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A study is made of a model of an amorphous ferromagnet with long-wavelength spatial 
fluctuations of the modulus of the magnetization M. It is shown that an allowance for the 
magnetodipole interaction, which enhances the contributions of fluctuations of M to the ground 
state, to the dispersion law, and to the damping of spin waves is essential to the correct 
understanding of the properties of this model. The spectral and correlation properties of an 
inhomogeneous ground state are studied and the law of approach of the magnetization to 
saturation is considered in this model. An investigation is made of the dispersion law and of the 
damping of spin waves. A new mechanism is proposed for the origin of a correction of the T 5'2 

type to the Bloch law governing the low-temperature behavior of the magnetization. 

INTRODUCTION 

One of the main tasks in the physics of disordered sys- 
tems is a study of the influence of fluctuations of various 
parameters of a system on its properties. We shall report a 
theoretical investigation of the influence of long-wavelength 
(k,ag 1, where a is the interatomic distance and kc is the 
characteristic wave number) fluctuations of the modulus of 
the magnetization M on the ground state and spectrum of 
elementary excitations of a randomly inhomogeneous ferro- 
magnet (this definition covers amorphous and fine-grained 
materials, disordered crystalline alloys, and other ferromag- 
netic systems with an inhomogeneous distribution of the pa- 
rameters). We shall study a model of a ferromagnet in which 
all these other parameters, such as the exchange and anisot- 
ropy, are assumed to be constant. The fundamental differ- 
ence from earlier studies of this model's2 lies in an allowance 
for the magnetodipole interaction, which plays here a more 
important role than in the model of exchange  fluctuation^.^ 
This is because the magnetization is a source of the magneto- 
dipole field H, ( r )  and, therefore, fluctuations of the mag- 
netization create fluctuations of this field. Isotropic fluctu- 
ations of the modulus M give rise to an inhomogeneous 
distribution of the field H, (r )  between the various direc- 
tions, which under certain conditions can have a drastic in- 
fluence on the properties of the investigated system. 

We shall base our investigation on a phenomenological 
theory of disordered magnetics developed in Ref. 4. Accord- 
ing to this theory the fluctuations of M can be modeled by a 
homogeneous random function of the coordinates p ( r ) : 

The physical reason for fluctuations of the magnetiza- 
tion modulus of ferromagnets is a random distribution of 
spins in space, which in turn may be due to (for example) 
disorder in the distribution of magnetic and nonmagnetic 
ions in multicomponent systems or due to lattice deforma- 
tion, which gives rise to fluctuations of the density of the 
investigated material. In adopting a phenomenological de- 
scription of such situations we have to distinguish two cases: 
r, -a and r, >)a (the existence of such long-wavelength in- 
homogeneities in amorphous ferromagnetic systems is now 
reliably established by experimental investigations). In the 
former case the correlation radius r, lies within a volume A V 
in which the averaging is carried out in the continuum ap- 
proximation. This results in the loss of information in the 
short-wavelength part of the spectrum of inhomogeneities 
(A < r, ) and therefore a phenomenological approach cannot 
be used to consider the processes of these values ofA, i.e., we 
have to assume that the inhomogeneities are delta-correlat- 
ed. 

In the second case the volume A Vcan be selected so that 
A Vg r, 3. Consequently, the macroscopic quantities ob- 
tained by averaging over this volume "inherit" fully the in- 
homogeneities present in the system. The correlation radius 
r, can then be regarded as finite and we can consider pro- 
cesses with characteristic scales greater than or smaller than 
r, . We must stress once again that this is the case which will 
be considered here. 

Following Ref. 4, we shall assume that the modulus of 
the magnetization is at each point an integral of motion and, 
consequently, the system in question can be described by the 
usual Landau-Lifshitz equation 

The statistical properties of this function are assumed to be dm 
-= 

known: -g[mHeff 1, 
at 

<p (r) >=O, (p2(r) )=1, 

(P (r)  p (r') >=KO( lr-r'l ) 7 

where m is the unit vector in the direction of the magnetiza- 
(2) tion and He' is given by 

3 d 3% H""=--+-- 
where K, (r)  is the normalized isotropic correlation func- 3M dxi 3 (dM/dxi) ' (4) 
tion of fluctuations of M, characterized by a correlation radi- 
us r,, which determines the characteristic spatial scale of the where i~ the Hamiltonian which can be written in the 

magnetization inhomogeneities. The parameter y shown form 

separately in Eq. ( 1 ) is the rms deviation of the modulus 1 
%=- 

1 
2 

aM2VZm-morn f - Hm2. 
M(r ) from its average value M ,  . 8n 
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Here, a is the exchange parameter, whereas H, and H, are 
the external and magnetodipole fields, respectively. 

The first section will deal with the ground state. An 
allowance for the magnetodipole interaction leads to the ap- 
pearance of what is known as a stochastic magnetic structure 
(SMS), which is inhomogeneous in respect of the distribu- 
tion of the directions of the magnetization. In general, an 
SMS appears in ferromagnetic systems under the influence 
of a disordered anisotropy of any nature. In particular, in- 
vestigations have been made of the SMS induced by a local 
magnetic anisotropy4s5 or the magnetostrictive ani~otropy,~ 
including that allowing for the magnetodipole intera~t ion.~ 
We must stress that we shall discuss an SMS associated with 
isotropic fluctuations of the scalar parameter M induced en- 
tirely by the anisotropy of the magnetodipole interaction it- 
self. 

The first intimation of the possibility of existence of 
such an SMS (we shall call it the magnetodipole SMS or 
MSMS) was given in Ref. 5, where however it was conclud- 
ed that its dispersion is negligible ( - 10 6 ) .  We shall dis- 
cuss the investigation reported in Ref. 5 in greater detail and 
identify the conditions under which the conclusion reached 
there is invalid. 

In Secs. 2 and 3 we shall discuss the properties of spin 
waves such as the dispersion law and the damping. The re- 
sults obtained in these sections are very different from those 
obtained earlier without an allowance for the magnetodipole 
 interaction.'^^ New results on the damping of spin waves are 
of special interest, since the recent experimental investiga- 
tions6>' are not described by the theoretical relationships ob- 
tained in Refs. 1-4. 

In the last section we shall give an interesting, in our 
opinion, example of the influence of an SMS of arbitrary 
nature on the thermodynamic properties of disordered mag- 
netics. We shall propose a mechanism of adding a correction 
of the T5'2 type to the Bloch temperature dependence of the 
magnetization reported in several experimental papers.8.9 

1. MAGNETODIPOLE STOCHASTIC MAGNETIC STRUCTURE 

The ground state of the investigated system is described 
by a statistical variant of equations of the ( 3 )  type with an 
effective field 

Here, H, is a magnetostatic field which satisfies the 
Maxwell equations. Its average value (H, ) in a sample of 
ellipsoidal shape is given by the familiar expression 

We shall assume that (H, ) is included in H,; the remaining 
fluctuation component can be calculated by applying the 
Fourier transformation and assuming that the medium (fer- 
romagnetic) is infinite. 

In the zeroth approximation with respect to fluctu- 
ations of M the ground state is homogeneous of the 
m, = my = 0 and m, = 1 type with thez axis directed along 
the magnetic field H, (allowing for (H,)). If the fluctu- 
ations of M and, consequently, deviations from the homoge- 
neous state are small, then in the first order of perturbation 
theory (in respect of y ) ,  we obtain 

kik, 
mi (k) = y h 2  k2 (k2+kH2+kM2 sin2 Or) ' 

Here, the index i assumes the values ofx and y; 0, is the angle 
between the vector k and the field H,; m(k)  andp(k) are the 
Fourier transforms of the functions m(r)  and p ( r ) .  The pa- 
rameters k, and kM are given by the expressions 

Equation (8)  describes an inhomogeneous distribution 
of the magnetization directions, i.e., it describes an SMS. 

The main characteristics of this SMS are the spectral 
density SM (k) ,  the correlation function KM ( r ) ,  and the 
variance DM = KM (0).  The spectral density is given by lo 

<mi (k) mi* (k') >=S,"' (k) 15 (k-k') . ( 9 )  

Substituting here Eq. (8 ), we obtain 

where S, is the spectral density of the random function of 
inhomogeneities (2) .  The correlation function KM ( r )  and, 
consequently, the variance DM are found from Eq. ( 10) us- 
ing the Wiener-Khinchin theorem:" 

K G )  (r) =<mi (0) mz (r) )=J SM (k) cik' d3k. (11) 

The expression for the variance is the same for the compo- 
nents m, and my. It can be written down conveniently by 
introducing dimensionless parameters as follows: 

where 

and kc is the correlation wave number which occurs in 
S,(k) (kc m r ; ' ) .  

Equation (12) was first obtained in Ref. 5 on the as- 
sumption that the fluctuations M ( r )  are delta-correlated. 
We can readily see from this equation why the authors of 
Ref. 5 concluded that the value of DM for real materials is 
negligible. The authors ofRef. 5 integrated Eq. ( 12) with the 
spectral density S, (k)  = const and thus limited the integra- 
tion domain to wave numbers k-a - l .  In fact this implies 
introduction of a correlation radius rc -a. Then the inequal- 
ity 124  1 is obeyed and the quantity DM given by Eq. ( 12) is 
of the order of gl  3. 

The situation changes drastically if we assume that an 
MSMS is due to long-wavelength inhomogeneities of M 
characterized by rc >a. In this case we can realistically ex- 
pect 6- 1 and even <> 1; then Eq. (12) has no additional 
smallness. The quantity DM is then of the order of $ and 
may be comparable with the variances for other types of 
SMS. 

A characteristic feature of an MSMS, compared with a 
SMS is an anisotropy (which we shall denote an anisotropic 
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SMS by ASMS) responsible for its stability in the limit 
Ha -0: we can see from Eq. (12) that in this limiting case 
the variance DM remains finite. The field dependence 
DM (No) is also characteristic: a linear fall in the range 
H < Hc = aMo k f (Hc is the correlation field in accordance 
with the terminology of Ref. 4), which changes to logarith- 
mic in the range H > H,. For comparison, we recall that the 
variance of an ASMS is proportional to H - 'I2 when H < H, 
and to H - when H > H,. A further increase in the field 
results in a change in the logarithmic law in the vicinity of 
~ T M ,  to the law H - typical of all types of SMSs in such 
high fields. The variance of an SMS determines the field de- 
pendence of the projection of the average magnetization 
along the field direction, (M, (H)) ,  which is known as the 
law of approach of the magnetization to saturation. In Ref. 4 
this law was first used to find the correlation radius of fluctu- 
ations of the anisotropyl) in amorphous Co-P. However, in 
connection with the results in the present section, it is essen- 
tial to consider more carefully the interpretation of the re- 
ported experiments. 

In the case of a magnetodipole SMS the law of approach 
to saturation differs fundamentally from all other laws of 
approach that have been used to interpret the experimental 
data, beginning from the very first investigations of these 
topics (see, for example, Ref. 12); instead of expansion in 
terms of the reciprocal powers of H 'I2, we have a linear (for 
H < H, ) or a logarithmic (for H >  Hc ) field dependence. 

In the case of thin films it is possible to obtain direct 
electron-optic images of an SMS (Ref. 13). An analysis of 
these images yields the one-dimensional cross sections of the 
correlation function and the corresponding one-dimensional 
spectral densities SM (k) .  Such an analysis was first made in 
Ref. 14 on the basis of a theory proposed in Ref. 15 for 
ASMSs in thin microcrystalline films. Subsequently the 
function SM (k)  had been determined for a whole range of 
microcrystalline and amorphous alloys (for a review of some 
of the work, see Ref. 16). 

A comparison of the theoretical expressions for the 
spectral densities of an ASMS and an MSMS shows that the 
electron-optic images of these structures should be very dif- 
ferent from one another. In fact, whereas in the case of the 
ASMS the maximum fluctuations of the contrast are ob- 
served only along the direction of the vector M , ,  in the 
MSMS case we can expect the maximum fluctuations at 
some angle to Ma.  

We also carried out a numerical investigation of the 
correlation function of an MSMS corresponding to the spec- 
tral density of Eq. (10); the correlation properties of inho- 
mogeneities of the modulus M were then modeled by the 
following expressions: 

The results of a numerical integration are presented in 
Fig. 1. This figure gives the dependence of the correlation 
function K M  (r,6) on the distance between the points r for 
different values of the angle 6 between the vector r and the 
magnetic field Ho . As expected, the correlation properties of 
the MSMS are strongly anisotropic. However, the most im- 
portant is the appearance of negative correlations for large 
values of r when B < 8,, where 0, is a certain critical value of 

FIG. 1 .  Sections of the correlation function of a magnetodipole stochastic 
magnetic structure formed by cones passing at different angles 8 relative 
to the field H,.  Curve 1 corresponds to 0 = Oo, curve 2 to 8 = 30", curve 3 
to 6 = 60", and curve 4 to 8 = 90". 

the angle. This implies a qualitatively different distribution 
of the magnetization in the MSMS for the directions with 
6 < 6, and 6 > 6,. Such sections of the correlation function 
mean that the corresponding one-dimensional spectral den- 
sities have a maximum at a certain value k * #O (i.e., in ac- 
cordance with the terminology of Ref. 17, these functions 
include a contribution of correlation functions of the second 
type). Along these directions the SMS acquires some of the 
features of an ordered wave structure with a characteristic 
wave number k *. 

Callen'' used a microscopic approach to consider the 
ground state of the spin system in which spins are distributed 
at random between the lattice sites, subject to an allowance 
for the dipole-dipole interaction, i.e., he solved a problem 
similar to ours. On the other hand, at first sight the results 
reported in Ref. 18 seem to be in conflict with the results 
obtained in the present section: the ground state is unstable 
in the limit H, +O and the dependence DM (H, ) is similar to 
the field dependence of the ASMS variance. Consequently, 
we shall conclude this section with a discussion of the reason 
for this contradiction. 

The microscopic energy of the dipole-dipole interac- 
tion is 

where s, is a spin at a site I, and R,, is the radius vector 
joining two sites I and m. The lattice sum in Eq. ( 15) can be 
separated in the usual way19 into two: the immediate neigh- 
borhood of size of the order of a and for all the other sites. It 
is necessary to consider the following two cases: 1 ) when the 
characteristic size of the inhomogeneities in the distribution 
of the spins is of the order of a; 2)  r, $a. In the former case 
the sum over the region where I R,, I $ r,, responsible for the 
macroscopic field occurring in the Maxwell equations, be- 
comes self-averaged and negligibly small [in full agreement 
with the results of Ref. 5 and the corresponding discussion of 
Eq. ( 12) in the present section]. The rest of Eq. ( 15), con- 
taining summation over the immediate environment, gives 
in this case the effective random magnetic field whose influ- 
ence is similar to that of the random anisotropy, as demon- 
strated in Ref. 18. 

However, in the case of long-wavelength inhomogene- 
ities r, >)a, the summation in the immediate environment 
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where IR,, I < r, in fact occurs for a homogeneous distribu- 
tion of the spins. The corresponding sum either vanishes if 
we are speaking of the cubic lattice or makes a contribution 
to the a n i ~ o t r o ~ ~ . ' ~  The statistics of this contribution is gen- 
erally governed not by the distribution of the magnetization, 
but by the statistics of the lattice distortions and, conse- 
quently, will not be considered here. On the other hand, 
summation of the more distant region characterized by 
I R ,  1 - r, gives rise to the same fluctuation-induced magne- 
todipole field which was discussed by us earlier. Therefore, 
the difference between the results of Ref. 18 and ours is due 
to the fact that the statistical characteristics of the magneto- 
dipole field Km depend strongly on the correlation radius of 
fluctuations of the magnetization M ( r )  ( r ,  - a  or r, % a ) .  

2. DISPERSION LAW OFSPIN WAVES 

As pointed out already in Sec. 1, we shall deal with 
systems that can be described by the usual Landau-Lifshitz 
law of Eq. ( 3 )  with an effective field given by Eq. ( 7 ) .  A unit 
vector along the direction of the magnetization can be repre- 
sented in the form. 

where m ( r )  is the static distribution of the magnetization 
discussed in the preceding section, whereas p ( r , t )  is the 
spin-wave variable. Equation ( 3 )  should be linearized with 
respect to p [but not with respect to m ( r ) :  we have to retain 
also the nonlinear terms of order not exceeding f ] .  The 
corresponding equations obtained after the Fourier trans- 
formation are 

where 

Here, p = p,  + ip,; p* = p,  - ip,; p ( k )  is the Fourier 
transform of the function p ( r )  modeling the inhomogene- 
ities; k* = k, + ik,; 0, is the angle between the vector k 
and thez axis, which is parallel to H,; J = agM,; w, = gH,; 
w, = 27~gM,. The function T ( k ,  q, , q, ) and the field h ," 
occurring in Q, are described by the following expressions: 

The structure of Eq. ( 16) reflects the various physical 
processes that occur in our system: the expression for Q, 
describes the scattering of a spin wave of frequency w with a 
wave vector k  directly by inhomogeneities of the modulus of 
the magnetization M ( r ) ,  whereas Q, allows for the interac- 
tion with the stochastic magnetic structure; finally, Q, de- 
scribes the scattering of a spin wave by static inhomogene- 
ities of the magnetostatic field H ," of the type 

To avoid misunderstanding, we recall that Hm contains only 
the fluctuating part of the magnetostatic field: ( H m )  = 0; its 
average value is included in H, , exactly as in Sec. 1. 

After averaging Eq. (16) and its complex conjugate in 
the same approximation as in Refs. 1-4, we obtain a system 
of equations for the average values ( p )  and ( p * ) .  It is ex- 
tremely cumbersome and we shall not give it here. For this 
reason we shall consider the simplest, but important in prac- 
tice, case of a wave traveling along a magnetic field H, in 
such a way that k, = k, = 0. The dispersion law for this case 
is 

where 

A ,  (q) =g-2q2+ v2+sin2 €4. 

The dimensionless parameters 6 and v were determined in 
Sec. 1 [see Eq. ( 1 3 )  1 ;  the other parameters are 
/Z = v 6 =  k H / k ,  andp = k / k , .  

The first two terms in the square brackets in Eq. ( 17) 
are due to inhomogeneities of the ground state of the investi- 
gated system and are not related directly to the scattering 
effects in the sense that they do not contain a resonant de- 
nominator A(q,p) and do not contribute to the damping; 
they represent renormalization of the energy in its "pure 
form." 

The third term describes the contribution made to 
modification of the dispersion law by the scattering pro- 
cesses involving a change in the polarization: waves with the 
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right-hand polarization were scattered into left-hand-polar- 
ized waves. Finally, the last term corresponds to intrinsic 
scattering processes which do not involve a change in the 
polarization. 

If the inequality { *% 1 is obeyed, we can distinguish a 
number of terms in Eq. ( 17) and they differ by factors gov- 
erning their order of magnitude. Firstly, this is the term 
-gf - 2 ,  which originates from the first term in L ,  . This 
would be the term describing the modification in the disper- 
sion law due to fluctuations of the modulus M in the absence 
of the magnetodipole interaction.' The second term in L,  
leads to, because of the logarithmic divergence of the corre- 
sponding integral in the limit f -  co, to the term 
-g{ - 2  1n f .  Finally, there are the terms - yZ and - f In f related to the remaining terms in L, and L, . The 
physical conclusion that follows from these estimates is that 
the magnetodipole interaction enhances considerably (by a 
factor of f 2, the contribution of fluctuations of the modulus 
of the magnetization M to the dispersion law of spin waves 
under the conditions of long correlations. An allowance for 
this effect is important in an experimental determination of 
the contributions made by various fluctuating parameters of 
a ferromagnet to the overall modification of the dispersion 
law. 

We shall begin an analysis of Eq. ( 17) with the case of a 
homogeneous oscillation characterized by k = 0. An esti- 
mate of the relevant integrals in the limiting case f )  1 yields 

where 

I,=4n g2 In qS ( q )  d l .  

The expression for the frequency w,, obtained allowing for 
the average demagnetizing field (H, ), can be written in the 
form 

where N,, is the corresponding demagnetization factor (it is 
assumed that the field H, is directed along the major axes of 
an ellipsoidal sample). 

It is clear from Eqs. ( 18) and ( 19) that inclusion of the 
magnetodipole interaction gives rise to a new (for systems 
with an inhomogeneous magnetization) effect in the form of 
a shift of the spin-wave gap compared with the homogeneous 
( y  = 0) case. The existence of this effect has been simply 
mentioned in connection with an inhomogeneity of the ani- 
sotropy  parameter^.^.^ 

An analysis of the dispersion law of Eq. ( 17) in the k #O 
case is difficult because of the cumbersome nature of the 
relevant expressions. Therefore, in order to obtain at least 
qualitative information on this law, we shall limit it only to 
terms - y2 and - 9 In {. Retention of both these terms does 
not represent excessive precision (because of the inequality 
In S ( {  when 5% 1) and it also makes it possible to follow 
changes in the nature of the dispersion law when the param- 
eters of the system are varied. 

FIG. 2. Possible types of modification of the dispersion curves of spin 
waves: a) simulation of an "exchange kink"; b ) ,  c )  "magnetization kink" 
(in accordance with the terminology adopted in Refs. 1, 3 ,4,  and 20). 

Depending on the external field H, and on the param- 
eters of the investigated material, we will observe one of the 
three types of dispersion curves shown in Fig. 2. These 
curves are plotted on the basis of an analysis of the asympto- 
tic behavior of Eq. ( 17) whenp < 1 andp ) 1, and the differ- 
ence between them is related to the difference between the 
relationships linking the angles of tilt of the immediate and 
distant asymptotes (the relative positions of the point of in- 
tersection of these asymptotes with the ordinate is always the 
same). A transition between these curves involves changes 
in Y and f and it occurs at those values of the two parameters 
that correspond to realistic experimental conditions. In 
fields 4rMO < H, gH, ,  apart from the region k- kc,  the 
modification of the dispersion law occurs also in the vicinity 
of the wave number k ,  (not shown in Fig. 2),  which is de- 
scribed by an expression of the type 

where Z is an effective parameter but its exact value is unim- 
portant. 

Moreover, a change in the dispersion law occurs in the 
wave vector range k% k,. Spin waves with k% k ,  play the 
dominant role in determination of the temperature depen- 
dence of the magnetization, so that we shall discuss the dis- 
persion law for this range of k in Sec. 4. 

3. INFLUENCE OF THE MAGNETODIPOLE INTERACTION ON 
THE DAMPING OF SPIN WAVES 

One of the mechanisms of the influence of the magneto- 
dipole interaction on the damping of spin waves, associated 
with the change in the nature of the unperturbed dispersion 
law, was investigated earlier3 for models with exchange and 
anisotropy fluctuations. The magnetodipole interaction 
gives rise to a wave vector k,  in the vicinity of which there is a 
change in the behavior of the damping: 

In this case the inclusion of the magnetodipole interaction 
has more drastic consequences because it alters not only the 
unperturbed dispersion law, but also the nature of the inter- 
action of a spin wave with inhomogeneities. 
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The expression for the damping factor can be written in k ,, . ] In the range of sufficiently large wave numbers k% k, 
the form the first term in L, begins to play the main role and this gives 

m"=-n"Ft (P) +Fz(p)], (21 ) rise to the same k law as in Ref. 1. 
In our numerical analysis we selected for the fluctu- 

where ations of M a correlation function of the type given by Eq. 
E" ( 14), where the parameter n was postulated to be zero. The 

Fi (p) = (pzf A') .f dx 
results of integration of Eq. (2 1 ) are presented in Figs. 3a-c, 

Q P ~ ( ~ P x - P ) x ( ~ - x ~ ) ~ ~ ( P - ~ )  where apart from the function w" (k)  we plotted also its de- 
X I [ (P-qI2Ai (P-q) Iql-qp 

rivative dwV/dk. We can see from Figs. 3a-c (when ki > kc 
in all cases) that the linear term in Eq. (22) (corresponding 

q, is found from the equation A (q, p) = 0: 

qP= { [ (hZ+p2) 2+'/,g4 sin4 eq] '"-h"i/2g2 sinZ 0,)'", 

where the limits of integration with respect to x = cos8, are 
selected in accordance with Ref. 3; L, and L, are defined in 
Eq. (17). 

Since the integrals in the expressions for F, and F, can- 
not be calculated rigorously, we shall draw some general 
conclusions on the nature of the function wl'(k) which we 
shall support later by a detailed numerical analysis. 

In the range of low values of k < min (k,, kc ) the behav- 
ior of the damping is governed by a term of the k 2n + type, 
where n represents the order of zero of the function S, (k)  
when k = 0 [for details of the use of the functions S (k )  with 
different values of n, see Ref. 171. On going through one of 
the characteristic points k, or kc [k  > min (k,, kc ) ] the 
function w" (k)  should be described by the expression 

or' (k) -cik+czk3. (22) 

[It should be mentioned, for the sake of accuracy, that if 
min(k,, kc ) = ki, then Eq. (22) must be multiplied by 

- 

to the wave-vector range kc < k < ki)  predominates over the 
cubic term and this is true in a wide range of values of the 
parameters of the system. This is illustrated clearly by a 
graph of the derivative dwW/dk, which in this range of wave 
vectors has a wide maximum that sometimes even becomes a 
plateau (Fig. 3a). 

This is of special interest in connection with recent ex- 
perimental investigations6" of Co-P and Co-Zr films which 
revealed a linear dependence of the width of a spin-wave 
resonance line on the mode number, in contrast to the k and 
k laws predicted in Refs. 1, 3, and 4 using models with 
exchange and magnetization fluctuations in the range 
k >  kc. 

Figure 3d shows, for the sake of comparison, a plot of 
w" (k)  in the limiting case when f ( 1, which corresponds to 
neglect of the magnetodipole interaction. 

We shall conclude this section by pointing out another 
factor. All the relationships given above describe an experi- 
mental situation when the dependence of the damping factor 
on k is determined in a constant magnetic field H,,. How- 
ever, similar measurements can be carried out also under 
different conditions when the frequency o of the resonant 
field is constant as is true, for example, of spin-wave reso- 
nance experiments. In describing this case it is necessary to 
modify all the expressions in the present section by replacing 

FIG. 3. Dependences o f  the damping of  spin waves on the 
wave vector calculated for different values o f  the parameter 6 
(continuous curves). The dashed curves give the derivatives 
dwv/dk; a )  6 = 2 . 0 ,  ki = 1.3k,; b) 6 = 5 . 0 ,  k, =2.5k,;  c )  
6 = 3 . 2 , k , = 1 . 9 k c ; d ) 6 = O . 1 .  
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the field parameter A with the expression f 2  - q2 corre- 
sponding to the unperturbed dispersion law where 
f = o/agM, k f . The graphs plotted in Fig. 3 apply precise- 
ly to this case, since our aim was to compare them with the 
experimental results of Refs. 6 and 7. 

4. INFLUENCE OF AN INHOMOGENEOUSGROUND STATE ON 
THE LOW-TEMPERATURE BEHAVIOR OF THE 
MAGNETIZATION OF AN AMORPHOUS FERROMAGNET 

One of the characteristic features of the thermodynam- 
ic properties of amorphous ferromagnets is the deviation of 
the low-temperature behavior of the magnetization from the 
temperature dependence given by the Bloch law T 3/2. Many 
experiments (see, for example, Refs. 8 and 9) have revealed 
a correction of the T5l2 type to the usual T3/2 Bloch law. 
Some of the mechanisms which can be responsible for this 
behavior had already been discussed in the cited papers. 

The results of the preceding sections in this paper sug- 
gest one further mechanism which could account for the 
term T5/2 in the temperature dependence of the magnetiza- 
tion. 

At temperatures such that the effects in question are 
observed the magnetization is dominated by spin waves with 
k 2 ) 4 ~ / a .  In this range the dispersion law is 

where DM is the variance of the stochastic structure, dis- 
cussed by us in Sec. 1, whereas w, is given by Eq. ( 19). We 
ignored here the field-dependent corrections to 0,. 

As expected, in this range of wave vectors all the effects 
associated with the magnetodipole interaction (with the ex- 
ception of a reduction in the value of M, caused by the 
MSMS) disappear. However, this effect is not the preroga- 
tive of the MSMS: the expressions ( 19) and (23) should be 
similar for a system with any type of a stochastic magnetic 
structure. (A similar effect in the ASMS case was ignored in 
Ref. 4.) We shall therefore use the expressions (19) and 
(23) without specifying the actual nature of the quantity 
DM. It will be important to us that DM depends on the exter- 
nal field H, . 

The dependence of the magnetization on the tempera- 
ture T of a sample is given by the expression2' 

where p (k)  is the magnetic moment of one magnon: 

However, we are speaking here of a disordered system 
and Eq. (24) contains ensemble- or volume-average values 
of the magnetization, but the validity of using such expres- 
sions must be justified. This can be done in two stages. In the 
first stage we can change in Eq. (24) from integration with 
respect to k to integration with respect to w and introduce 
the density of states g(w ), which is a self-averaging quanti- 
ty22 SO that in averaging of (24) we can take it outside the 
symbols denoting the averages. On the other hand, we can 
readily see that the average density of states is equal to the 
density ofstates of an effective homogeneous system with the 

dispersion law given by (23). In the second stage we must 
show that the average valuep, which must be substituted in 
Eq. (24), is identical with that determined in Eq. ( 2 5 ) ,  i.e., 
the average frequency of the natural fluctuations of the dis- 
ordered system is in agreement with the dispersion law ob- 
tained using our approach. This is readily checked by direct 
calculation of the natural frequency employing the Ray- 
leigh-Schrodinger perturbation theory: the necessary coin- 
cidence can be established in any order of perturbation theo- 
ry. Such calculations (up to the second order) had been 
reported in, for example, Ref. 23. 

It is clear from Eq. (25) that the existence of an SMS 
has two effects: the main one is the appearance of a depen- 
dence o fp  on the wave number k. Moreover, the term inde- 
pendent of k also becomes renormalized. 

The two terms in Eq. (25) correspond to two types of 
terms in 

The first term gives the usual Bloch law T3/2: 

where 

The second term gives 

The temperature T i n  Eqs. (27) and (28) is measured in 
energy units. 

Therefore, the term proportional to T5"2 appears in the 
present case as a consequence of a stochastic magnetic struc- 
ture because of the dependence of its variance on H,. We 
shall distinguish this mechanism of formation of the correc- 
tion to the Bloch law from others by comparing the magnet- 
ic-field dependences of the coefficients in front of the tem- 
perature factors in Eqs. (27) and (28). 

Equation (23) was obtained earlier by a different meth- 
od in Ref. 24 in order to account for the experimental re- 
s u l t ~ ~ ~  of an investigation of the dependence of the spin- 
wave rigidity 2 on H,. However, it should be pointed out 
that in an analysis of these experiments no allowance was 
made for renormalization of the quantity g in Eq. (25), 
which-generally speaking-alters the field dependence of 
the corresponding coefficient in Eq. (27). 

CONCLUSIONS 

An investigation was made of the model of a disordered 
ferromagnet with fluctuations of the modulus of the magne- 
tization M. It was found that an allowance for the magneto- 
dipole interaction was fundamental for the correct under- 
standing of the properties of this model. The results obtained 
demonstrated that the magnetodipole interaction can en- 
hance significantly (by a factor f = 4 ~ / a k  f ) the influence 
of fluctuations of Mon the ground state and on the spectrum 
of excitations of the investigated model (naturally, on condi- 
tion that 6% 1 which is satisfied in the case of systems with a 
long correlation radii). 
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An investigation was made of a stochastic magnetic 
structure due to the magnetodipole interaction (MSMS). It 
was found that the correlation characteristics of an MSMS 
differ significantly from the correlation characteristics of the 
stochastic magnetic structures investigated before. This 
makes it possible to distinguish an MSMS in electron-optic 
images of an SMS. A study was made of the law of approach 
of the magnetization to saturation and it was found that it 
differs considerably from the dependences (M,  ( H ,  ) ) typi- 
cal of other types of inhomogeneities. 

The main conclusion drawn from an analysis of the dis- 
persion law of spin waves in this model was that, depending 
on the parameters of the material and the conditions during 
observation, there may be three different types of the special 
curves, which is in contrast to the universal nature of a single 
curve obtained in Ref. 1 without allowance for the magneto- 
dipole interaction. This circumstance is important for the 
correct use of the method of spin-wave spectroscopy devel- 
oped in a number of reports, 1p3,4720 because the method relies 
greatly on the concept of a universal dispersion law typical of 
every fluctuating parameter of a system. In a detailed com- 
parison of the results obtained with the relevant experiments 
it will be necessary to carry out a more thorough numerical 
analysis of Eq. ( 17) of the experimental data. 

In addition to the nature of the dispersion curves, it 
would be of interest to study also the field-dependent shift of 
the spin-wave gap, which is also due to the magnetodipole 
interaction. An experimental detection and investigation of 
this effect would make it possible to determine independent- 
ly both the correlation radius rc and the rms deviation y, 
which would increase the reliability of resonance magnetic 
structure methods for the investigation of amorphous mate- 
rials (including the method of spin-wave spectroscopy). 

The special interest in the damping of spin waves is due 
to the reports of experimental results6,' which cannot be 
described by the existing theories. One of these results is a 
linear law w" cc k5n the range k > kc,  whereas the existing 
theories'~~ predict the laws k and k for models with fluctu- 
ations of the exchange and of the magnetization. This raises 
two problems: 1 ) what is the reason for the linear law? and 
2)  why the apparently stronger laws k and k are not mani- 
fested? An analysis presented in Sec. 3 makes it possible to 
suggest possible answers to these questions: 1 ) a randomly 
inhomogeneous magnetostatic field H, ( r )  is responsible 
for the linear term; 2) predominance of the linear term over 
the terms with higher power exponents is due to the effect of 
a gain 6. 

The last section suggests a new mechanism of the T 5 / 2  

correction to the Bloch law which is introduced to allow for 
the interaction of spin waves with an inhomogeneous ground 
state. A special feature of this mechanism is the existence of a 

quite definite relationship between the field dependences of 
the coefficients in front of T 3/2 and T "*, which follows from 
Eqs. (26)-(28). An experimental investigation of this rela- 
tionship would make it possible to distinguish the proposed 
mechanism from those discussed earlier. One should men- 
tion also that this feature is specific to disordered materials, 
which is not true of the earlier explanations of the origin of 
the T 5 / 2  law. 

"The law of approach of the magnetization to saturation had been used 
earlier to obtain information on an amorphous material by Kronmuller 
and his colleagues (see, for example, Ref. 5) ,  but the interpretation of 
this law was fundamentally different from that adopted in Ref. 11. 
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