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The first term of the power series in the time is found for the correlation function of two spins 
separated by a large distance for the case of an anisotropic Heisenberg paramagnet at high 
temperatures. 

An important role is played in the dynamics of spin points and can be expanded in converging series in positive 
systems at high temperatures by the temporal correlation powers of the time: 
functions 

- 
where S : ( t )  is the a t h  component (or the a t h  projection, t2"-2 (4)  

Gz (r, t) = z ~ ~ ~ ~ ( r )  
where a = x, y, z )  of the spin at site i (with radius vector r i )  n=m (2n-2) ! ' 
in the Heisenberg representation, and r = r i  - r,. The corre- 
lation function has been calculated through the solution of If r is large, and for a nearest-neighbor interaction, the two 
an integral equation in Refs. 1-5 and many other places. series in (4)  begin with terms with a high power that can be 
After Laplace transforms are taken, and a switch is made to expressed in terms of the number of steps (links) in the 
reciprocal-lattice vectors k, the solution can be written in the shortest path which goes through nearest neighbors from 
form site ri to site r, = ri + r: 

wherep is the transformation parameter and G, (k,p) is the 
kernel of the equation (it is also called the "memory func- 
tion" or "mass operator"). The numerous studies which 
have been carried out differ primarily in the approximate 
method used to find this kernel. In Refs. 1-5, the thrust of 
the effort was on calculating the spectra of correlation func- 
tions and their behavior after a fairly long time. 

Kolokolov6 has recently pointed out another interest- 
ing limit for functions ( 1): the short-duration limit, i.e., 
t-0, r-+ CC. The result which Kolokolov found for T, (k,t) 
was derived by a functional-integration method for spin sys- 
tems without the use of general expression (2) .  In the pres- 
ent paper we find correlation function ( 1 ) in this limit by 
working from (2) .  This method is considerably simpler than 
that proposed in Ref. 6 and is easy to check. In particular, it 
can be checked against the known exact result for a one- 
dimensional XY chain.7 This ability to check the results is 
not a minor matter, in view of the discrepancies among the 
results. 

We thus consider a system of spins at the sites of a cubic 
lattice with an anisotropic Heisenberg Hamiltonian 

where Y$ = 7" is an exchange integral. This integral is 
zero except in the case of nearest neighbors. We then calcu- 
late correlation functions ( 1 ) as t -+ 0. (In the calculations 
below, we will write the specific equations for the z projec- 
tion, since the equations for the two other projections can be 
found easily through a cyclic interchange of projection in- 
dices.) We know8t9 that there exists a certain neighborhood 
of the point t = 0 in which functions ( 1 ) have no singular 

Here r,, r,, r, are the projections of the vector r onto the 
principal axes of the cubic lattice and expressed in units of 
the lattice constant. On a cubic lattice, there are N ,  such 
paths: 

Since we are interested in the limit t - 0, we will retain in 
(4)  only the first terms of the series, which have the lowest 
powers of the time for the given r and which correspond to 
the shortest paths. The relationship between the coefficients 
of the two series in (4)  is easily established with the help of 
(2):  

M2; (r) =G2; (r) + z GA, (11) ~ ; ( r n - r n , )  (r-1%) . . 

+ G ( 1  G ( 1 )  . . G - 1 - 1 -  . . . - - I  ( 6 )  

The shortest path to the point r is broken up into two regions 
in the second term in (6) .  These two regions are 1, and 
r - 1,. In the third term, the shortest path is broken up into 
three regions: li, l,, r - 1, - 1, (etc. ). A summation is car- 
ried out over all possible positions of the vectors l , ,  l,, ..., 
lm-1. 

We turn now to the calculation of the coefficients in 
( 6 ) .  The equation of motion of the spins is taken in tensor 
form: 

d - S ,  ( t ) = i j  (t) si (t) =z hca( t )~as i  (t) 
dt 

a 

where 2" is a unit axial tensor, and 

hia (t) =2 z 7 i j a ~ j "  (t) 
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and is the a-th projection of the local magnetic field created 
by the surroundings at site i. An advantage of writing the 
equation of motion in this way is that this equation is the 
same in form for both ordinary vectors S, and vector opera- 
tors in the quantum-mechanical case. Solving Eq. (7 )  by an 
iterative method, we find the series 

1 1 1 ,  

In terms of local fields, the correlation function I', (r,t) in 
( 1 ) determines the contribution of the field from spin j to the 
resultant flip of spin i (and vice versa). The simplest correla- 
tion, with m = 1, is formed between nearest neighbors. Se- 
ries (4) for this correlation function begins with a quadratic 
term. To find it, we substitute the second term of (9) into 
( 1 ). In expression ( 8 )  for the field, we again adopt as S;(t) 
the second term of the corresponding iterative series, in 
which it is sufficient to retain only the field from spin i in the 
original orientation. For clarity, we diagram this procedure: 

When the trace is taken, nonvanishing results come from the 
squared projections (s:)' and (S;l2, the formation of 
which is indicated by the upper bracket in this diagram. We 
thus find 

I', (r, t )  =4 / I ,S (S+1)Y i~3 i j y tZ+ O ( t 7 .  ( 1 1 )  

For the correlation function of spin i with the next-near- 
est neighbor, the first term in series (4) has a fourth power of 
the time. The corresponding coefficient [m = 2 in (6) ] is 
the sum of two parts. The second of the two is the product of 
two of the nearest-neighbor coefficients found above, while 
the first is new. To single it out, we write the time depen- 
dence of the fields in diagram form: 

Guided by ( 121, we find for paths i+q+j: the following 
expression for the first part: 

I? 
2["/ ,S(S+I) l23i,"Yi,'YqjXr ?' -. ,' 4! (13)  

!f theAarrows pointing up and down on the product 
h, (t, )h, (t, ) in ( 12) are interchanged, i.e., if the contribu- 
tion of spin i is singled out from I?, (t, ), and that of spin j 
from I?, (t, ), we find two diagrams of the type in (10) con- 
nected in series. The contribution from that process is repre- 
sented by the second part of (6). Taking the higher-order 
terms of iterative series (9 ), we can also construct other dia- 
g r a m ~ , ' ~  but for given values of i and j they lead to higher 
powers of the time, so we will ignore them. 

An expression for G ; ( r )  can be found by dividing ( 13) 

by t ,/4! This coefficient stands in front of different powers of 
the time in the two series in (4). This result is not surprising, 
since the correlation function in the integral equation is ex- 
pressed in terms of a double integral of the memory function. 
When we find the latter from diagrams ( lo), ( 12), etc., we 
will thus not carry out an integration over the outermost 
time variables. A 

Replacing hj (t, )Sj on the last line of diagram ( 12) by 
the next term of the iterative series, hj ( t ,  )& (t, )Sj, we can 
tack on another stage; i.e., we can derive an expression for 
G', (r,t) for a correlation which is conveyed from i to j 
through two intermediate spins in succession. This proce- 
dure can be continued by adding on yet other new stages. At 
first glance this method looks complicated, but it actually is 
not. In the first place, the structure of the original coeffi- 
cients in ( 6 )  is such that one can separate the spin and lattice 
variables. Specifically, we can choose one of the shortest 
paths which leads from i toj, evaluate the coefficient which is 
determined by the interaction [see ( 3 )  ] of the spins at the 
sites of this path, move on to another path, and sum the 
results. Under these conditions the result for an individual 
path, 

ztzm-z 
Zm Gz,' ( t )  = 

(2m-2) ! ' 
depends on only the number of steps (m ), not on the position 
in the lattice. 

The procedure outlined above for calculating z;, (t) 
takes a particularly simple form when we represent it by a 
time diagram in accordance with the following rules.'0911 
We depict the spins participating in the interaction by lines, 
and the interaction itself (a  flip of one of the spins in the field 
of its neighbor) by a vertex, i.e., by a point at which lines 
intersect. We depict a given projection of a spin at a site in the 
following way: x by a solid line, y by a dashed line, and z by a 
dotted line. We depict by 0 a vertex corresponding to 
YX[+S(S + 1 )  ] I", and by a vertex corresponding to 
YY [+S(S + 1 ) ] At the 2m vertices of each diagram we 
place the time variables to ( = t), t,, t, ,..., t,, -,, t,, _ ,  
( = 0) from left to right. Over these variables (except the 
outermost) we carry out an integration between limits set by 
the neighboring vertices on the same line. On the diagrams, 
the outermost lines correspond to the spins in the initial and 
final sites ( i  and j) , while the sequence of interior lines corre- 
sponds to the sequence of spins at the intermediate sites on 
the selected path. For example, the two terms in ( 10) which 
contribute to ( 1 1  ) are represented in the same way by the 
diagram: 

The two terms in (12) and (13), on the other hand, are 
represented by the two diagrams 

which, although differing in the form of their projections, 
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are given by identical explicit expressions. In the general 
case of a correlation which is conveyed along a chain of m 
units, c&,, ( t )  is represented, as in ( 14) and ( 15), by the sum 
of two diagrams which convert into each other after the x 
lines and x vertices are interchanged with they lines and the 
y vertices, respectively. Here is one of them for odd values of 
m: 

For even values of m we should replace the x projections by y 
projections, and vice versa, in the second half of diagram 
( 16) [beyond the ellipsis ( ... ) 1. Explicit expressions, identi- 
cal for the two diagrams, can easily be found from (16) in 
accordance with the rules formulated above. Combining 
these expressions, we find 

C,,Z ( t )  =gm 5 dt. j dt, . . . 1 dl,.-2, (17) 

where the integration limits are chosen in accordance with 
the rules, and g = 4/3S(S + 1 ) Y x Y y .  

A direct integration in ( 17) becomes complicated at 
large values of m, so we will take a different approach. From 
these functions we form the series 

rn 

which is a series in the number of shortest-path steps. We 
denote by G(t,t, ) the sum of the series without its first term 
before the integration over the third vertex [we have in mind 
the diagram representation of its terms in (14)-( 16) 1. We 
obviously have 

t 

~ ( t )  =g + G ( t ,  t,)dt2. 

Using the diagram form of series ( 18), we see that the fol- 
lowing equation holds for the function G(t,t2 ): 

Alternatively, in explicit form, we have 
t f 2  

Strictly speaking, we would have to introduce two functions 
G(t,t, ), which differ in the positions of the x and y projec- 
tions; we would have to sum the first diagrams and the sec- 
ond diagrams in (14)-(16) separately. However, since the 
series are equal in the limit under consideration here, we can 
treat them as if they were the same. Writing the function 
G( t , t , )  as a series in powers of the time variables, and find- 
ing the coefficients of this series from Eq. (21), we obtain 

ce 

(tt ')" 
G ( t ,  t t )=  ( t - t l )  x g n + z  

n=O n! (n+ I )  ! 

tzn 
G ( t )  = z gn+' - - gI. (2tg") 

",=a n! (ni-1) ! t 7  

where I, ( t )  is the Bessel function of imaginary argument of 
index one. Finally, comparing ( 18) with (23), we find 

Once the coefficients c;, ( r )  have been found on the 
same shortest path, we can find all the coefficients for the 
correlation functions Fz (r,t) from ( 6 ) ,  by substituting (24) 
into the latter and carrying out the summation. The result is 
found most easily by substituting 2G(t) (after Laplace 
transforms are taken) into (2)  and taking the coefficient of 
the appropriate power of the time in the expression which 
results. In this manner we obtain for Fz (r,t) as t-0 

The result in (25) does not depend on whether there is an 
interaction with spins which are not on the selected path or 
between z projections of the spins. Consequently, this result 
can be extended to one-dimensional chains with an XY inter- 
action (7 = O), for which an exact solution is known.' 
With 7" = Yy = Y and S = f, this solution can be ex- 
pressed as the square of a Bessel function of index m: 

r, ( m ,  t )  = [ Y m ( 2 3 t ) ]  =. (26) 

The first term of a power series of this function in the time is 
the same as (25). 

Finally, we turn to the correlation function T, (r,t) 
which we have been seeking. To find it we should sum the 
contributions in (25) from all the shortest paths which lead 
from i to j; i.e., we should multiply (25) by the combina- 
tional factor in (5) .  As a result we find the expression 

I', (r, t )  =tZm r 1 3 S ( S + l ) Y T ~ ] m  (m!r,!r,lr,!)-'4- O ( t Z m f 2 ) .  

(27) 
Expression (27) is valid at any value of r. For spins 

which are far apart, the dependence on the distance between 
them ( r  = ( r /  ) can be singled out explicitly in (27) by apply- 
ing Stirling's formula and replacing xn by exp(n In x ) .  In 
particular, when sites i and j are on a [ 11 1 ] diagonal, i.e., at 
r, = ry = r, = r/3'12, m = r3'12, we find 

3 "r 
x exp { -r3'I2 l n  k2s(s+i) 1sx.T"it;}' (28) 

When the sites are arranged along crystallographic axes 
(m = r )  we find 

According to the expressions which have been derived, 
the correlation function has an exponential dependence on From ( 19) we then find 
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the distance; the argument of the exponential function and 
the coefficient in front of it are both spatially anisotropic. 
Another property of the correlation function is that it is posi- 
tive in the case YxYy > 0, while in the case YXYy < 0 it 
changes sign as we go from site to site. 

We see a different picture when we look at the long- 
range interaction. In this case, any site can be reached in a 
single step, so the series in (4)  begin with the quadratic term 
in ( 11 ); this is the term which determines the distance de- 
pendence of I', (r,t) in the limit t -. 0 under consideration 
here. For a dipole-dipole interaction, for example, we would 
have I', (r,t) - r - 6 .  

We are left with the question of the role played, with 
increasing time, by the discarded terms of series (4).  Here 
we must consider (first) a possible lengthening of the path 
along which the correlation propagates to the given point 
and (second) the interactions with the spins surrounding 
the trajectory. We know from the theory of a random walk 
on a lattice that the number of paths which contain r, +pa  
steps to one side andp, steps to the opposite side along each 
direction is 

An increase in this factor makes random walks with maxi- 
mally choppy trajectories preferable. In our case of the cor- 
relation functions Fa (r,t), the result of a lengthening of the 
path can be estimated from the expression given above for a 
shortest path of m steps, by setting 

and by multiplying (25 ) by (30). The large factor ( m ! )  in 
the denominator limits the growth of (30) with increasing 
path length and makes the shortest paths preferable even for 
finite times. Under the new conditions, however, we can no 
longer ignore the interactions between (on the one hand) the 
spins of the main chain, i.e., those at the sites of the shortest 
path, and (on the other) the surroundings. The random lo- 
cal fields from the spins of the surroundings are superim- 
posed on the fields exerted by the spins of the main chain on 

each other, and they disrupt the correlation among the latter 
spins. On a qualitative level, an increase in the time can be 
dealt with by multiplying the initial terms of time series (27) 
by some decreasing functions of the time. 

In conclusion we wish to stress that we have found an 
exact expression for the first nonvanishing coefficient of the 
power-series expansion of the correlation function r, ( r , t )  
in the time. The power can be arbitrarily high for spins which 
are far apart. It is important to know these coefficients for 
testing calculations of correlation functions and also for 
choosing values of the adjustable parameters when these co- 
efficients are given approximately. In Ref. 12 the coefficients 
of these series were calculated only up to terms of the eighth 
power. The results were the same under identical conditions. 
Finally, Kolokolov6 calculated the correlation functions for 
spins which are far apart, as we mentioned in the first part of 
this paper. The result which he found in the limit t-0 is 
entirely different. In the first place, it leads to the conclusion 
that the functions are not analytic at t = 0, in contradiction 
of known theorems.829 Second, it differs from (25)-(29) in 
that it has an oscillatory behavior as a function of the dis- 
tance in the isotropic case. In addition to the final result, 
found in the continuum limit, we would question expression 
(3.9) of Ref. 6, for a basic functional in the site representa- 
tion. We have not been able to derive a power series in the 
time from that expression, despite assurances from the au- 
thor. 
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