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The classical answer to the question posed above would be positive: an optical soliton can "free 
itself' of the initial noise modulation in the course of nonlinear propagation in a fiber. However, 
the situation is different for quantum fluctuations. It is shown that the latter tend to accumulate 
and can destabilize the soliton, even if it moves through the light guide without losses. 

1. INTRODUCTION 

It is commonly assumed that an ideal fundamental soli- 
ton, satisfying the nonlinear Schrodinger equation, can 
propagate indefinitely in a nonlinear optical fiber without 
losses. Such a light guide should possess a cubic nonlinearity 
and be adequately described by the second-order approxi- 
mation of dispersion theory, and the initial amplitude and 
shape of the pulse should correspond to the single-soliton 
propagation regime, i.e., they should be sufficiently similar 
to the corresponding amplitude and shape of a soliton. In- 
deed, under these conditions the initial noise phase modula- 
tion of the pulse over the course of time transforms into an 
amplitude modulation, after which it is "ejected" to the 
wings, and eventually all that remains is a "pure" well- 
formed soliton. 

However, this "self-freeing" property is not universal 
with regard to other types of fluctuations. The authors of 
Ref. 3 were apparently the first to call attention to this fact. 
In that article they considered propagation of a fundamental 
soliton periodically amplified to compensate for losses in the 
fiber. The spontaneous noise that arises together with the 
soliton is also amplified. It accumulates and increases, and 
the first symptom of its presence is random departures of the 
frequency of the carrier wave with resultant variations of the 
rate of propagation; this is extremely undesirable in informa- 
tion communication lines, for which optical solitons are the 
carriers of choice. Thus, there arises a limiting distance of 
travel of the soliton, bounding the range of action of the 
information channel. 

In the present paper it is shown that an analogous ten- 
dency of accumulation and magnification is also present for 
quantum fluctuations (phase as well as amplitude) which 
are always present in real radiation, even in the absence of 
absorption and/or amplification, i.e., in an ideal light guide 
which does not introduce losses. The analysis, which takes 
account of all possible amplifications and losses, allows us to 
make this assertion confidently at least in the initial stage of 
propagation of the soliton, where the implemented approxi- 
mations are guaranteed to be valid. 

It should be noted that quite a large number of publica- 
tions (see, e.g., Refs. 4-12 and the references cited therein) 
have already been dedicated to the study of the evolution of 
the quantum state of the fundamental soliton in its own non- 
linear channel without amplification or losses. However, 
practically all of them have to do with the so-called squeezed 
quantum states,"-l5 i.e., with questions of the suppression of 
one of the quadrature components of the field, not with the 
spontaneous accumulation of noise. Since a statement of si- 

multaneous diminution and growth of the fluctuations has a 
paradoxical ring to it, we will clarify this assertion at once. 

We introduce the quadrature components of the elec- 
tric component of the field in the form 

X=E(+Ie-W+E(-)e"4 Y =  (E(+lr-'v-E(->e'v)/i, (1)  
where E' + ' and E' ' are the slowly varying (in time) op- 
erators of the positive and negative-frequency parts of the 
electric field, and the angle p determines the orientation of 
the coordinate axes in the phase plane. This angle can be 
such that the variance of the fluctuations of one of the quad- 
rature components of a soliton that has passed through an 
interval of the nonlinear waveguide is below the correspond- 
ing level of the vacuum or coherent state. This is a criterion 
for the formation of a squeezed state of the field. 

The first prediction of the existence of squeezed states in 
optical solitons was made in Refs. 4 and 5. Without in any 
way calling these two papers into question, a certain error in 
the treatment both in the indicated papers and in a subse- 
quent paper (Ref. 6) should be noted, namely that the au- 
thors of these papers in fact analyzed not self-action leading 
to a nonlinear phase advance in a medium with cubic nonlin- 
earity and being the cause of the squeezing, but synchronous 
degenerate four-photon parametric amplification of fluctu- 
ations in the field of a regular soliton component, as in 
pumping. This question has been considered in greater detail 
in Refs. 7-9. We will touch on this point below. In this sense 
the analyses of the evolution of the quantum states of a soli- 
ton presented in Refs. 7 and 8, which make use of the Heisen- 
berg representation, and in Refs. 10 and 11, which use the 
Schrodinger representation, are more on the mark. In the 
first case (Refs. 7-9) a comparatively greater ease of visual- 
ization is achieved, which reveals the paths of preparation" 
of the sub-Poisson but at the expense of a quite 
rigid approximation of the given channel. The use of the 
Schrodinger representation103" leads to more general re- 
sults but of substantially more complicated form. 

Following the history of this question to its conclusion, 
it should be noted that the possibility of onset of squeezed 
quantum states of a single-mode monochromatic signal in a 
nonlinear phase advance in cubic-nonlinearity media was 
first pointed out in Ref. 16. 

Thus, for a fixed orientation of the coordinate axes in 
phase space the fluctuations of one of the quadrature compo- 
nents, e.g., the X component, are suppressed. But does this 
imply a corresponding decrease of the amplitude or quan- 
tum phase noise of the signal in the given case, i.e., of a 
soliton? Not necessarily, since by virtue of the Heisenberg 
uncertainty principle a decrease of the fluctuations of one 
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quadrature component (X) implies a corresponding in- 
crease of the fluctuations of the other ( Y). Thus, for a single- 
mode field we can write to within a normalization factor 

where a + and a - are the photon creation and annihilation 
operators, and the product of the variances of the fluctu- 
ations obeys the inequality (AX :, , ) (A Y :, , ) 1. 

What then happens to the signal noise? It all depends on 
the orientation in the phase plane of the vector of the com- 
plex amplitude of the regular component. It if is aligned in 
theX direction, i.e., the longer axis of the so-called squeezing 
ellipse, perpendicular to the vector of the regular compo- 
nent, then there takes place a decrease of the amplitude noise 
and a corresponding increase of the phase noise. The field in 
such a state is called sub-Poisson." We now rotate the 
squeezing ellipse by rr/2 with respect to the vector of the 
regular component. Then there appears a state with sup- 
pressed phase fluctuations and increased amplitude fluctu- 
ations. In an intermediate orientation, that noise as well as 
the other noise can grow. This is why there can be a simulta- 
neous increase of the amplitude and phase fluctuations of the 
field in the squeezed quantum state. 

2. BASIC EQUATION 

The evolution of the electric field of radiation entering a 
transparent medium with cubic nonlinearity can be de- 
scribed in the second-order approximation of dispersion the- 
ory by the following equations:&12 

Here E' ' ' (t,z) and E' - ' (t,z) are the slowly varying (in 
time) operators of the positive- and negative-frequency 
parts of the field in the Heisenberg representation, the z axis 
points in the direction of propagation, t is the time, 
u = (dk /do)  - I is the group velocity at the carrier frequen- 
cy w, k is the wave number of the carrier wave, the parameter 
g = d 'k /dm2 characterizes the dispersion of the group veloc- 
ity, and E,  and E" are the nonlinear and linear parts of the 
dielectric constant of the medium. We assume that the inter- 
action is collinear, the spatial mode is a plane wave, and the 
nonlinearity is instantaneous. The derivation of Eq. ( 2 )  is 
given in sufficient detail, for example, in Ref. (8) ;  therefore 
we will not pay it any special attention here. We note only 
that to go over to the well-known classical analog' it suffices 
to replace E' + ' and E' - ' in Eq. (2 )  by the conjugate com- 
plex amplitudes A and A *. 

Equation (2)  describes the influence of dispersion and 
of the nonlinearity on the passing radiation in the Heisen- 
berg representation. In general, however, it is desirable also 
to take account of losses and possible amplification. We as- 
sume that all these processes take place independently and 
successively, but that in the end we combine them, i.e., we 
will assume them to act uniformly over the length of the light 
guide. 

Thus, we take a small section of the light guide of length 
Az and arbitrarily divide it into three successive layers. In 
the first only dispersion and nonlinearity are manifested, in 
the second-only absorption, and in the third-amplifica- 

tion of the Stokes component thanks to stimulated scattering 
in the laser pump field. Since transmission by the first layer is 
described by Eq. (2) ,  we go now at once to the second. 

We assume that linear losses appear as a result of the 
interaction of the optical radiation with an infinite Markov 
system of phonons. The conversion of one mode of this radi- 
ation with detuning frequency f2 from the carrier frequency 
w is described by the evolution of the Heisenberg photon 
annihilation operator a,, (Refs. 18 and 19 ) : 

Here p and Y are C-number functions which depend on the 
length of the layer Az. We do not need the explicit form of 
vj ( Az) in what follows. It can be found in Refs. 18 and 19, 
and p(Az) is written out below. b, is the phonon annihila- 
tion operator, and the sum is carried out over the phonon 
modes j. The index"0" labels operators at the entrance to the 
considered layer. 

By virtue of the commutation relations for bosons 

[a,, a,,+] =6,,#, [ bj, b,+] =6jjs, (4)  

S,,,, , and S,, , are Kronecker symbols that differ from zero 
and equal unity only for f2 = R' and j = j', respectively, we 
have 

But sincela 

where x is the intensity absorption coefficient, we obtain 

We let Az approach zero and replace the finite differences in 
Eq. (3)  by differentials. Then 

aa, (z) laz=-xan (2) /2+roX(z). (8)  

Here the random Langevin force I?,,, possesses the follow- 
ing statistical properties (see also Ref. 19): 

<rn,+(z) I?,, (z') >=x<N,>6 (z-z'), (9)  

In these expressions the averaging is carried out over the 
quantum state of the photon-phonon system I@@), and by 
virtue of the Markov nature of the phonons the state vectors 
of the photons and phonons separate: I@@) 
= I @phot ) I @phon ). The quantity ( N ,  ) 
= (Qphon I bp + bp I Qphon ) is the mean number of phonons 

giving rise to absorption in the mode, and which is as a rule 
significantly less than one. Here we assume that all the 
phonon modes take part identically in the absorption pro- 
cess and that (N,,  ) does not depend on j. 

The next step of our treatment is to go now to a multi- 
mode optical quantum field. We assume that the spectral 
absorption line is uniformly broadened within the limits of 
spectrum of the signal. Then all the optical modes will find 
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themselves under independent and equal (from the point of 
view of losses) conditions. Here relations (9)  can be rewrit- 
ten in more general form: 

and analogously for ( T,, (2) T$, (z' ) ) 
We sum the modes of the field: 

E ( + )  ( t ,  z) = c a . e - ' ~ ~ ,  

where the normalization factor C = ( 2 d h / V )  ' I2 can be as- 
sumed to be constant for a narrow-band signal, when 

I R I $ w .  V is the quantization volume, which in our case is 
simply equal to the volume of the active core of the fiber. As 
a result we obtain 

Here the force r, has the following nonzero correlators: 

whence it is clear in particular that 

<Re r, ( t ,  Z )  Re r, ( t ' ,  2')  >=<Im I', ( t ,  z )  Im r, ( t ' ,  z ' )  > 
=' / ,x  ( 2 < N X > t 1 ) 6 ( t - t ' ,  2-z') . (14) 

Here and in Eq. ( 13) the 6-correlatedness in time is a result 
of taking the limit of an infinite number of modes R and a 
continuous signal spectrum. The sum over a finite number of 
modes can be taken, but the explicit form the correlators 
take on in this case is less compact. 

Let us turn now to a discussion of the next step in the 
conversion of the signal-linear amplification in the process 
of stimulated scattering in the third layer of the short seg- 
ment of fiber. Analogous considerations for the interaction 
of the photons and phonons excited by the laser pumping, 
under the condition that the amplification band is homogen- 
eously broadened within the limits of the signal spectrum, 
lead to the following results for the evolution of the ampli- 
fied Stokes component (see also Ref. 19) : 

a ~ ( + )  ( t ,  z ) ldz= ( ~ 1 2 )  ~ ( + ) ( t ,  Z) +Cr , ( t ,  z ) ,  (15) 

where y is the intensity gain coefficient, and the statistical 
properties of the Langevin force T, have the form 

Here ( N ,  ) is the mean number of pump-excited phonons in 
the mode, which can also be assumed to be significantly less 
than unity. 

Combining all the considered processes in one equa- 
tion, we finally obtain 

d d 'ig dZ  7-3~ -+ u-l------- -- 
[ a ,  dt 2 dt2 2 

ikEnI 
-- El-' (1, z ) E ' + )  (f, I )  ] E'+) ( t ,  z )  

280 

Equation (17) can be reduced to a simpler and more 
obvious form by transforming to a moving coordinate sys- 
tem: t -  t - z/u, and to dimensionless variables: T = t /T, , 
where rC is the duration of the soliton, 5. = z/Lp, where 
L p = r f / g  is the dispersive spreading length, 
$=E'+'/lA,I,  A ,= (E '+ ' ( t=O,z=O) ) ,  b=L,L,,, 
and L,, = 2~ , /k~ , ,  IAoI2 is the nonlinear length. For the 
stationary case of radiation propagation in the light guide, 
when the amplification completely compensates the losses 
( y  = x), we have then 

a$/a%- ( i / 2 ) a z $ l a ~ 2 - i P $ + d  ( T ,  %) =C(F,+F,), ( 18) 

where 

Fx.~-Lprx,~ (Taer % L p )  / ] A ,  1 .  
Unfortunately, the nonlinear operator equations ( 17) 

and (18) cannot be solved analytically, wherefore in what 
follows we will consider various types of approximations 
which allow us to draw definite conclusions about the evolu- 
tion of the quantum fluctuations of the soliton during its 
nonlinear propagation. 

3. QUASISTATIC PRESCRIBED-CHANNEL APPROXIMATION 

This approximation allows us to describe the quantum 
state of the soliton in the initial stage of its propagation in the 
absence of amplification and losses, i.e., with the right side of 
Eq. ( 18) set to zero. It reduces to the f~ l l owing .~ -~  Equation 
(18) is represented in continuum-integral form. Then the 
regular and fluctuational components separate out in the 
operators $and $+ , e.g., $(r,f)  = $(r,f) + f (r,(), where 
( { ( r , ( ) )  = 0, and the regular part 

$(T, C )  =eiE/' sech T (19) 

is the classical fundamental soliton, formed at 0 = 1. Next 
the kernel operator of the continuum integral is linearized 
with respect to the fluctuations and this same integral is cal- 
culated under the assumption that the fluctuational compo- 
nents do not influence the trajectories over which the inte- 
gration is carried out. Thus, the nonlinear channel, 
surmounted by the soliton, is completely determined in this 
approximation by the regular part ?(r,<).  This is the mean- 
ing of the term "prescribed channel." 

The criterion of validity of linearization over the fluctu- 
ations is fulfillment of the condition 

where the fluctuation quadrature is 

Here inequality (20) must be satisfied for any value of the 
angle p. 

After carrying out the indicated procedures we obtain 
for the fluctuational ~ o m ~ o n e n t ~ - ~  

E ( T ,  Z) = [ 1 + i Y  ( T ,  b) I Eo ( z )  e 2 6 f 2 + i Y  (T, % ) g o +  ( T )  ei(f /2-2eo).  

Here g0(r) = f(r,C = 0)  corresponds to fluctuations at the 
entrance of the light guide, Y (T,[) = 1 ? (T)  1 2f is the nonlin- 
ear phase incursion in the absence of dispersion, and 6, is the 
initial phase of the regular component of the signal: 
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$(T,[ = 0)  = I?(T,[ = 0 )  i e  'OO. 

Note that the corresponding expression for nonlinear 
conversion of single-mode monochromatic radiation during 
self-action (30) in the absence of amplification and losses 
differs from expression (2 1 ) only in that .renters in the latter 
as a parameter. It is for this reason that the title of this sec- 
tion begins with the word "quasistatic." 

If a free soliton entering the fiber is initially in the co- 
herent state (we will adhere to this assumption throughout 
the remainder of this discussion), then the operator {(,(T) 

corresponds to the multimode vacuum since the regular part 
of the coherent signal separates out as self-sustaining. 

The approximation under consideration allows one to 
elucidate the evolution of the phase fluctuations of the soli- 
ton as it propagates in an ideal transparent light guide. For 
this it is necessary to identify the direction in the phase plane 
perpendicular to the complex amplitude vector of the regu- 
lar component, and to find the projection on it of the fluctu- 
ations. The ratio of this projection to the length 1 $(T)  1 ,  tak- 
ing inequality (20) into account, is the signal phase 
operator: 

Generally speaking, the phase operator is nonhermitian 
(Ref. 20).*' In our case its hermiticity is ensured, again 
thanks to the fulfillment of condition (20). Note also that 
( @ ( 7 , 5 ) )  = 0. 

With the help of Eq. (22) the variance of the phase 
fluctuations, relative to the initial state of a soliton all whose 
modes were initially coherent, can be easily calculated: 

Here and below, the averaging is carried out over the initial 
vacuum states of the fluctuational components of the soliton 
modes since the evolution of the quantum field in our case is 
described by Heisenberg operators. 

Thus, the variance of the phase fluctuations in the non- 
linear propagation of the soliton grows. We estimate the ab- 
solute value of this variance on the basis of the following 
considerations. In the initial state (5 = 0),  when the soliton 
is a set of coherent modes, it can be treated as some one 
temporal mode.2' Then the initial variance of the quantum 
phase fluctuations of the soliton is equal to 
(Q2 (< = 0)  ) =: (4N ) - I ,  where ( N  ) is the mean number of 
photons in the soliton. Hence 

Nowadays it is hard to say how significant this effect is 
from a practical point of view; however, the very fact of fluc- 
tuational "buildup" of the soliton instead of its stabilization 
during nonlinear propagation even in an ideal light guide is 
of important significance. 

It is not hard to understand that an increase in the phase 
indeterminacy is in no way the only effect of the growth of 
quantum noise. Indeed, owing to dispersive spreading, the 
phase instability is transformed into an amplitude instabil- 

ity, etc. But unfortunately, the above-implemented pre- 
scribed-channel approximation is incapable of describing 
this process, since it takes account of the variance of only the 
regular component of the soliton (recall that we have ne- 
glected the influence of the fluctuations on the variation of 
the trajectories in the calculation of the continuum inte- 
gra17-9). Therefore neither the instantaneous number of 
photons nor their stochastic characteristics change in such 
an approximation during the propagation of the soliton. We 
note in passing that results analogous to relations (23) and 
(24) were obtained in Ref. 10 on the basis of a treatment in 
the Schrodinger representation and the Hartree approxima- 
tion which also does not take dispersion effects into account. 

4. QUASILINEARIZATION WITH RESPECTTO 
FLUCTUATlONS 

Linearization with respect to the fluctuational compo- 
nents {and 5 + was used also in the prescribed-channel ap- 
proximation. However, in this section we will obtain more 
general relations by dispensing with the assumption of invar- 
iance of the trajectories. This allows us to take dispersion 
phenomena into account. 

Thus, linearization of Eq. ( 18) with respect to fluctu- 
ations gives 

Recall that the regular part is given by Eq. (19), but the 
criterion of adequacy of the quasilinear equation (25 ) is ful- 
fillment of condition (20). 

The system of equations ( 19), (25) in fact describes a 
four-photon parametric process in a prescribed classical 
pump field, which, however, acquires during the propaga- 
tion a nonlinear phase advance, i.e., the interaction is non- 
synchronous. In this regard it should be noted that an equa- 
tion analogous to Eq. (25) was previously obtained in Ref. 5, 
whose right-hand (Langevin) side, also 8-correlated, is of a 
different nature: it takes neither absorption nor amplifica- 
tion into account, but does account for indeterminacies of 
the refractive index of the fiber. But the authors of Ref. 5 
(and similarly those of Refs. 4 and 6 )  constructed the rest of 
their treatment using for the regular component $ = sech T 

an incorrect description which did not include the nonlinear 
phase advance (cf. Eq. (19) ). As a result, for small detun- 
ings !I, instead of self-action they obtained synchronous pa- 
rametric amplification of the fluctuations of exponential 
character. 

An analytic solution even of the quasilinearized equa- 
tion (25) taking Eq. (29) into account is impossible. There- 
fore, to calculate the dynamics of the fluctuations during 
self-action we will consider the simpler case of nonlinear 
conversion of the spectrum of the initially vacuum modes in 
the field of an intense monochromatic wave, i.e., a regular 
soliton, infinite in extent. Here it is of interest to consider not 
only a single vacuum mode at the frequency of the regular 
signal (the single-mode case), but also vacuum modes de- 
tuned from the carrier frequency (the two-mode case). Each 
of these variants possesses a specific character. Therefore we 
will discuss them separately. 
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5. SINGLE-MODE SELF-ACTION 

It is more convenient to analyze the evolution of the 
fluctuations in the field of a monochromatic wave on the 
basis of the unnormalized equation ( 17). We represent the 
operator E' + ' (t,z) in the form of a sum of the classical 
regular signal and the single-mode quantum fluctuation sig- 
nal: 

E'+' ( t ,  z) =A (z) +Ca(z) , (26) 

where A (z) is the complex amplitude of the harmonic wave 
and a (z )  is the annihilation operator of the initially vacuum 
mode. 

We substitute expression (26) into Eq. (17) and the 
linearized the latter with respect to a and a +. For the regular 
part and the fluctuations we then obtain 

[aldz-iq- (y-x) /2] A=O. (27) 

[dldz- (y-x) 12-i2qJ a-iqe-'2ea+=rp,+I'Q,. (28) 

Here q = k ~ ,  ,]A l2/2zo, and 8 is the phase of the regular 
component (A = IA le - ' ). 

In what follows we will limit our discussion to the sta- 
tionary case of propagation of radiation in a waveguide when 
the amplification completely compensates for the loses: 
y = x. Here 

where the nonlinear phase is \V = qz. 
We represent the solution of Eq. (28), taking Eqs. (29) 

into account, in the form 

Here 

ao=a (z=O) , r ( z )  =ra, (z) +r,, (2). 

We introduce the quadrature component AX(z )  
= a (z) + a + (z) and determine the variance of its fluctu- 

ations. As a result we obtain 

Here and below we take the mean phonon numbers in the 
mode ( N ,  ) and ( N , )  to be significantly less than unity. 

In the absence of amplification and losses ( y = x = 0)  
this relation reduces to a well-known resulL9 Thus, self-ac- 
tion leads to the appearance of a squeezed quantum state 
with suppressed fluctuations of one of the quadratures, how- 
ever, the amplification and losses lower the efficiency of the 
squeezing. This matter will be treated in more detail below, 
in Section 7. What then becomes of the phase and amplitude 
quantum noise? 

Arguments analogous to those already advanced in the 
derivation of formula (22) allow us to write for the fluctua- 
tional component of the phase 

where ( N )  (IA I/C)2 is the mean photon number in the 
considered mode. 

In turn, the variance of the phase fluctuations 

grows without letup during the propagation of the radiation. 
Graphs of the dependence of the normalized variance on the 
magnitude of the nonlinear phase incursion for various val- 
ues of the relative loss parameter y/q are shown in Fig. 1. 

An analogous picture is observed for the intensity fluc- 
tuations. The noise amplitude component of the signal is 
oriented orthogonal to the phase component (in the phase 
plane) and is equal to 

Aa (z) = (Se'eo+S+e-ie~) 12. (34) 

Correspondingly, the variance of the fluctuations of the pho- 
ton number is 

However, in contrast to the phase fluctuations the 
growth of the amplitude fluctuations is due only to the pres- 
ence of losses and the amplification compensating them. 
This is perfectly natural, for as a matter of fact the photons 
nowhere disappear and reappear in a transparent light guide; 
consequently, their statistics (in the single-mode case) re- 
mains unchanged. Note that the growth of the amplitude 
noise has a purely quantum nature and is absent in the classi- 
cal description. 

6. MULTIMODE SELF-ACTION. FLUCTUATION SPECTRA 

Despite the fact that in the initial single-mode signal 
there are no spectral components with frequencies differing 
from the carrier frequency w ,  vacuum modes with nonzero 
detunings R, which also evolve in the field of an intense 
wave, are also drawn into the process of nonlinear interac- 
tion. As a result, in a dispersive medium an inhomogeneous 

FIG. 1. Plots illustrating the growth of the variance of the phase fluctu- 
ations relative to the initial state during propagation, i.e., with growth of 
the nonlinear phase advance 'Y, constructed for various values of the rela- 
tive loss parameter y/q: 0 ( I ) ,  1/4 (21, 1/2 (3). 
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fluctuation spectrum is formed, to the elucidation of which 
the present section is also devoted. 

Let us consider the interaction of the following three 
modes: an intense harmonic wave with angular carrier fre- 
quency w which we will describe classically, and two initially 
vacuum modes with frequencies w + R and w - fl. Then 

We substitute expression (36) into Eq. ( 17) and linearize 
with respect to the fluctuational components a + ,, and a , . 
As a result, for the regular part we have relation (27), and 
the fluctuations are described by the equations 

[i?/az-iQ/u+igQ2/2- (y-x) 12-2iql an--iqe-i20a-n+=I'+, 

(37) 

Here 

r+=rnK+I'nT, I'-=I'-ax+I'-Ql. 

The employed quasilinear approximation makes it pos- 
sible to restrict the discussion to only three modes, since the 
interaction of the initially vacuum modes with detuning ei- 
genfrequencies R of different modulus is absent here, and 
each of the corresponding pairs ( + a) is described indepen- 
dently. 

For the case of stationary propagation ( y = x) we rep- 
resent the solution of system (29), (37), (38) in the form 

an(.) = exp [ iz  (2 + q ) ]  { [(+ + ii\)s1+ 

+ i exp ( -2i0 , )  d l -+  Iexp (I-I) 

(39) 
Here 

The expression for a,, (2) is obtained by replacing R in Eq. 
(39) by - R. 

Since the considered fluctuational components possess 
zero mean amplitudes, to speak of their amplitude or phase 
noise is without meaning: they are continuous noise. We can 
characterize it by calculating the variance of the arbitrarily 
oriented (in the phase plane) quadrature 

and also the mean number of noise photons N, = a,+ a,. As 
a result we obtain 

y Y (AX.') = [ch 211 + -- sh 211-A2 (1 + 
q n 4 

(40) 

The first thing that strikes the eyes is the absence of a 
dependence of the variance of the quadrature in Eq. (40) on 
p. This means that the region of indeterminacy in the phase 
plane is a circle, i.e., no squeezed quantum states appear in 
the mode with nonzero detuning frequency R. 

Further, the presence of amplification and losses can 
only increase the fluctuations since (sinh 2lI)/lI>2 and 
( A  1 g 1. It is particularly easy to see that this fact follows 
from the corresponding expressions in the limit of small de- 
tunings R + 0: 

However, even in the absence of amplification and 
losses, quantum noise grows continuously during nonlinear 
propagation of radiation in a light guide. This fact is illus- 
trated by the graphs of the spectra, shown in Fig. 2. The 

FIG. 2. Evolution of the fluctuation spectra of the quadrature component 
( a )  and of the mean number of noise photons (b)  with growth of the 
nonlinear phase advance \I, = 1/2 ( I ) ,  1 ( 2 ) ,  1.5 (3 ) ,  2 (4)  in the absence 
of losses ( y  = 0) .  The dashed straight line corresponds to the vacuum 
fluctuations (Y = 0).  
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reason for the increase of the fluctuations is the transfer by 
pumping of photons from the regular component to the fluc- 
tuational component, which follows from an increase of the 
mean number of noise photons with the growth of Y in ac- 
cordance with Eqs. (4  1 ) and (43). 

Thus we have shown that quantum fluctuations of all of 
the spectral components, i.e., of the modes, without excep- 
tion, grow. Therefore, in a soliton which is a multimode for- 
mation it is difficult to expect anything other than growth. 

7. SQUEEZED QUANTUM STATES AND MULTIMODE SELF- 
ACTION. SQUEEZING SPECTRUM 

Our discussion would be incomplete without a clarifica- 
tion of the question of the formation of squeezed quantum 
states during multimode interaction, all the more so since we 
have already obtained all the relations necessary for this. If 
this were not the case, on the basis of the results of the two 
foregoing sections the reader might come to the hasty con- 
clusion that squeezing occurs exclusively in that one mode of 
the signal that is at the carrier frequency a. Strictly speak- 
ing, this in fact is the case, but in detection at the beat fre- 
quency of the regular component of a signal with fluctua- 
tional modes there takes place a mixing of the latter, of the 
form 

The annihilation operator a ( f l )  describes the field spectral 
component which appears upon detection at the frequency 
f l  in which squeezing is also manifested. This fact was pre- 
viously noted in Ref. 22, however, the results there pertain to 
the conversion of classical fluctuations and furthermore in 
the absence of amplification, losses, and dispersion of the 
nonlinear medium. The latter circumstance in fact equates 
the description undertaken by the authors of Ref. 22 to the 
single-mode case, since the fluctuational components of all 
the interacting modes, including the intense mode, exist un- 
der different conditions, and the efficiency of squeezing for 
them turns out to be identical, i.e., the squeezing spectrum is 
homogeneous. 

The relations which we obtained in the previous sec- 
tions make it possible to eliminate these shortcomings and to 
construct a more general theory of the formation of squeezed 
states during multimode self-action. 

Thus, for a quadrature component of the form 
U ( R )  = a ( f l )  + a +  ( f l ) ,  according to Eqs. (39) and 
(43), we have 

x[eZ"+ (yY/qH) (eZ"-I)] + [I- (IIlY) sin 20-A cos 201 

Here the averaging is carried out over the initial vacuum 
states of the independent modes with frequencies + 0. In 
the limit a - 0  we obtain the single-mode approximation 
(31). 

In the absence of nonlinearity, according to Eqs. (45), 
the variance of the fluctuations of the quadrature compo- 
nent is the same as for the vacuum: (AX ( f l )  ) = 1. Self- 
action leads to the appearance of squeezed states character- 
ized by suppressed quadrature fluctuations: (AX2(fl) ) < 1. 
However, the evolution of the quantum state during propa- 
gation in a dispersive medium causes spectrally inhomogen- 
eous squeezing. With the help of Eqs. (45) the squeezing 
spectra were calculated for various magnitudes of the phase 
incursion and the losses. The results are presented in Fig. 3. 
The initial phase was chosen to be optimal for R = 0. In this 
case it satisfies the relation 

Bo=- y -' arctg [ (l+Yy/q)/Y (1+2Yy/3q) I .  (46) 

It can be seen from Fig. 3 that an increase of the detun- 
ing R and/or the dispersion of the group velocity g corre- 
sponds to a degradation of the squeezing. The degree of this 
degradation increases with the growth of the nonlinearity Y. 
Losses, understandably, play an adverse role. This is well 
taken into account even in the general expression (45) : the 
terms proportional toy  = x are always positive, i.e., as could 
be expected, the losses and the amplification compensating 
them can only increase the variance of the quadrature fluctu- 
ations, thereby lowering the efficiency of squeezing. This 
fact follows in an even more apparent way from Eq. ( 3 1 ). 
From these results it is also clear that for a parameter y/q 
(which determines the relative losses) greater than 1/2 one 
can hardly count on a deep suppression of quantum quadra- 
ture noise. This result, which is of practical importance, is 
illustrated by the graphs in Fig. 4, which present the depen- 
dences of the minimum possible variance of the quadrature, 
i.e., maximal squeezing, on the nonlinear phase incursion \V 
(acquired during propagation) at R = 0. Thus, in real me- 
dia with losses there always exists some optimal interaction 
length, the exceeding of which leads not to an enhancement 
of the efficiency of squeezing, but, on the contrary, to its 
degradation. 

FIG. 3. Evolution of the fluctuation spectra of the 
quadrature component during nonlinear propagation, 
i.e., with growth of the nonlinear phase advance, in 
media with various losses: a )  y/q  = 0, b )  1/4, c)  1/2. 
The initial phase is optimized for R = 0. The dashed 
straight line corresponds to unitary level of quantum 
vacuum fluctuations YJ = 0.5 ( I ) ,  1 ( 2 ) ,  1.5 ( 3 ) ,  2 
( 4 ) ,  3 (J) ,  5 (6). 
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FIG. 4. Plots of the dependences of the limiting values of the variance of 
the fluctuations of the quadrature component on the magnitude of the 
nonlinear phase incursion for R = 0. The parameter y/q,  which deter- 
mines the relative losses, was chosen to be equal to 0 ( I  ), 1/4 ( 2 ) ,  1/2 (3). 
The initial phase B,, is optimized as prescribed by Eq. (46). 

An explanation of the "unfavorable" role of the vari- 
ance of the group velocity in the formation of the squeezing 
spectrum can be most simply offered on the basis of the four- 
photon treatment of self-action mentioned in Sec. 4. Indeed, 
an increase in the detuning R is accompanied by a corre- 
sponding phase detuning, which also leads to an inhomogen- 
eous squeezing spectrum. And the criticality of phase detun- 
ing grows with increase of the efficiency of the interaction, 
i.e., with increase of q. The situation thus has an analogous 
destructive effect on the squeezing of the diffraction of the 
modes amplified in the process of parametric amplifica- 
tion.9,23-25 However, in contrast with parametric amplifica- 
tion, in the case under consideration the condition of phase 
synchronism is not fulfilled even in the single-mode regime 
(a= 0) ,  a fact which has to do with the nonlinear phase 
incursion acquired by the regular component. It is precisely 
for this reason in particular that during self-action exponen- 
tial amplification of the fluctuational components, which is 
present in the case of synchronous parametric interaction, is 
absent. 

8. CONCLUSION 

Thus, with the help of various approximations and 
models we have shown that quantum fluctuations of an ini- 
tially coherent fundamental Schrodinger soliton grow dur- 
ing its nonlinear propagation even in the absence of losses 
and amplification. The latter only accelerate this growth. 
And this applies to the phase noise as well as to the ampli- 
tude noise. Generally speaking, the tendency towards accu- 
mulation is characteristic not only of quantum fluctuations. 
The same thing, by virtue of the correspondence principle,26 
also takes place in the case of additive stationary S-correlat- 
ed classical noise. The reason for such behavior obviously 
lies concealed within the following. If the soliton "ejects" its 
initial noise modulation, present only within the limits of the 
soliton's duration, to the wings and gradually "frees itself," 
then it is not in a position to free itself from the stationary 
noise since the "ejection" process is accompanied by a 
"drifting in" of noise initially present outside the soliton. 

It should be borne in mind however that, strictly speak- 
ing, the obtained results are valid only in the initial stage of 
the nonlinear propagation of the initially coherent soliton. 
What sort of changes take place in what follows? In an ideal 
transparent light guide obviously the processes of "ejection" 
and "drifting in" of noise gradually come into balance and 
the level of quantum fluctuations, unconditionally enhanced 
relative to the coherent state, stabilizes. Under real condi- 
tions of an absorbing fiber with compensating amplification 
the noise will undoubtedly grow without letup and finally 
destabilize the soliton. But this belongs to the range of hy- 
potheses, a strict substantiation of which is possible even if 
only by setting up a computer experiment, e.g., on the basis 
of Eq. ( 18) or, at least, the system ( 19), (2  1 ). The conclu- 
sion that both the amplitude and phase indeterminacy (the 
latter is manifested by a gradual spreading of the soliton) 
increase in the absence of amplification and losses was made 
in a recent work,'' based on the Schrodinger picture of the 
evolution of the quantum state of the soliton, which gives 
analytic results likewise only in the initial stage of propaga- 
tion. The assumptions employed by the authors of Ref. 10 
are less restrictive than those used here. However, the 
greater degree of generality of the treatment in Ref. 10 is 
accompanied by an increase in cumbersomeness and a de- 
crease in the ease of visualization. 

We note also a certain distinctive feature of femtose- 
cond solitons which has to do with both the peculiarities of 
their photon statistics during detection2' and the necessity of 
taking account of dispersion terms of third and higher or- 
ders, and also with the finite time of the nonlinear response 
of the medium.27 
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