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We study a class of systems in which chaos is connected with the non-conservation of the 
adiabatic invariant when one passes through a separatrix, using as example the problem of the 
motion of a charged particle moving at an angle to the magnetic field in the field of a wave packet. 
We give a method for the approximate description of the dynamics in such systems. A 
distinguishing feature of the dynamics is that in the adiabatic limit the measure of the region of 
chaotic motion remains finite. Transport processes in large volumes of phase space therefore turn 
out to be connected with adiabatic chaos. We show in this paper that in a well defined range of 
parameters the transport has the nature of Levi flights and is anomalous. 

1. INTRODUCTION 

Recently there has been considerable interest in the 
study of transport processes arising as the result of dynamic 
chaos.I4 This interest is connected with both fundamental 
problems of statistical physics and with the manifold appli- 
cations in plasma physics (stochastic particle acceleration 
and heating of charged particles) and hydrodynamics (sto- 
chastic advection) . 

Relatively recently the kind of systems in which the 
production of chaos is connected with multiple changes in 
the nature of the motion when the parameters of the system 
are changed slowly has been the object of investigations. 
These are Hamiltonian systems with one degree of freedom 
and a slow time-dependence or (the case which is considered 
below) systems with two degrees of freedom where the vari- 
ables corresponding to one of the degrees of freedom change 
rapidly and those of the other degree change slowly. 

In the phase plane of the fast variables there are separa- 
trices for fixed values of the slow variables. The drift of the 
slow variables induces the phase points to cross these separa- 
trices. The motion far from the separatrices has an adiabatic 
invariant-an approximate integral the value of which along 
the trajectory undergoes only small, of order E,  oscillations 
where the small parameter E characterizes the ratio of the 
rates of change of the slow and the fast variables. When one 
passes through a separatrix the adiabatic invariant under- 
goes a small change of order E In E or, in some problems, of 
order E.'-' It is important that this change depends strongly 
on the initial conditions and is therefore random in the sense 
of the theory of dynamic chaos. The summation of such ran- 
dom changes in the adiabatic invariant when one passes 
many times through a separatrix leads to a diffusion of the 
adiabatic invariant and the occurrence of a unique form of 
chaos which is called slow or adiabatic chaos.' 

An important feature of adiabatic chaos is that in the 
adiabatic limit, as E-0, the measure of the region of chaotic 
motion nevertheless stays finite ( - 1 ) and not small, as, for 
instance, in problems with overlapping resonances.' Indeed, 
as E + 0, the chaos region is approximately the same on each 
energy level surface of the system as the region (of measure - 1 ) of phase space in which the motion with conservation 
of the adiabatic invariant leads to a transition through a se- 
paratrix. It therefore turns out that there are transport pro- 
cesses connected with adiabatic chaos in large phase space 
volumes. Because of the fractal nature of the chaos region, 

the statistical properties of the motion are very complicated 
and it was established in many numerical experiments that 
they are, first of all, characterized by long-time correla- 
tions."'," In multi-dimensional Hamiltonian systems the 
presence of such correlations can lead to anomalous particle 
transport. 

We study in the present paper adiabatic chaos and the 
transport connected with it in a model problem about the 
motion of a charged particle in a magnetic field and the field 
of a wavepacket which propagates at an angle to the magnet- 
ic field." Under cyclotron resonance conditions and in a 
well defined range of parameters this problem is described 
by a Hamiltonian system with two degrees of freedom, one of 
which corresponds to a fast motion and the other one to a 
slow motion. The dynamics of the slow variables is in the 
adiabatic approximation described by the average of the ini- 
tial system over the fast motion. We show that these dynam- 
ics lead to multiple crossings of the separatrix of the fast 
motion and, hence, to the occurrence of adiabatic chaos. We 
obtain estimates for the diffusion rate of the adiabatic invar- 
iant and study the reconstruction of the diffusion region 
when the particle energy changes. We consider the anoma- 
lously fast transport process which appears due to the effect 
of the chaos-order boundary. 

The acceleration of the diffusion-rate is caused by the 
existence of Levi flights in the phase plane of the fast vari- 
ables. Random walks accompanying Levi flights were ob- 
served in Ref. 12 for the problem considered in what follows, 
of the motion of a charged particle in a magnetic field and in 
the field of a wavepacket. It was shown in Ref. 13 that such 
anomalous processes, connected with the multifractal na- 
ture of the dynamics of a nonintegrable system, are to a larg- 
er or lesser degree present in the majority of dynamic sys- 
tems with chaos. In what follows we describe the mechanism 
of the onset of Levi flights: flights in the phase plane of the 
fast motion are caused by the "sticking" ofa particlein a well 
defined region in the phase plane of the slow variable with a 
small measure. In that region there is no crossing of the se- 
paratrix, but the adiabatic tori are disrupted. For some val- 
ues of the energy we determined numerically the way the 
probability P for the flight of a particle depends on its length 
I, and it turns out to be a power-law dependence: 
P ( i )  cc I ' " with an index a < 1 .  The anomalous transport 
obeys a free flight law, i.e., the mean square particle displace- 
ment increases proportional to the square rather than to the 
first power of the time, as occurs for normal diffusion. 
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2. RESONANCE HAMlLTONlAN OF A CHARGED PARTICLE IN 
THE FIELD OF A WAVEPACKET, PROPAGATING ALMOST 
TRANSVERSELY TO A MAGNETIC FIELD 

The Hamiltonian of a charged particle of mass m and 
charge e in an electromagnetic field has the form 

where P = p + (e/c)A is the generalized particle momen- 
tum and A and g, are, respectively, the vector and scalar 
potentials of the electromagnetic field. We choose the poten- 
tials in such a way that the constant magnetic field be direct- 
ed along the Z axis and the nonstationary electric field lie in 
the XZ plane, i.e., 

where B, is the magnetic field strength. 
Because the Hamiltonian ( 1) is independent of the Y 

coordinate there is an additional integral of motion in the 
system-the generalized momentum component P, is con- 
served. Thanks to this one can eliminate one degree of free- 
dom and the Hamiltonian of the problem, 

11x2 pz2 m 
H = -- + - + - wo2X2+ecp (X, 2, t )  , 

2m 2m 2 

where wo = eBo /mc is the cyclotron frequency, corresponds 
to a dynamical system with 24 degrees of freedom (the half 
degree of freedom is added because the potential e, is nonsta- 
tionary). We now specify Eq. (3)  choosing the potential of 
the electric field in the form of a wavepacket: 

= -q0T cos (kxX+k,Z) z 6 ( t -nT)  , (4)  

where T = 2n-/Am is a characteristic time interval between 
the pulses of the &function and k, and k, are components of 
the wavevector, while we have assumed uniformity and a 
sufficiently large spectral width for the wavepacket, as in 
Ref. 12. A detailed discussion of these assumptions was giv- 
en in Ref. 14. If the characteristic frequency of the wave- 
packet is a multiple of the cyclotron frequency, 

after the time for one rotation of the particle in the magnetic 
field it undergoes exactly q "impacts" from the field of the 
waves. We can then in the Hamiltonian ( 3 )  split off the reso- 
nance terms under the condition that the cyclotron rotation 

is a high-frequency one and the motion of the particle along 
the magnetic field is close to being in resonance with the 
cyclotron frequency 

where v, = pZ/m is the particle velocity along the magnetic 
field. In the general case when q > 2 the resonance Hamilto- 
nian (3)  corresponds to a nonintegrable Hamiltonian sys- 
tem with dynamics which in many respects are determined 
by the angle at which the wavepacket propagates. 

In the simplest case (q = 4)  the resonance Hamiltonian 
A? has the following form:I2 

%=1/2~2P2- (sin v sin z-sin u cos z) , (7)  

where P, z, and u, u are dimensionless canonically conjugate 
momenta and coordinates: 

with the dimensionless time r = R2t /2w, 
[ (0 = (eg,,k :/m) "* is the frequency of the small oscilla- 
tions in the wavepacket field], E = 2"2k,w,/k,R is a pa- 
rameter which depends on the angle of the wavepacket prop- 
agation. In what follows we shall be interested in the case of 
almost perpendicular propagation of the wavepacket with 
respect to the magnetic field, i.e., we shall assume the param- 
eter E to be small. When E = 0 the Hamiltonian (7 )  describes 
the dynamics of a particle with one degree of freedom. In- 
cluding the longitudinal component of the field ( E  # 0 )  adds 
a second degree of freedom and makes the problem noninte- 
grable. When E <  1 the variables u, u are fast and p, z slow 
(p  = EP) . 

We call the system in the variables u, u with the Hamil- 
tonian (7)  withp, z = const the fast one. The phase portraits 
of the fast system on the uv plane are shown in Fig. 1 for 
ze[O,n-/4), z = n-/4, and z ~ ( n - / 4 , ~ / 2 ] .  When z increases 
further, the portraits repeat. The separatrices occurring in 
the portraits separate the phase plane into regions of oscilla- 
tions and rotations, i.e., trapped and free particles, respec- 
tively. For z = n-/4 + n-n/2 (n = 0, f 1, + 2 ,...; in what fol- 
lows the values of z will be defined up to terms n-n/2) the 
separatrices form a square lattice and for z = n-/2 they de- 
generate into straight lines. 

3. DRIFT OF THE SLOW VARIABLES IN THE ADIABATIC 
APPROXIMATION 

Slow changes in z lead by virtue of the equ&ions of mo- 
tion to pulsations of the separatrices of the fast system with 

FIG. 1.  Phase portraits in the fast motion uu plane; a: 
O<z<?r/4; b : z =  ?r/4;c: ?r/4<z<n/2. 
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time. When the particle moves it may therefore cross the 
separatrix net in both directions and as a result spend part of 
the time in rotational and part of the time in oscillatory re- 
gions. 

To describe the drift of the slow variables z, p we use the 
adiabatic approximation. To do this we determine in each of 
the regions into which the separatrices of the fast system 
divide the phase space the function I = I ( z , p ,Z ) ,  the adia- 
batic invariant,' as follows: in the oscillatory regions of the 
fast system I ( z ,p ,Z )  is the same as half the action integral of 
the 2? = h trajectory of the fast system, i.e., 

In the rotational regions I is equal to the action on the 
SY = h trajectory ofthe fast system. For such adefinition I i s  
continuous on the separatrices. The equations for the evalu- 
ation of the adiabatic invariants I,, of trapped and I, of free 
particles have the following form: 

2 
I t r  (z, p, h )  = -- 

z (sin z cos z) '" 

j dy  K ( [  (sin z+cos 2)'-y2 

I ~ - ~ ~ I Z '  4 sin z cos z 

I f r  (2, p, h)=Z,,(z, p, h= '12p2 i  (sin z - cos z) ) 
lsin I - ,  oa ii 

2 4 sin z cos z ] ") 

X 
1 

[ (sin Z+COS Z) '- y2) ] Ih ' ( 9 )  

where K(K) is the complete elliptic integral of the first kind, 
~€(0,%-/2). 

For motion far from the separatrices, I undergoes along 
an actual trajectory only small oscillations, of order E.~-'  In 
the adiabatic approximation the value of I is assumed to be 
constant along a trajectory and the change in z and p is de- 
scribed by the Hamiltonian system: 

where the Hamiltonian A? is expressed in terms of z, p and I 
(this system is obtained by averaging the differential equa- 
tions for z,p over the fast motion). As A? is an integral of the 
motion the I(z,p,h) = const level lines determine the trajec- 
tories of the particle motion in the zp plane. The set of such 
level lines is for a given value of X = h called the phase 
portrait of the slow motion. Two possible kinds of such por- 
traits are shown in Fig. 2 It is clear from the figure that the 
values z = n/4 and z = n-/2 correspond to equilibrium posi- 
tions. One can study their stability analytically but the por- 
traits shown suffice to describe qualitatively the dynamics of 
the system. 

Each point in the zp plane corresponds to a whole set of 
trajectories of the fast system, given by the equation X = h.  
The set of points z, p corresponding to separatrices is called 
in Ref. 15 the indeterminacy curve. The indeterminacy 
curves are in Fig. 2 indicated by the heavy lines. These 
curves are periodic with a period n/2 and are for 0 < z < n/2 
given by the equation 

i/2pzf (sin z-cos z)  =h, (1  1) 

which mean that along an indeterminacy curve the value of 
the Hamiltonian in one of the saddle points coincides with h. 
The indeterminacy curve separates in the zp plane points 
which correspond to different kinds of motion of the fast 
system: rotational and oscillatory motions. 

We now consider in detail the connection between the 
phase portraits in Fig. 2 and the motion in the uu phase 
plane. The motions of free particles in the phase plane of the 
fast motion correspond in Fig. 2a to four amygdaloidal sec- 
tors, bounded by the indeterminacy curves. For the sectors 
with centers at z = 0 and z = n- the free motion is infinite in 
the u coordinate (as in Fig. l a )  and for the sectors with 
centers at z = n-/2 and z = 3n/2 the motion is infinite in the 
u direction (as in Fig. lb) .  The points positioned outside 
these sectors correspond to the finite motion of trapped par- 
ticles in the uu phase plane. 

There are three different kinds of trajectories in Fig. 2a. 
Trajectories which do not intersect the indeterminacy 
curves belong to the first kind. They correspond to particles 
which do not change the nature of their motion, i.e., they are 
all the time trapped or all the time free. 

The second type are trajectories intersecting (in four 
points) only a single indeterminacy curve. On this kind of 
trajectory a particle which initially is free, for instance, be- 
comes trapped after its trajectory crosses the indeterminacy 
curve and it either retains its initial direction or changes it to 
the opposite one after the next crossing of this curve (see Fig. 
3a). These two variants of its motion are equally probable 
due to the symmetry of the problem (the probability arises 
here because the initial conditions corresponding to a con- 
servation or a change in the direction of the motion are inter- 
changeable when E - 0; a probability approach to such prob- 
lems was proposed in Ref. 16). The motion in the plane of 
the fast uv variables has the form of random walks along a 
straight line parallel either to the u axis or to the v axis. The 
step of the walk (its magnitude is -6) is to a first approxi- 
mation constant and equal to the distance over which the 
particle is displaced in the interval between two captures. 

To the third type belong trajectories which cross all in- 
determinacy curves. Such trajectories, after the particle is 
trapped in a cell in the uv plane and subsequently has left it, 
change the direction of their motion with equal probabilities 
by -1- 7 ~ / 2 .  Since by virtue of the conservation of the adiaba- 
tic invariant the step of the walk is constant to a first approxi- 
mation and is the same for different directions, the motion in 
the plane of the fast variables has the form of random walks 
over a square lattice (Fig. 3b). 

It will be shown in what follows that multiple crossings 
of the separatrix lead to a diffusion of the adiabatic invariant 
and therefore the time during which the particle is in a re- 
gime of the second or the third kind of motion is proportion- 
al to the area corresponding to each kind in the phase por- 
trait of the slow motion. The first kind of trajectories, which 
do not cross the indeterminacy curves, always conserve the 
adiabatic invariant" and are in the whole phase space for 
most initial conditions wrapped on the invariant tori. 

4. DIFFUSION OF THE ADIABATIC INVARIANT 

In actual fact, the adiabatic invariant is conserved only 
for motion far from the separatrix. On the separatrices the 
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FIG. 3. Projections of two trajectories corresponding to different kinds of 
motion in the fast variables uv plane. 

FIG. 2. Phase portraits of the slow motion in the zp 
plane; a: h = - 0.83; b: h = 0.88. 

frequency of the fast motion becomes zero and the adiabatic 
invariant I has a singularity as function of the energy. The 
vicinity of the separatrices is a zone of nonadiabaticity and 
when one passes through this vicinity the value of Ichanges. 

The problem of the magnitude of the change in the adia- 
batic invariant when one passes through a separatrix has 
been considered in a number of papers.'-' This change 
turned out to depend strongly on the initial conditions, i.e., 
to be random in the sense of dynamic chaos theory. This 
small change, of order E (for the present problem), must be 
separated from the oscillations of the same order in E which 
the adiabatic invariant executes far from the separatrix. To 
do this we introduce an improved adiabatic invariant 

J=I+&G(u, v, z,  p),  

which for motion far from the separatrix undergoes only 
oscillations of order E*. Here G is a smooth function of its 
arguments and its average value on a trajectory of the fast 
motion is equal to zero. A formula for G is given in Ref. 8. 
When one passes through the vicinity of the separatrices J 
undergoes a change AJof order E.  The general formula from 
Ref. 8 gives to first approximation 

pa dS AJ = -E  ----ln(2 sin nE). 
4n Bz (12) 

Here a = ( - Y )  - where Y is the determinant of the ma- 
trix of the second derivatives of the Hamiltonian 2? of the 
fast system in the saddle point; S = S(z)  is the area of the 
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FIG. 4. In the zp plane the positions of the particle trajectories 
over various time intervals are drawn for h = - 0.83 in the 
phase portrait of the slow motion. 

oscillatory region in the phase portrait of the fast system; is 
a random quantity uniformly distributed in the interval 
(0,l);  the values ofp, a, and dS/dz are evaluated at the mo- 
ment of passing through the separatrix (one assumes that 
z# 77/4). The calculations give 

8 I cos z I '" + I sin z I '" 
(13) 

The summation of the quantities AJ for multiple pas- 
sages through the separatrix leads to a diffusion of J and, 
hence, to a diffusion of I (since far from the separatrices I 
and J differ only by an amount of order E )  and a violation of 
the adiabatic approximation. The projection of the phase 
point of the total system on the slow variables plane far from 
the indeterminacy curve oscillates close to the I = const lev- 
el line (see Fig. 2) and when one crosses the vicinity of the 
indeterminacy curve it is displaced along that curve by a 
small random distance in agreement with Eq. (12) and 
starts to oscillate close to another I = const level line. After 
1/.c2 passages through the indeterminacy curve, i.e., after a 
time - the value of Ialong the trajectory is changed by 

an amount of order 1 and a pattern of chaos emerges which is 
called slow or adiabatic chaos. In particular, after a time - 1/c3 the two regimes of random walk in the fast variables 
plane become mixed up with one another: along a straight 
line or along a square lattice (see Fig. 3). 

Figure 4 demonstrates the process described above. 
Here we have drawn, in the phase portrait of Fig. 2a, the 
positions of the particle at equal time intervals and the time 
of the recording was chosen sufficiently large (everywhere 
in the examples E' = 0.00025 ). During that time only those 
regions occupied by the I = const lines which do not cross 
the indeterminacy curves remain not covered by trajectories. 
As one expected, the representative point covered the space 
rather uniformly. This enables us to state that multiple pas- 
sages through a separatrix lead to a loss of memory about the 
initial conditions. In the regions unoccupied by trajectories 
the quantity I is conserved and the motion is regular (for 
most initial conditions) according to Arnol'd's theorem 
about the continuing conservation of the adiabatic invar- 
iant.'' The dimensions of the stability region are determined 
by the relative position of the I = const lines and the indeter- 
minacy curves. 

I t  is interesting to note that we here encounter a new 
kind of bifurcations, connected with the relative arrange- 

FIG. 5. Bifurcations arising due to a change in the 
relative positions of the1 = const lines and the indeter- 
minacy curves. 
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ment of the separatrices of the slow motion and the indeter- 
minacy curves (see, e.g., Fig. 5) .  On the fragment a the se- 
paratrix does not intersect the indeterminacy curve and 
there exists then on the portrait only one regular motion 
region. It is not shaded in the figure. On the fragment b the 
separatrix intersects the indeterminacy curve and there are 
now two different regular motion regions in the system. 

5. PARTICLE DIFFUSION IN THE FAST-MOTION PLANE 

We discuss in more detail the random walk of particles 
in the uv fast-motion plane. It was shown above that a typical 
picture of the motion with unstable trajectories consists in 
bounded oscillations with an amplitude of the order of the 
size of the cell and flights of various durations along the 
directions u = const and v = const due to crossing a separa- 
trix. The duration of the rotational (free flight) stage de- 
pends on the magnitude of the adiabatic invariant I: it is (in 
first approximation) equal to the time of motion in the zp 
plane (in the region corresponding to free trajectories) 
along an I = const level line between two consecutive inter- 
sections of this line with indeterminacy curves; this time can 
be calculated from the solution of the set (10). Since I 
changes diffusively, the free flight length (the step of the 
random walk) also changes with time. The average step of 
the random walks ( - E -  I )  is for E< 1 much larger than the 
size of the cell ( - 1 ) which leads to a fast chaotic particle 
transport. 

However, the picture described here is not valid for all 
values h of the energy. For instance, there is no diffusion at 
all for - 2i'2 < h < - 1. For - 1 < h < 0 there are closed 
trajectories (see Fig. 2a) which do not intersect the indeter- 
minacy curve in the region bounded by this curve. These 
trajectories correspond to regular rotation in the uv plane. 
The size of the region of regular motion is, generally speak- 
ing, determined by the position of the indeterminacy curve. 

Actually the boundary curve separating the regions of 
regular and chaotic motions is not exactly the same as the 
I = const curve tangent to the indeterminacy curve, and lies 
somewhat deeper in the rotational region. The area included 
between these curves tends to zero as &'ln2( I/&) as E-0; the 
probability for the particle to be in that region is therefore 
also small. However, notwithstanding the smallness of this 
probability, the region near the boundary of the regular and 
the chaotic motions can to a large degree determine the sta- 
tistical properties of the dynamical system. Due to the diffu- 
sion of the adiabatic invariant the particle occasionally lies 
in that region and is in a rotational regime until the changes 
of the adiabatic invariant remove it from this region. It is 
important that for such a motion the trajectory does not 
intersect but only touches the indeterminacy curve and 
therefore the change in the adiabatic invariant is in the case 
of this touching no longer described by Eq. ( 12). 

We turn to the result of the numerical simulation. In 
Fig. 6,  corresponding to an energy h = - 0.83, we show the 
positions of a point in the fast motion phase plane during a 
long time interval. We depict 10 trajectories with initial con- 
ditions chosen randomly in the chaos region. For each of the 
trajectories the recording time is much longer than the time 
for the diffusion of the adiabatic invariant I. In this figure 
there are trajectories for which the diffusive process alter- 
nates with sections of long flights along the u = const and 
v = const directions. These flights correspond exactly to a 
lengthy sticking near the critical invariant curve in the zp 
plane which separates the regular and the chaotic motions. 

Extensive analytical and computational studiesi9" 
have been devoted to such statistical anomalies of chaotic 
motion, connected with the presence of a boundary for the 
chaos; in those studies one observed that the correlation 
functions of the chaotic trajectories can increase much more 
slowly than exponentially, in particular, according to a pow- 

FIG. 6.  Particle flights in the fast motion uu plane for 
h = - 0.83. 
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er law. Another aspect of this effect is the possibility of 
anomalously fast diffusion3.13 along some degrees of free- 
dom (in our case in the fast variables uv plane) caused by the 
existence of lengthy, quasi-regular insertions in the particle 
trajectory which were observed in Refs. 12 and 13. 

To find the transport coefficients, i.e., to determine the 
time-dependence of the mean square displacement of a parti- 
cle in the uu plane one must determine the way the probabili- 
ty density P(1) for the flight, which a particle carries out 
when it is "stuck" near the boundary curve, depends on the 
length 1 of the flight. To determine P(1) we gave 600 initial 
conditions, uniformly distributed in z for p = 0 in some 
range from z,,, to z,,, . The initial conditions were chosen 
close to z = 7~/2 and z,,, > z,, where 

is the coordinate of the intersection of the linep = 0 with the 
indeterminacy curve. The initial conditions in the uu plane 
were chosen for u = 3 ~ / 2 ,  i.e., near the maximum range of 
the separatrix. For values z > z,,,, anomalously long flights 
were observed in the chaos region. For particles in free 
flight we constructed a Poincark section in the zp plane for 
u = 3n-/2(mod 277). This section is shown in Fig. 7. Inside 
the "ring" there is a stability region surrounding the ellipti- 
cal point z = r/2. Small stability regions, which form a 
"necklace" of the ring, correspond to a resonance of order 
1 / ~  between motions along the fast and the slow degrees of 
freedom. 

From statistical considerations it is preferable to calcu- 
late the integral distribution 

~ h e p ( 1 )  distribution is shown in Fig. 8 in a doubly logarith- 
mic scale for h = - 0.15. The asymptotic nature of the re- 
quired distribution P(1) can be obtained from p ( ~ )  through 
differentiation. The procedure described here was repeated 

FIG. 7 .  Poincari section in thezp plane for u = ( 3 a / 2 )  (mod 2a)  only for 
particles with an anomalously long flight. 

FIG. 8. Integral distribution P ( I )  over flight lengths in a doubly logarith- 
mic scale for h = - 0.15 ( a  = 0 . 7 ) .  

later with twice the number of trajectories with initial condi- 
tions in the same range of z values. The results in the two 
cases differed slightly and for the h-dependence of the distri- 
bution function over the flight lengths P(1) we found 

For large values of the flight length the distribution 
function P(1) thus decreases as a power law. The maximum 
path lengths, fixed for those two energy values are 17000/2n- 
and 28000/2a, respectively. 

For random walks in the plane with variable steps and a 
probability density distribution depending on the flight 
length I following Eq. (14) the mean square particle dis- 
placement depends, according to Ref. 18, on the time as fol- 
lows: 

For the cases, studied numerically, with energies 
h =  -0.83 and h =  -0.15 we have O < a < l  and the 
anomalous transport behaves following a free flight law in- 
dependently of the fact that the motion has a random walk 
character. We note that random walks with distribution 
functions such as ( 14) leading to such a hyperfast diffusion, 
are called Levi flights." 

6. CONCLUSION 

In conclusion we note some general properties of sys- 
tems in which chaos is adiabatic. The dynamics in such sys- 
tems can be qualitatively described by constructing phase 
portraits of the motion in the slow plane averaged over the 
fast variables. The I = const lines are in the adiabatic limit 
apart from small oscillations the same as the projections of 
the true trajectories of the motion in the slow variables plane 
everywhere where these lines do not intersect the indeter- 
minacy curves. When there is an intersection the adiabatic 
invariant changes by an amount of order E,  where E is the 
ratio of the frequencies of the slow and the fast motions. 
Multiple intersections of the indeterminacy curve lead to a 
diffusion of the adabatic invariant and to adiabatic chaos. 

An important factor is the fact that as E -0 the region of 
chaotic motion is not small. We have shown that in the prob- 
lems considered small regions in phase space-the vicinities 
of the points where the I = const lines touch the indetermin- 
acy curves-may turn out to be the dominating influence on 
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the diffusion. In these regions a particle is able for a long time 
to stick at the chaos-order boundary. Such a sticking of the 
particle leads to anomalously long flights in the fast vari- 
gbles plane. For the cases studied numerically the distribu- 
tion of the lengths of these flights turned out to be a power- 
law one which leads to an anomalously fast diffusion. 

The authors express their gratitude to G.  M. Zaslavskii 
for useful remarks and discussions of the results of this pa- 
per. 
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