structures may appear. These transitions 
would arise because of a switching wave.35 
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