
Solitons in charge-density-wave crystals 
S. A. Brazovskiiand S. I. Matveenko 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 20 July 1990) 
Zh. Eksp. Teor. Fiz. 99,887-898 (March 1991) 

A theory is derived for charge density waves (CDWs) in a crystalline order at low temperatures. 
The various types of solitons which arise from the self-trapping of electrons are described. The 
adaptation of the CDW medium to the formation of r a n d  2rsolitons is examined. A model- 
independent approach is proposed for describing the interaction of solitons with the Coulomb 
field and the phase deformation. Screening effects, self-screening effects, and commensurability 
effects are examined. The interactions of solitons with each other and with impurities are 
described. Cases are found in which an attraction of solitons causes them to cluster in microscopic 
phase-slippage centers. 

1. INTRODUCTION 

The electronic properties of quasi-one-dimensional 
conductors with a charge density wave (CDW) are distinc- 
tive for two reasons. The first stems from the translational 
degeneracy of the ground state of the CDW, which leads to 
Frohlich conduct i~i ty . '~~ The effect is seen in a giant dielec- 
tric constant and in nonlinear and time-varying effects3-' 
The second reason is a strong interaction of the CDW defor- 
mation with above-gap electrons. This interaction leads to a 
rapid self-trapping of the electrons as they convert into var- 
ious types of solitons (see the reviews in Refs. 8 and 9) .  
There has been essentially no theoretical work on these phe- 
nomena. The extensive experimental research has been de- 
voted to the Frohlich conductivity (see the reviews by Jer- 
ome, Gill, Griiner, Ong, Fleming, Nagy, Schlenker et al. in 
Refs. 3-6), while the physics of solitons is studied in another 
object, polyacetylene (see the reviews in Refs. 10 and 11 ). In 
the latter case, with a twofold commensurability, there are 
no CDW slippage effects. 

In recent years, the main themes of the experimental 
research on CDWs have shifted to low temperatures and/or 
to materials with a well-developed CDW crystal structure 
and a corresponding conversion of the electronic spectrum 
to that of an insulator. This includes the so-called blue 
bronzes and the tetrachalcogenides of transition metals (see 
the reviews in Refs. 3-6 and 12). In this connection, and also 
because of the "gap" in the theoretical papers which we men- 
tioned earlier, it is worthwhile to reexamine the microscopic 
picture of the conversion of normal carriers into solitons and 
of the evolution of solitons into a CDW slippage. It is par- 
ticularly important to determine how the electrons injected 
at a contact ultimately evolve into an electron-free deforma- 
tion of the CDW in the volume. For an isolated one-dimen- 
sional chain of CDWs, this process would be clear in princi- 
ple. Each electron (or hole) with an energy E near the edge 
f A. of a gap 2A0 evolves spontaneously into an entity 

which is nearly an amplitude ~ o l i t o n . ~ - ~ , ' ~ - ' ~  The original 
electron is trapped at a local level near the center of gap, at 
E = 0. In this process, which plays out over times 
w,; ' - 10 - l 1  S, where w,, is the frequency of the phonons on 
the CDW wave vector Q, an energy z0.3Ao is liberated. 
Later, over long times (in the collision scale), pairs of ampli- 
tude solitons convert into 2n- phase slippages, in a process 
accompanied by the disappearance of a pair of electrons in 

an expanded continuum below the gap. As a result, the rest 
of the original energy A, of the particle is liberated. Even in a 
quasi-one-dimensional system of weakly linked chains with 
a three-dimensional-ordering temperature Tc <Ao, how- 
ever, the picture is complicated by the fact that at T <  Tc the 
very existence of topological solitons is question- 
able.8.9, 14.16-18 

In this paper we examine effects which stem from the 
long-range structural deformations and Coulomb fields 
which arise as a crystalline CDW medium adapts to various 
solitons created in the course of the conversion of electrons. 
Some of these results have been reported briefly el~ewhere.~ 

We examine the static deformations in a CDW medium 
with a three-dimensional order and point solitons. We exam- 
ine the interactions of solitons with each other and with im- 
purity centers. We consider the screening by other carriers 
and the self-screening in the gas of solitons. The results of 
this study suggest a microscopic picture of the successive 
stages of the conversion of a normal current into a Frohlich 
CDW slippage current. This picture is drawn in the Conclu- 
sion. 

2. SOLITONS IN A QUASI-ONE-DIMENSIONAL MODEL OF A 
CDW CRYSTAL 

A quasi-one-dimensional CDW crystal is characterized 
by a wave number Qz2kF,  a gap 2A0 in its electronic spec- 
trum, and a length lo = v/Ao, where k, and v are the Fermi 
momentum and velocity (we assume f i  = 1 everywhere). 
The deformation of the CDW is 

q n  (x) =Re A, (x) exp (iQx) , 

where IA, (x) I and p, ( x )  are the amplitudes and phases on 
chains n, and the dependence on the coordinate x along the 
chain corresponds to a perturbed state. In the ground state 
we have A, z A  and p-0. To simplify the notation here and 
below, we assume that all the p, are equal at equilibrium, 
i.e., that the CDW wave vector is Q = (Q,0,0). As we will 
see in Sec. 3, the general results are model-independent. 

In a system of weakly coupled chains, with Tc <A,, the 
self-trapping of electrons at an energy scale A, and a length 
scale 6, occurs independently on each chain. The topological 
solitons which form, however, are incompatible with the de- 
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finition of long-range order. As a result, adaptational defor- 
mations develop and equalize the values of the order param- 
eter on all the chains. These deformations are characterized 
by an energy T, 4 A, and a length I- v/T, >lo; i.e., they can 
be described in terms of the phases p, for given amplitudes 

I A, I = A,. The presence on chain n = j of a + 271 soliton, 
which corresponds to a self-trapping of Y electrons ( + ) or 
holes ( - ), is taken into account by the boundary condi- 
tions 

with Y = + 2. The presence of an amplitude soliton at the 
point xj which corresponds to a self-trapping of one electron 
( + ) or one hole ( - ) is taken into by the cut condition14 

which is equivalent to condition (1)  in the case v = + 1 
(Refs. 9 and 14). These conditions show that the electric 
charges are equal to ve. 

In the semiclassical approximation, the energy func- 
tional of the system of chains is 

where e@ = eQ( r )  is the electric potential, r = (x,r, ), Jnm 
is the matrix of transitions between chains n and m, 
@, = @, (x,rLn ), and r,, is the coordinate of chain n. We 
assume everywhere below that @(n)  is only a weak function 
of n. The presence of a soliton on chain j is reflected in ( 1 ) . 

When the electric field is ignored, Eqs. ( 1 ) yield the 
conservation law 

When the Coulomb field @ is taken into account, we 
find the following conservation laws from (2):  

where 

s, is the cross-sectional area per chain, and r, is the screen- 
ing length in the metallic phase (without the CDW). 

Let us examine a model which can be used to study the 
entire distance range 1x1 >go for arbitrary n. We assume that 
the matrix Jmn in (2)  couples a large number Z> 1 of chains. 
We can then assume that all the phases p, with n # j  are 
approximately the same, and we can go over to a continuum 
description by making the substitutions 

Taking the interaction with the electric field into account, 

we find the following expression for the energy functional: 

where J= Jn = 2, Jnm - T f /v, and a = 2~J /v s , .  The sum- 
mation in (5)  is over the chains which contain solitons. 

Varying the energy functional in (5)  with respect to 
p = p ( r ) ,  p, = p, (x),  and @(r) ,  we find the conditions for 
an equilibrium of the system with solitons: 

v - dcD -- 
2 

Acp - - - Js,6 (q-rLj) sin (cpj-cp) =0, ( 6 )  
ax 

v 
6 (rl-ru) {- cpjN+nJ sin (cpj-q) - 

We consider the case of one soliton on a chain: j = 0, 
r,, = 0. If we ignore the electric field @, Eqs. (6)-(8) be- 
come 

From (9)  we find a self-consistency condition: 

Equations ( 10) and ( 1 1 ) determine in a self-consistent 
way the functions p,(x) and p(O,x), which describe the 
phases on the central chain and on the chains closest to it. 
We then find the phase p(x,r, ) throughout the volume from 
Eq. (9) .  It is easy to see that Eqs. ( 10) and ( 1 1 ) do indeed 
have solutions which correspond to a topological soliton 
with a length scale 1 and which satisfy conditions (1 ) .  In 
contrast with the ordinary sine-Gordon equation, however, 
the asymptotic behavior at 1x1 > I  is a power law rather than 
an exponential. The integral in Eq. ( 1 1 ) is dominated by the 
region lyl <I and x z y .  Integrating by parts, using ( 1 ), we 
find, for Ix 1 > 1, 

The second term is a correction from the region y-I. When 
the Coulomb interaction is taken into account, we find, simi- 
larly, 

(po (x) =cp (0, x) a llx. (13) 

The fields at large distances will be analyzed exhaus- 
tively in the following sections of this paper by a model- 
independent approach. 

3. INTERACTION OF SOLITONS AT LARGE DISTANCES 

If we are interested in only the distribution of the fields 
p and @ far from the solitons, at distance r s l ,  we can take 
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the presence of solitons on selected chains into account in an 
approximate way, making use of asymptotic conditions ( 1 ), 
which can be written 

The integral in (14) is dominated by the soliton region 
I X  - xi 1 ( I .  At large distances Ix - x, 1 % I ,  condition ( 14) 
can thus be written in the form 

1 8% - 6 (x-x,) . 
n dx 

We find the corresponding expression for an antisoliton in a 
similar way; the result differs from ( 15) in that there is a 
minus sign on the right side. 

To find the distributions of the phase p and the electric 
potential @ at distances large in comparison with the length 
of a soliton, r&I, we examine instead of Hamiltonian (5 )  a 
model-independent Hamiltonian. This model-independent 
Hamiltonian leads to the correct self-consistency conditions 
and becomes the same as ( 5 ) at r% I in the continuous limit: 

+ % +z s , ~  (r-rj) 
ndx , 

Varying functional ( 16) with respect t o p  and @, we find the 
equations 

where 2 = d 2/dx2 + a d  '/dr12. Integrating Eqs. ( 17) and 
(18) over the transverse plane, we find equations for the 
average values G and 7 = Jdr, 'p /sl over the cross section: 

e2 
@" + - cp' (z) + e26 (x-xj) = 0, QjN (x) - x2Qj (x) = const. 

n 

(19) 

From these results we find 5 = const (we have discarded 
some solutions which grow exponentially, and we have ig- 
nored solutions which decay exponentially at the atomic 
scale, x - ' ). Equations ( 19) are exact and were derived for 
discrete model ( 1 ). This result is further evidence in favor of 
the validity of Hamiltonian ( 16). 

We first consider a system without a Coulomb field 
(x) . The solution of Eqs. ( 17) and ( 18) is 

rp(r)=-SI X-xj 
4a [ (x-xj) '+ (r,-rlj) 2 / ~ ~ ]  '12 ' 

(20) 

It is easy to see that (20) yields 

- n 
rp (x) = - sgn (x-x,) , 2 

so that condition (19) is satisfied. The distribution of the 
charge density in the medium is determined by the equation 

e 1 drp 
p (r) =e6 (r-rj)+ --- 

n S ,  dx 

where 

;"= (.-xi) '+ (rL-rlj) '/a. 

We see from (21) that the charge on any chain r, #r,, is 
zero, i.e., that the charge of the soliton of the central chain 
(rl = rl, ) is not canceled by the interaction with the local 
field. In this sense the soliton has a charge + e. 

The energy of the interaction of two solitons can be 
found easily from ( 16)-(20): 

The f correspond to solitons which have the same sign or 
opposite signs. The interaction changes sign on the cone 
lxl//rl = (a/2)"*. 

Equations ( 17) and ( 18) also have an exact solution 
when the Coulomb interaction is taken into account. For the 
functions @(r)  and p ( r )  we easily find the equations 

I?@, (r) =-4neaA,6 (r) , A,=d2/drL2 (24) 

where 

Taking Fourier components, we find 

where k ' = k + a k  :. Taking Fourier transforms of the 
functions (23') and (24'), we find expressions for the poten- 
tials @ and p.  With a = 1 ,  the integrals can be evaluated 
exactly: 

exp (-P) E 
Q, (r) = 9 [ c ~  z + sh x (I+F) exp (-i) 1, P 

a=1, 

(Do (r) "a"'cD, (xu'", r,) , a<< I, 

E 
cpo(r)=-- 

Ib 
+ ch s -(l+P) erp (-?)I , 

P P:' 
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where f = xr/2 and 7. = xr/2. 
Since x2- k $, the functions cP and q, fall off rapidly in 

the perpendicular direction, with a screening length on the 
order of the distance between chains. Along the direction of 
the chains, in the limit of large ~ ( a " ~ x >  r, ), we find from 
(25)and (26) 

In the transverse sector we have r, >a1/2x. At r, > d  the 
quantities p0 and cPO fall exponentially: po, 
q, a exp( - r/d). The quantities q,, and @, are not expo- 
nentially small, so an interaction can arise in the region 
a'/2xr < 1. This region is realized in the case of a weak Cou- 
lomb interaction and a relatively strong coupling of chains: 
d = s,/a, i.e., a2%e2/w, at short distances I < r < d. 

We calculate now the energy of the interaction of two 
solitons, with indices Y, and Y,, which are separated by a 
distance r = r ,  - r,. Integrating the energy functional ( 16) 
by parts, and using Eqs. ( 17) and ( 18), we find 

Substituting the obtained solutions (25) and (26) into (27), 
we finally get 

The asymptotic form of (28) at 7.s 1 is 

Let us analyze the function W(x,r, ). Since the diffu- 
sion coefficient of the solitons is highly anisotropic along and 
across the chains, we should begin with the functional de- 
pendence Wll (x)  = W(x,r, = const). We have a positive 
derivative a Wll /ax > 0 at x < xo - < /2, a vanishing deriva- 
tive a W,, /ax = 0 at x = x,, and a negative derivative 
a W,, /ax < 0 at x > xo [ W,, (x,) - e2x/e  1. The function 
WII (x) has a minimum at x = 0; this minimum value is 

W,, (0) c o ,  r",Gl. 

The minimum is isolated by a potential barrier of size 
WII (x,). The depth of the minimum and the height of the 
barrier increase with decreasing r,. At r, = 0, there are no 
extrema, and the situation is dominated by a repulsion of the 
type of an unscreened Coulomb interaction. 

Let us analyze the functional dependence W,(r,) 
= W(x = const, r, ). At 7.) 1, we have a derivative 

dW,/dr, < 0, which indicates a repulsion in the direction 
perpendicular to the chains. The maximum of W, (r, ) at 
i;, 1 is reached at r, = 0; this maximum value is 
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FIG. 1. Energy of the interaction of two solitons. a-WH (x) 
= W(x,r, = const); b--W, (r,) = W(x = const,r, ). 

W, (0)  =;e2x/41f 1 > 0. The attraction and the minimum of 
W, ( r, = 0)  are realized in the region 7. 5 1. In particular, for 
x = 0, the potential 

has an infinitely deep minimum at r, = 0 and a barrier at 
r, - 1. Figure 1 shows Wll (x)  and W, (r, ). 

Solitons of equal sign thus attract each other in the nar- 
row region 7.5 1. As we have already mentioned, this region 
is realized if the Coulomb interaction is weak, e2/vg 1, in 
which case the Coulomb screening length l /x  is greater than 
the soliton length I-s:'*. 

4. SCREENING OF THE COULOMB POTENTIAL 

I. Two screening mechanisms can operate in real sys- 
tems. One stems from the presence of a charge in the system 
of free carriers. An example of this situation is a compound 
which has an unfilled band of electrons which are not parti- 
cipating in the formation of a charge density wave (CDW), 
i.e., which are not interacting with d p  /ax. It is easy to see 
that incorporating screening reduces to the substitution 
k 2 - k 2  + A 2  in Eqs. (17) and (18), whereA2=4re2N,, 
and N, is the density of states at the Fermi level of the free 
electrons. 

Along with the screening, we (simultaneously) consid- 
er the effects which stem from the commensurability of the 
periods of the CDW and the lattice. In Hamiltonian ( 16), we 
consider the term A cos Np, where N, a natural number, is 
the commensurability factor. At small values of p, commen- 
surabilgy egects can thus be dealt with by making the substi- 
tution A - A - E~ in Eqs. ( 17) and ( 18). Equations (23') 
and (24') become 

4ne ( C Z ~ , ~ + E ~ )  
Qk = (k2+h2) (k2+e2) +x2kl12' 

ik,, (x2+k2+h2) @li 
cpk = 

4eZ ( U ~ ~ ~ + E ~ )  

We find exact expressions for p ( r )  and @( r )  for a = 1, 
and A = E which are analogous to Eqs. (23)-(25): 

-exp(--fp) 5 
~ , ( r ) = ~ [ c h ~  F + sh - yJ ( i + i p )  exp (--ip) ] , 

x2sL exp (-r"p) 
c p . ( r ~ = - ~ [ s h ~  r" (30) 

Y + ch r -r(i+ip)exp(-ip)]. r 
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where p  = ( 1 + 4A ' / x 2 )  
For A  # E  and a+ 1 it is a simple matter to find the 

asymptotic behavior at x )  ( x 2  + c2 + aA ' )  ' / 'a /  
( a 2  + E'), rl ) a 1 / 2 / ( ~ 2  + a 2  ') ' I 2 :  

where 

If there is no pinning ( E  = 0 )  we find approximate expres- 
sions from a solution of Eqs. ( 17) and ( 18) : 

where ji2 = x2 + A  2 .  

In the limiting case of characteristic values lk,, 1, Ik, I 
<A,, the integral can be evaluated exactly: 

Expression ( 3 3 )  is correct if the integral in ( 3 2 )  converges 
at k ,  - x / l ~ l A , a " ~  <A. Hence 

In the same limit we find the following expression for the 
phase p: 

Substituting ( 3 3 )  and ( 3 4 )  into expression ( 2 7 )  for the 
interaction energy, we find 

It follows from ( 3 5 )  that at large distances solitons of a 
common sign repel each other along the x axis and attract 
each other in the perpendicular direction. 

2. Case of self-screening, Let us look at the case of a 
finite soliton concentration: n, 91 - '. We focus on one soli- 
ton in this system and take an average over the others. We 
wish to determine how the fields @ and q, produced by the 
given soliton are screened. In Hamiltonian ( 16) we need to 
make the substitutions 

The local change caused in the concentration of solitons 
by the perturbation by the external fields @ and q, is 

wherep is the chemical potential of the soliton gas, and Wis 

the energy of the interaction of a soliton at point r  with the 
soliton on which we are focusing. Substituting expressions 
( 3 6 )  and ( 3 7 )  into functional ( 1 6 ) ,  we find (discarding 
some inconsequential terms) 

( 3 8 )  

Varying functional ( 3 8 )  with respect to the fields @ and p, 
we find self-consistency conditions analogous to conditions 
( 1 7 )  and ( 1 8 ) :  

dn S I  + -slu@' - - us' (r-r,)  =0, 
dP 2 

For the Fourier components we easily find from ( 3 9 )  

ik,,ns, (k2+x2) 
'pk = 

( 4 0 )  
akL2(kZ+hz) + ( I -h2 /xZ)  (xZ+k2)k1,z ' 

where A  = 8n-e2dn/dp. 
Using il 9 x2, and expanding ( 3 9 )  in A  ' / x 2 ,  we find 

that expressions ( 4 0 )  are the same as the corresponding ex- 
pressions [ ( 2 9 ) - ( 3 1 )  ] for the case of screening by free 
charge carriers. The solutions for @ ( r )  and p ( r )  and the 
energies of the interaction of two solitons are therefore given 
by ( 2 9 ) - ( 3 1 ) ,  in which we should make the substitution 
A  -A + 8.rre2dn/dp. 

All the results derived above for .rr solitons can easily be 
generalized to the case of 277 solitons by making the substitu- 
tion e-2e in all the equations. 

5. INTERACTION OF SOLITONS WITH IMPURITY CENTERS 

Let us consider the interaction of solitons with defects 
which pin CDWs, e.g., dopant particles or structural defects. 
We consider an isolated defect at point r, with a minimum of 
the pinning energy at q,(r,) = 8. We add to energy func- 
tional ( 16) a term to describe the interaction with the impu- 
rity centers: 

where the interaction constant Cis found at the atomic scale 
from the microscopic theory. Interaction (41 ) tends to fix 
the phase of the CDW at point r,; in particular, as C -  w we 
find q,(r,) = 8. 

Varying functional ( 1 6 )  with the additional term in 
(41 ), we find equilibrium equations: 
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Equations (42) describe the interaction of a soliton localized 
at the point rj with an impurity center at the point r,. Work- 
ing from ( 16) and (41 ), and using Eqs. (42), we find an 
expression for the interaction energy: 

We first consider the interaction with an impurity cen- 
ter in the absence of a Coulomb field a. From the first equa- 
tion in (42) we find 

The last term in (44) formally diverges as f +to, since the 
continuum model is not valid on the atomic scale. To elimi- 
nate the divergence, we impose an additional condition, 
which places a limit on p ( r  ) as f + Po: 

where E is of the order of the microscopic scale. Using condi- 
tion (45), we find 

where 

Substituting solution (46) into expression (43) for the ener- 
gy, we find 

As expected, the minimum W = 0 is reached at p(r,) = 6. 
We now examine Eqs. (42) with a Coulomb field. It is a 

simple matter to derive equations for the fields @( r )  and 
p( r ) :  

a 
KD=-4nezaAL6 (r-r,)- (8ne2/u)C(cp-0)- 6 (r-r,), (48) 

ax 
a 

Zcp = ns,(xz-A)- 6 (r-r,) + (2ns,/u)C(cp-0)A6 (r-r,). 
ax 

Solutions of Eqs. (48) and (49) are found with the help of 
(23) and (24). Comparing the right sides ofEqs. (48), (49) 
with (23), (24), we can express the solutions of Eqs. (48) 
and (49) in terms of p, and @,, i.e., in terms of the solutions 
of Eqs. (23) and (24) found with Coulomb forces but with- 
out impurity centers: 

We can set ~ ( r , )  = p,(r,) on the right of sides of expres- 
sions (51) and (52). 

Let us calculate the interaction energy in (43 ) . To avoid 
laborious calculations, we first find the potential 
V = e @ +  (v/2)(ap/ax) and r=r , .  Using Eqs. (48) and 
(49), we find an equation for V(r) : 

a 
It V=-ns,Cx2(cp-0)- 6 (r-r,). 

ax 
(52) 

Working from this equation, and using (23) and (24), we 
find 

Substituting solution (52) into expression (43) for the ener- 
gy, and making use of the odd parity of p,(r), we finally find 

where the constant C'  is determined by the solution on mi- 
croscopic scales, outside the range of applicability of the 
continuum model. 

Let us examine the functional dependence W(x,r, ). Be- 
cause of the pronounced anisotropy, we naturally begin with 
W,, (XI = W(x,r, = const ). The function p,(x,r, ) is odd in 
x and has extrema at x = + x, (r,) .  In the general case 
6-n, Eq. (53) describes an attraction toward x, (r, ) from 
the region x, < x  < CC. Perpendicular forces in the valley 
x = x, (r, ) are directed toward the defect. At small values 
of 6 the absolute maximum is near the defect and is deter- 
mined by the equation p,(r - r,) = 6. For the particular 
case 0 = 0, there is an attraction toward the x = 0 plane 
from the region 1x1 < x,, while there is a repulsion in the 
perpendicular direction. This situation may also arise in the 
special case of a mobile impurity (see Ref. 19 and the bibliog- 
raphy there). 

At large distances the interactions of .rr and 2n solitons 
with defects differ only in the coefficient v ( v  = 1 and 2). 
Bound states at the defect, in contrast, are fundamentally 
different, since the n solitons contain a core at which the 
amplitude crosses zero, so the binding energy is on the order 
of A. 

There is the possibility that at low temperatures the im- 
purity particles will form a neutral complex with a n soliton, 
which would play the role of the neutral defect discussed 
above. Bound states of charged impurity centers with soli- 
tons were recently studied by Barisic and Batistic." 

6. CONCLUSION 

We have examined some questions concerning the con- 
version of a normal current into a Frohlich current in CDW 
crystals. We have examined the formation of n and 271 soli- 
tons, and we have constructed a model for describing the 
structure of solitons in systems with a crystalline order. 

We have proposed a model-independent approach for 
describing the interaction of solitons with long-range Cou- 
lomb and deformation fields. We have taken this approach 
to study the interaction of solitons with each other and with 
impurity centers. We have also studied the combined effects 
of a weak commensurability and a screening or self-screen- 
ing of the residual electrons or solitons. In all cases we have 
found the regions of attraction of the solitons. 

The results indicate that solitons tend to cluster in com- 
plexes equivalent to dislocation loops. 
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