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A theory of the electroacoustic echo in single-domain ferroelectrics of the order-disorder type is 
constructed in the pseudospin formalism. The Heisenberg equations of motion for the mean 
values of the pseudospin components and the equation for the acoustic vibrations are employed in 
the random phase approximation to yield equations describing the dynamics of a ferroelectric 
subjected to pulses of an external alternating field with allowance for damping in both the 
pseudospin and acoustic subsyste~lls. The multiple scales method is used to obtain from the 
equations describing the dynamics of the ferroelectric a system of differential equations for the 
envelopes of the forward and backward electroacoustic wave packets. The equations describing 
the dynamics of the envelopes of interacting wave packets have the form of coupled nonlinear 
Schrodinger equations with a perturbation and can be solved by the Karpman-Maslov method if 
the changes in the eigenfunctions of the Zakharov-Shabat operator are neglected. The solutions 
are used to investigate the conditions under which the electroacoustic echo arises and the 
dependence of the echo signal on the temperature, on the amplitude and durations of the 
alternating-field pulses, on deuteration of the sample, and on the applied static electric field. The 
behavior of the effective damping of electroacoustic waves as a function of temperature is 
obtained, and it is shown that the damping rate decreases sharply as the point of the phase 
transition is approached. 

Experimental investigations of the electroacoustic echo 
effect in single crystals of the ferroelectrics KDP and Ro- 
chelle salt's2 have detected anomalous behavior of the damp- 
ing coefficient for electroacoustic waves near the point of the 
order-disorder phase transition. Both the damping and am- 
plitude of the echo signal were found to depend strongly not 
only on the parameters of the pulses of the external alternat- 
ing field (frequency, duration, intensity) but also on the 
equilibrium characteristics of the ferroelectric itself. The ex- 
planation of the experimental relationships that was offered 
in Ref. 1 on the basis of the phenomenological theory does 
not take into account all of the features of the rf dynamics of 
ferroelectrics with thermal phase transitions of the order- 
disorder type. In particular, tunneling plays an important 
role in the dynamics offerroelectrics3 and must be taken into 
account in order to obtain the correct dispersion relations of 
electroacoustic waves and to account for the attenuation of 
the echo signal upon deuteration of the samples. 

In our view, the most complete and consistent descrip- 
tion of all the important features of the dynamics of ferro- 
electrics excited by alternating electric fields can be obtained 
in the pseudospin formalism, which is widely employed in 
the theory of ferroelectri~s.~'~ 

1. In this paper we use the pseudospin formalism to 
construct a theory of the electric echo in ferroelectrics of the 
KDP type, which are characterized by a symmetric double- 
well potential for the protons in the hydrogen bond. The 
Hamiltonian of such a system in the pseudospin representa- 
tion has the form of an Ising Hamiltonian in crossed  field^:^ 

where S; and Sf are the tunneling and electric dipole mo- 
ment operators of the jth cell, 0 is the tunneling integral, Ju 
is the exchange integral renormalized for the thermal mo- 
tion of the atoms,'z4 and E, and Ej ( t )  are the static and 
alternating electric fields applied to the sample. The opera- 
tor X,y, is the interaction Hamiltonian of the pseudospins 
with acoustic vibrations excited in the sample by the alter- 
nating electric field owing to the piezoelectric effect. 

The specific form of ZS, will depend on the mode and 
direction of propagation of the acoustic waves with respect 
to the crystallographic axes x ' ,  y', z'. Let us assume it is a 
transverse acoustic wave propagating along the z' axis and 
polarized along they' axis. Then the displacement vector has 
only one nonzero component: U - (0, U(zl , t )  ,0) . If it is as- 
sumed that the equilibrium electric polarization vector P of 
the sample is parallel to the static electric field E,, which is 
applied parallel to the x'y' plane, and that the acoustic exci- 
tation is due to the linear piezoelectric effect, the Hamilto- 
nian Zs, can be written 

d U ( z l ,  t )  aSa = - E d t z 3  SjL, 
dz' 

9 
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where d,,, = d, is the corresponding piezoelectric constant. 
This choice of interaction Hamiltonian corresponds to 
the experiment of Ref. 1 (see Fig. 1 ) . We note that the coor- 
dinate system x'y'z' is tied to the crystallographic axes, while 
the coordinate system xyz is defined in pseudospin space. 

The dynamics of the system in external fields is de- 
scribed by the Heisenberg equations of motion for the mean 
values of the pseudospin operators; in the random phase ap- 
proximation with allowance for transverse relaxation with a 
time TT, these equations have the 

<SF>-<F>, 
X sin 29 - sinZ cp, 

T,' 

<S,">-<sx>, 
X cosZ 9 - sin 29, 

2Tz' 

where (S" ), are the equilibrium mean values of the a-com- 
ponents of the pseudospin ( a  = x,y,z), and g, is the angle 
between the x axis and the direction of the equilibrium mo- 
lecular field in pseudospin space. I t  is assumed in Eqs. (3 )  
that the pseudospin relaxes to an equilibrium value deter- 
mined by the equilibrium value of the molecular field rather 
than the instantaneous value. An account of the relaxation 
of the pseudospin to the state determined by the instanta- 
neous value of the molecular field would go beyond the accu- 
racy of the approximations made below. The appearance of a 
dependence of the angle g, in the relaxation terms is due 
simply to the choice of coordinate system in pseudospin 
space, wherein the z axis, which is parallel to E,,, lies at an 
angle n / 2  - g, to the direction of the equilibrium molecular 
field.4 The system of equations ( 3 )  should clearly be supple- 

FIG. 1. Relationships among the polarization direction P, the direction of 
wave propagation k, the nonzero component of the displacement vector 
U(z',t), and the crystallographic axes x' ,  y', z'. 

mented by the equation of propagation of the acoustic wave, 
which, with allowance for what was said above, can be writ- 
ten in the form7 

aav 
-= 

aZu 1 80 au v - y -  U = U ( z f , t ) ,  
dt2 ( d z  ) p dz' d t  

(4)  

where p is the density of the crystal, and V and y, are the 
velocity and damping rate of the acoustic wave in the ab- 
sence of pseudospin-phonon coupling (which are therefore 
free of anomalies at the phase transition point). The compo- 
nent of the stress tensor a arising during the motion of a 
coupled electroacoustic wave excited in the sample by an 
alternating field is given as 

2. The system of equations ( 3 )  contains 3N equations, 
where N is the number of ferroelectric cells of the sample, 
and it cannot be solved in the form in which it is given. How- 
ever, ferroelectrics of the KDP type have a layered structure 
and can be represented as a set of planes parallel to the plane 
x'y' containing the spontaneous polarization vector 
P, a (Sz),  = (S,'),. The exchange interaction between 
pseudospins lying in different planes is substantially smaller 
than the interaction between pseudospins in the same 

This circumstance makes it possible to consider 
only the interaction of nearest-neighbor planes, with indices 
n - 1,n ,  a n d n  + 1. 

On the other hand, since the wavelength of the electric 
component of the exciting field is ordinarily much larger 
than the dimensions of the sample along the x'y' plane, the 
field in this direction can be considered uniform. Then, for 
identical initial conditions for the pseudospins of a given 
plane it is easy to show that (S,"(t)) = (S ; ( t ) )  if 
(S;(O)) = ( S  P(O)  ), I f j .  Then, if the index j specifying the 
position of the pseudospin in the lattice is represented as a set 
of two indices n and k, where n is the number of the plane in 
which the spontaneous polarization vector lies and k de- 
scribes the position of the pseudospin within the plane, one 
can write 

Since the wavelength A of the alternating field is much 
greater than the distance a between neighboring planes, it 
can be assumed that the mean value of the z component of 
the pseudospin vector changes only slightly from plane to 
plane, and we can expand (S,,, , , ,, ) in a Taylor series: 

atSn; ) a' az<snkZ> 
<S[~, , ) ,>W<S~L~ )* a--- + - ------ f... (6) 

d i '  2 (6'2')' 

Then, with allowance for ( 5 )  and ( 6 ) ,  the system of equa- 
tions ( 3 )  and (4)  can be written 
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<S">-<S">, 
x sin 2rp - sinZ q, 

T2' 

(S">-<S">, 
X cos2 (P - - sin 2cp, 

2T2' 

where we have introduced the notation 

M= J<SZ>+A - au + Eo+E ( t )  + do - 
82' ' 

To investigate the system (7)  we use the multiple scales 
t e c h n i q ~ e , ~ . ~  according to which we seek a solution of (7)  in 
the form 

( 8 )  
Z,=Z,(ef. e2t; EZ' ,  eZz')=Z*(Ti, T,; z , ) ,  

must determine correctly the order of smallness of the terms 
describing the damping and the excitation by the external 
alternating field. It is assumed that the quantities ( T : )  - ' 
and y, are of order E. This is because the change in the ampli- 
tude of the envelope on account of damping processes takes 
place over times which are slower than the vibrational peri- 
od of the electroacoustic waves, which determines the fast 
time. In determining the degree of smallness of the terms 
involving the alternating field one must keep in mind that 
efficient excitation of intercoupled pseudospin and acoustic 
waves by the alternating field occurs at the frequency of the 
natural oscillations, which are determined from the solution 
of the linearized system (7)  for E ( t )  = 0. Then, since the 
particular solution (dependent on the external alternating 
field) of system (7)  to first order in E and the solution of the 
homogeneous linearized system ( 7 )  run together (they have 
the same dependence on the space and time coordinates), 
the effect of the alternating field cannot be isolated in this 
case."' To solve this problem, i.e., to take into account the 
effect of an alternating field having the same order of small- 
ness as the deviation of the dynamical system from equilibri- 
um, a method of renormalization of the amplitude of the 
external field has been proposed.10 In this method, the effect 
of the alternating field with the renormalized amplitude is 
taken into account simultaneously with the nonlinear terms, 
i.e., to third order in E in the present case. Finally, we note 
that the first three equations of system (7)  yield an approxi- 
mate quasi-integral of the motion: 

which is exact upon neglect of relaxation processes in the 
pseudospin system. Thus, with allowance for what we have 
said, after a series of transformations the system of equations 
(7)  can be reduced to a single equation: 

Here w and k are the frequency and wave vector of the travel- 
ing electroacoustic waves, Z + and Z- are the slowly vary- 
ing amplitude of the forward and backward (traveling in the 
opposite direction) waves, T, and z, are slow variables, and 
E is a small parameter characterizing the deviation of the 
parameters of the pseudospin system from their equilibrium 
values. It should be noted that Z+ depends only on the vari- 
ables T,, T,, and z,, since it has been shownR that the depen- 
dence on the variable z, can always be eliminated by trans- 
forming to a new coordinate system. 

The derivation of the effective equations characterizing 
the dynamics of the envelopes Z,  of the electroacoustic 
waves (whose solution describes the electroacoustic echo ef- 
fect) fromEqs. (7) by the multiple scales technique involves 
a great volume of unwieldy transformations. As the required 
series of transformations has been reported in detail in the 
literat~re,'.~ here we shall only discuss and justify the ap- 
proximations made in the course of the calculations and in- 
dicate the structure of the transformations. First of all one 
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3. The multiple scales technique is based on the succes- 
sive elimination of the rapidly oscillating secular terms, pro- 
portional to exp [ f i(wt - kz') ] in each order of the expan- 
sion of Zin the parameter E .  For example, the requirement of 
eliminating the secular terms in first order in E yields the 
dispersion relation for electroacoustic waves. The corre- 
sponding equation for the secular terms obtained in second 
order in E yields equations describing the dynamics of the 
envelopes of noninteracting packets of forward and back- 
ward electroacoustic waves. Finally, in third order in E one 
obtains equations describing the dynamics of the envelopes 
of interacting forward and backward wave packets.8s9 The 
dispersion relation obtained is of the form 

where w, and w, are, respectively, the eigenfrequencies of 
acoustic vibrations and pseudospin waves with wave vector 
k in the absence of coupling between them. The equations for 
the envelopes of the noninteracting forward and backward 
wave packets are 

1 (02-0,Z)y,+(a2-oe2) Y. , 
y. = -,(I 1 + cos 2 ~ )  ; Y = 7 2a2Lo,z-0,2 T2 

the solution of these equations can be written 

where 2, is some function of the slow variables 
z1 f ( d w k k )  TI ; T,. 

Thus the wave packet of the forward (backward) elec- 
troacoustic wave Z + ( Z -  ) moves with group velocity 
dw/dk( - dw/dk) and is damped at a rate y which is a func- 
tion of the damping coefficients of the pseudospin ( y, ) and 
acoustic (y, ) waves and also of their frequencies. Let us 
analyze the temperature dependence of the damping coeffi- 
cient y from the experimental studies. 

It is known that the damping coefficients of both the 
pseudospin and acoustic waves exhibit a very weak tempera- 
ture dependen~e."~'~ Therefore, the temperature depen- 
dence of the damping coefficient is governed primarily by 
the strong temperature dependence of the frequency w, of 
the pseudospin wave. At a fixed frequency of the external 

alternating field w the frequencies w, and w, of the acoustic 
and pseudospin waves depend on the magnitude of the wave 
vector k (see Eq. ( 1 1 ) ) . At the same time, since the depen- 
dence of w, on k is due to the very weak interplane exchange 
interaction A (A < J ), we can neglect this dependence and 
assume that wt - m i ,  where wt = R2 - R ( S X ) O J +  nFx is 
the soft mode f req~ency .~  In this approximation an expres- 
sion for k * is easily obtained from the dispersion relation 
(11): 

Then the expression for y becomes 

Because the piezoelectric constant do = dl,, is zero in 
the ferrophase ( T < Tc , where T, is the phase transition tem- 
perature), the electroacoustic waves coupled with it are not 
excited in the ferrophase. In the paraphase ( T >  T, ) the 
temperature dependence of dl,, is of the form 
d,,, = d l  + d ' / (T  - T, ) (Ref. 11). Thebehavior ofthesoft 
mode frequency with temperature has been well studied.324 
Specifically, while wo- fl in the high-temperature region, as 
Tapproaches Tc the soft mode frequency decreases sharply, 
and for E, #O it becomes a small quantity of order 2pE0<w 
(p  is the dipole moment of a single ferroelectric cell). Thus - 
in the high-temperature region, where A-R2/w2, 
B- R2d i / p  k, T, we can write approximately 

Since y, ) y, (Refs. 3 and 4), it follows from ( 16) that the 
damping of the electroacoustic wave increases as the tem- 
perature is lowered. Since the soft-mode frequency decreases 
substantially with decreasing temperature, there is a region 
of temperatures near Tc ( T >  T, ) in which wo-w(w 4 R) .  
In this case, according to Eq. ( 15), we have 

i.e., the damping is much greater than in the high-tempera- 
ture region. In the immediate vicinity of the phase transition 
point T, ( T- T, ), Eq. ( 15) gives 

1 1 T-T, Q2 
y = r s  " - ( Y ~ + T G )  + T ( ~ s - ~ a )  -- y 3 < Y 2 .  

4 T ,  oZ'  

Thus it follows from the expressions obtained for the 
damping coefficients in different temperature regions (Eqs. 
( 16)-( 18) ) that the damping of electroacoustic waves is 
maximum in the temperature region where the soft mode 
frequency is close to the frequency of the external alternating 
field. Such behavior of the damping coefficient is in qualita- 
tive agreement with the experimentally measured tempera- 
ture dependence of the damping of echo signals in KDP 
crystals. ls2 
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4. The simplest way of exciting echo signals is to apply 
two successive pulses of an external alternating field with a 
time between pulses At = r,, the first pulse have duration T, 

and frequency w and the second having duration T, and fre- 
quency 201. Such a succession of electric field pulses can be 
written in the f ~ r m ' , ~ ~ ' ~  [ 8 ( x )  is the theta function] : 

x exp [ i (wt-kz ' ) ]  + i / 2 E 2 { 0 ( t + ~ o + ~ , )  

In accordance with what we have said, equations (10) to 
third order in E yield equations describing the excitation and 
dynamics of the envelopes of interacting forward and back- 
ward electroacoustic wave packets: 

az, I azz, I a2z, 
Film--- Lam 7 - 2 L m y  

dT, 2 dT,  azi 

82 ,  az, 
+~Iz,I~z,+-R,----- R;-- 

dzi dTi 
R5Z,+h*Etf (21)  

+ (Ri(S')o+R2Eo)g, (E,)Z,=O, 
dl (ct,,  k )  lE  = --- , 1 - =  

d21 (w, k )  
dEaij 

, h-=O 
6 j 

h - I *) (s"), ('2 - <!la2) [R ( t )  - 0 (t  + %)I: a, il = w* k* 
+-  2 

(19) 

where 

Here R,, R,, R,, and @ are complicated functions of the 
parameters of the system Hamiltonian, equilibrium mean 
values (S" ),, and damping constants y, and yo.  

In order to solve Eqs. ( 19) we must specify the initial 
and boundary conditions. Assuming that the system is ini- 
tially in a state of thermodynamic equilibrium, we write the 
initial conditions in the form 

Under the condition that the first pulse excites traveling 

waves in the sample, the boundary conditions can be speci- 
fied for a semi-infinite sample. Since the corresponding com- 
ponent of the total stress tensor is equal to zero at the bound- 
ary of the sample," the boundary conditions are 

Z*(Ti, T J  Iz,-*-+O. (21) 

We note that boundary conditions (2 1 ) for a semi-infinite 
sample correspond to specifying boundary conditions on the 
components of the electric displacement vector in the form: 

(i)-  ( 2 )  (i) (2) 
Etang-Eiang, D n o r m e D n o r n r  

It follows from system of equations (19) and initial 
conditions (20) that until the start of the second pulse there 
is only a forward electroacoustic wave in the sample 
( Z -  = O), propagating in the direction of increasing z'. 
Making the substitution Z + = q+ exp(ip + T, + ivz, ), 
where 

we obtain with the aid of relation (13) [here Im ( f )  is the 
imaginary part off ] 

The Cauchy problem for Eq. (22) with boundary con- 
ditions (2 1 ) on the half line z'E[O; + co ] is equivalent to the 
Cauchy problem on the straight line z , ~ ]  - co ; + co [ with 
the initial and boundary conditions 

if the definition of the term proportional to h + is extended 
onto the half line z , ~ ]  - CO;O] as a function which is odd 
with respect to the argument z, and which is equal to zero at 
z, = 0 (see, e.g., Refs. 14 and 15). In this case Eq. (22) with 
conditions (23) can be regarded as a nonlinear Schrodinger 
equation with zero boundary conditions in the presence of an 
external perturbation R + . Equation (22) can be solved by 
the Karpman-Maslov methodI6 if the change in the eigen- 
functions of the Zakharov-Shabat operator under the influ- 
ence of the external perturbation R + is neglected. This ap- 
proximation corresponds to the case when the amplitude of 
the first alternating-field pulse is small. In fact, the change in 
the eigenfunctions of the Zakharov-Shabat operator can be 
neglected under the condition16 

Hence, using expressions (22) and ( 19) and neglecting the 
damping that occurs during the alternating-field pulse, we 
obtain a condition on the amplitude El :  
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in the paraphase of the ferroelectric, when (S ),-0 (in the 
ferrophase there are no electroacoustic waves coupled with 
the given piezoelectric constant; see above), the quantity A 
is of the order of 

and thus for E l  we obtain 

This inequality is clearly satisfied for the values of E, ordin- 
arily used in experiment,Is2 since, for the KDP crystal, for 
example, the tunneling integral a- 1013 s - ' , and 
( S  " ),- a / J <  1 in the vicinity ofthe phase transition point. 

According to the Karpman-Maslov method, the solu- 
tion of Eq. (22) it determined from the scattering data 
cI1(w),  c12(w) as16 

where the function K ( x , y )  is a solution of the integral equa- 
tion 

K ( I ,  y)  -P- ( x i -  y)  + j J ds dsfK (x ,  S )  F ( s + s f )  P. (s'+ y)  =0, 

1 ~ 1 1  ( w )  
F ( r )  = - J dw eiwr - 

2 n - _  c12 ( w )  

The evolution of the scattering data in time is governed by 
the equations 

' 6 J dzi  I?+' ( 2 , ;  T , )  exp ( - P i ~ 8 . z ~ )  
- (26) 

with initial conditions according to (23): 

The solutions of equations (26) at times T, > T, are 

~ [ E X P  ( - i p + ~ , + y ~ , )  - exp (4iw%,) lexp (4iwzT2),  

c i z (w)= l ,  (27) 

where T(w) is the Fourier transform of the first pulse: 

r ( w )  = 6 )  dz, f (z,)exp(-iqzi)exp(i2w6zl). 
- w 

By expressing Z + in terms of the scattering data c, , ( w ) and 
c,,(w), it is easy to determine the evolution of the forward 
electroacoustic wave up until the start of the second pulse. 

The interaction of the second pulse, having frequency 
2w, with the forward electroacoustic wave is parametric and 
so gives rise to a backward electroacoustic wave. This inter- 
action, which is characterized by the term proportional to 
g -  (E,) in the equation for the amplitude of the backward 
wave envelope (the equation for Z - ) in system ( 19), acts as 
an external driving force. The backward wave moves in the 
- z' direction with the same group velocity as the forward 

wave, and it is detected as an echo response. It follows from 
the last term of Eq. ( 19) [the term proportional tog- (E,) ] 
that excitation of a backward wave through the interaction 
of the forward wave and the second field pulse is possible 
only under the condition R ,  ( S  ' ), + R,E,#O. Thus, since 
(SZ) ,  = 0 in the paraphase, the formation of a backward 
wave (and hence an echo signal) in this phase requires the 
presence of a static electric field (E,#O). At the same time, 
in the ferrophase, where ( S  ' ), # 0, electroacoustic waves 
are not excited because the corresponding piezoelectric con- 
stant dl,, = 0. 

In the free-evolution period after the end of the second 
pulse, the system ( 19) in the approximation of noninteract- 
ing waves is a system of independent equations. After the 
change of variables 

d 2 a  
Z-=q- exp(ip-T,+iqz,) ,  p-=-p+ + - q2  (28) 

dk' 

the equation for the amplitude of the backward wave enve- 
lope can be written 

K-=l,-' ( ~ l < S z ~ o + R , E a ) g -  (E , )  q+ exp [ - i  (p--11,) T , ]  

+Al,-'1 q-lZq-{exp [-2yTi-2 Im ( q z , )  -2  Im (p-T, )  ] -1). 

Because the function q + is odd with respect to z,, Eq. 
(29) is defined on the straight line z , ~ ]  + C O ;  - co [ with 
zero initial and boundary conditions. Thus Eq. (29), which 
describes the dynamics of the backward wave, is completely 
analogous to Eq. (22) which governs the evolution of the 
forward electroacoustic wave. Consequently, the solution of 
equation (29) is analogous to the solution (24)-(26) of 
equation (22). The scattering data E l ,  (w), E,,(w), which 
govern the evolution of the backward wave at times 
T2 > T, + T, + r2, have the form 

- exp (- i4w2z2) )+O ( E l Z ) ,  

~ , ~ ( w ) = l .  (30) 

The condition imposed on the amplitude E2 of the second 
pulse in order for Eqs. (30) to be a valid solution of equa- 
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tions ( 2 9 )  is analogous to the condition obtained for the 
amplitude El of the first pulse and is given by the inequality 
)A/1 , )  $ R - . With the same approximations as were used 
for E l ,  we obtain for E2 

From expressions ( 2 4 ) - ( 2 7 ) ,  if we neglect the dispersion of 
the envelope of the forward wave during the alternating-field 
pulse, we obtain for the amplitude of the envelope q + 

Then, with allowance for the e~per imenta l '~~  conditions 
Eo-El -E2,  we can write the following inequality for E,: 

which is practically always satisfied. 
We note that the time T ,  appears in expressions ( 2 6 )  

and ( 3 0 )  with opposite signs. This corresponds to the well- 
known "phase conjugation" effect, wherein the backward 
wave seem to evolve backwards in time. To determine q _ 

from the scattering data ?,,(  w )  and 2, , ( w )  one can use rela- 
tions ( 2 4 )  and ( 2 5 ) ,  after transforming the function F ( r )  as 

For alternating-field pulses having low amplitudes and satis- 
fying the inequalities obtained above, we obtain from Eq. 
( 2 5 )  

K (x, y ) -F'(x+y). 

In this case the amplitude of the backward wave envelope is 
given approximately by 

2- ( T i ,  T, ,  2,) -E ,E,  ( R ~ ( S ~ > , + R , E ~ )  Q ( p ) o (  m2-ma2) 

X Z , - ' W ~ - ~ ~ I  exp i { p - T , + ~ Z ~ ) ,  ( 3 2 )  

[exp ( - i p + t , + y ~ , )  - exp ( i 4 w Z z l )  ]exp (i2w6.2,) 
X 

p+-p-+8wZ 

~ [ e x p  i (4w2+p+--p-)  t2 - exp (-i4w2.c2) I 

5. Let us examine how the amplitude of the backward 
electroacoustic wave envelope ( 3 2 )  depends on time, on the 
amplitudes and durations of the pulses, and on the param- 
eters of the sample. Using the method of stationary phase, 
one can easily show that the integral for Win ( 3 3 )  has a 
maximum at the time T, = T ,  + 2 ~ ~  + 7'. Consequently, at 
the time T2 + T ,  + 2 ~ ~  + T ,  the amplitude of the backward 

wave increases sharply and is observed as an echo response. 
Ordinarily in experiments r O )  r1,r2 and T2 -- 27,, i.e., the 
time at which the echo signal appears is determined by the 
interval between pulses. We note that according to ( 3 2 ) ,  for 
short pulse durations r ,  and T ,  the echo amplitude 
A, = Z -  ( T 2 z  2 ~ ~ )  is proportional to r, and r2: 

It also follows from ( 3 0 )  that for small r2 

=cl ,  ( w ,  T 2 = ~ , )  E ,T~(R~<SI>,+R,E, )  I,-'. ( 3 4 )  

According to ( 2 5 ) ,  the scattering data c,, ( w ,  T, = r ,  ) deter- 
mine the shape of the envelope of the forward wave 
Z + ( T, = T ,  ) after the end of the second pulse: 

According to ( 3 4 ) ,  the shape of the echo signal 

is also determined by the scattering data c , , (w ,T2  = T , ) ,  

and, consequently, is analogous to that of the forward wave 
envelope. As the intensity of the alternating-field pulses is 
increased, it becomes necessary to take into account the inte- 
gral term in Eq. ( 2 5 ) .  Assuming that El and E2 still satisfy 
the corresponding inequalities, we can write 

and, consequently, the amplitude of the backward wave will 
have the form 

Z-' ( T i ,  T, ,  2,) -2-- ( E , E 2 )  3 N ,  ( 3 7 )  

where Z -  is solution ( 3 2 )  and Ris  the function given by the 
double integral in ( 3 6 ) .  Using the method of stationary 
phase, we easily see that at the time T ,  = 2.r0 + T ,  + t, the 
signs of the functions F* (x + y )  and are the same. 

Thus, it follows from expressions ( 3 6 )  and ( 3 7 )  that 
the echo amplitude saturates as the amplitudes of the alter- 
nating-field pulses are increased. It should be noted, how- 
ever, that solution ( 3 7 )  of the linear integral equation ( 2 5 )  
was obtained by successive approximations in the small pa- 
rameter E i / n &  l. Obviously, the conclusion that the echo 
signal saturates can be considered valid only when the in- 
equalities Ei /a 4 1 hold for the amplitudes of the alternat- 
ing fields ( ( S  " ) ,  5; 0.1 in the paraphase). At the same time, 
we note that in the case of strong fields analysis of the depen- 
dence of the echo signal on the parameters of the pulse train 
requires correct allowance for the changes in the eigenfunc- 
tions of the Zakharov-Shabat operator and also for the pos- 
sible contribution of solitons generated by the alternating 
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fields. Consideration of these questions is beyond the scope 
of this paper. 

As we see from expression (30), the amplitude of the 
echo signal is proportional to the tunneling integral R: 

(for T> T, one has ( S x  ),=:R/4kB T).4 Upon deuteration 
of the sample tunneling integral R decreases by a factor of 
10-100.3.4 Consequently, the echo signal should decrease on 
deuteration by a factor of 10'-lo4, in good agreement with 
experiment. 

Let us summarize the main results of this paper. We 
have found the effective equations for the envelopes of the 
forward and backward electroacoustic wave packets. The 
equations for the envelopes of noninteracting packets yield 
an expression for the effective damping rate of the electro- 
acoustic waves, with a temperature dependence that agrees 
with experiment. We have obtained an expression for the 
amplitude of the electroacoustic echo arising as a result of 
the parametric interaction of the forward electroacoustic 
wave and the uniform electric field of the second pulse. We 
have explained the linear dependence of the echo amplitude 
on the amplitudes of the alternating fields and durations of 
the pulses when a ferroelectric is excited by low-intensity 
pulses. The amplitude of the echo signal becomes saturated 
as the intensity of the pulses increases. We have accounted 
for the lack of an echo in the paraphase of a ferroelectric for 
E, = 0 and for the strong attenuation of the echo signal upon 
deuteration of the sample. Thus, we have constructed a theo- 
ry of the electroacoustic echo that in the main correctly de- 
scribes the existing experimental data and permits calcula- 
tion of the characteristics of the electroacoustic echo on the 
basis of microscopic concepts of ferroelectricity. 

We are grateful to A. R. Kessel' for posing the problem 
and for advice offered during a discussion of the results and 
to V. M. Berezov and V. G. Bakurov for helpful discussions 
in the course of this study. 

'V. M. Berezov, V. S. Romanov, and A. B. Balakin, Ukr. Fiz. Zh. 29, 1589 
(1984). 

2V. M. Berezov, V. S. Romanov, and A. B. Balakin, Kristallografiya 31, 
1022 (1987) [Sov. Phys. Crystallogr. 31,608 (1986)l. 

'V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics [in 
Russian], NauQ, Moscow (1973), Ch. 2, 3, 5, 6. 

4R. Blinc and B. ZekS, Soft Modes in Ferroelectrics and Antiferroelectrics, 
North-Holland, Amsterdam ( 1974), Ch. 5. 

5R. K. Wangsness, Phys. Rev. 98,927 (1955). 
'M. B. Belonenko, A. R. Kessel', and M. M. Shakirzyanov, Fiz. Tverd. 
Tela (Leningrad) 29, 3345 (1987) [Sov. Phys. Solid State 29, 1919 
(1987)]. 

'L. D. Landau and E. M. Lifshitz, TheoryofElasticity, 2nded., Pergamon 
Press, Oxford (1970), Ch. 1, 3. 

'R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and 
Nonlinear Wave Equations, Academic Press, New York (1982), Ch. 8. 

9M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Trans- 
form (No. 4in SZAMStudies in Applied Mathematics), Society for Indus- 
trial and Applied Mathematics, Philadelphia, PA (1981), Ch. 1,4. 

"'A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New 
York (1981), Ch. 9. 

"Yu. I. Sirotin and M. P. Shaskol'skaya, Fundamentals of Crystallogra- 
phy [in Russian], Nauka, Moscow ( 1979). 

I2S. A. Zel'dovich and A. R. Kessel', Fiz. Met. Metalloved. 47, 908 
(1979). 

I'M. E. Lines and A. M. Glass, Principles and Applications of Ferroelec- 
trics and Related Materials, Clarendon Press, Oxford (1977), Ch. 4. 

I4M. J. Ablowitz and H. Segur, J. Math. Phys. 16, 1054 (1975). 
"H. E. Moses, J. Math. Phys. 17, 73 (1975). 
"G. L. Lamb, Elements ofSoliton Theory, Wiley-Interscience, New York 

( 1980), Ch. 9. 

Translated by Steve Torstveit 

484 Sov. Phys. JETP 72 (3), March 1991 M. B. Belonenko and M. M. Shakirzyanov 484 


