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The approximation of a zero-radius potential is used to develop a theory of spectra representing 
the absorption of light in the course of collisions of a hydrogen atom in the ground state with a 
particle Y characterized by a single parameter, which is its electron scattering length. An analytic 
expression is obtained for the normalization integral of the Coulomb Green function and this 
expression is used to obtain a formula for the wave functions normalized to unity, the dipole 
moments of a transition from the ground state, and the absorption coefficients of light as 
functions of the transition energy. The absorption spectra are calculated for a number of values of 
the scattering length arid their dependence on this length is analyzed. The method of a modified 
orbital quantum number is used to show that the theory can be generalized to the case of 
replacement of a hydrogen atom with a many-electron atom which has just one outer electron. 

1. INTRODUCTION 2. THEORY 

The subject of collisions of atoms and molecules in an 
optical field has begun to develop as an independent topic 
from the early seventies. '-' This approach is of interest from 
the point of view of stimulation of collision processes (for 
example, those used in pumping of lasers9 ) and for recon- 
struction of the potentials of the interaction between collid- 
ing particles (see, for example, Refs. 10-12). However, if the 
offset from an atomic absorption line is sufficiently large, the 
dipole moment of the transition may change considerably 
and the problem of reconstruction of the potential from the 
absorption spectrum of a collisional X + Y complex be- 
comes much more difficult to tackle. 

Studies of the absorption spectra of a X + Y system 
were reported in Refs. 13-20: in accordance with the as- 
sumptions made, the decisive stage of the process is the pho- 
totransfer of an electron X + Y + k-+ X +  + Y ;  X is a 
rare-gas atom and Y is a halogen atom in Refs. 13-17. The 
profile of the corresponding absorption band is very wide 
and is frequently greater than a typical energy separation 
between the terms of an atom. The dipole moment of a tran- 
sition obviously cannot be regarded as constant over such 
large energy intervals, and it cannot be even approximated 
by some simple function. The method of a potential with a 
short radius of action was used in studies of such processes in 
Refs. 19-2 1. Our preliminary calculations carried out in ac- 
cordance with the theory of Ref. 20 demonstrated that the 
results were in agreement with the e ~ ~ e r i m e n t s ' ~ - ' ~  in those 
cases when one would expect the ion model to be correct. 
However, it is clear that this ion approximation is not always 
applicable and in any case it breaks down near atomic levels. 

The purpose of the present investigation was to develop 
a theory of the spectra representing the processes described 
above using a zero-radius potential without invoking any 
additional assumptions in the electron part of the problem 
and in particular without recourse to the assumption that 
there is a transition to an ionic state. The problem formulat- 
ed in this way had not been solved before even in the simplest 
model case of a collision between a hydrogen atom in its 
ground state and a particle Y whose potential for the interac- 
tion with an electron can be modeled by a 6 potential. 

As usual, the problem of a phototransition in a molecu- 
lar system can be divided into two parts: 1 ) the electron part, 
which when solved gives the electron terms, the electron 
wave functions, and the dipole moments of a transition as a 
function of the distance between colliding particles; 2) the 
nuclear part of the problem, the solution of which makes it 
possible to calculate the absorption spectrum on the assump- 
tion that the terms and dipole moments of the transitions are 
known. 

The nuclear part of the problem will be solved in a tradi- 
tional manner. We shall describe the absorption spectrum of 
a collisional complex by a reduced absorption coefficient q. 
It is related to the optical density D by 

D In l O  
= 1 [HI [Y] ' 

where I is the optical path. In the case of a weak field the 
Landau-Zener expression gives' 

where w is the angular frequency of an electromagnetic field 
(in atomic units this frequency is equal to the photon energy, 
because fi = 1 a.u.); c is the velocity of light; R, is the dis- 
tance between the colliding particles; AF', is the relative 
slope of the terms; df is the dipole moment of the investigat- 
ed transition. The summation in Eq. ( 1 ) extends to all the 
points R ,  along the axis joining the colliding particles and 
equal to R,  where the relationship Uf(R, ) - U, (R, ) = w 
is obeyed; Ui and Uf are the terms representing the ground 
(initial) and excited (final) states of the molecular system. 
The ground state, raised by w, crosses terms of the excited 
states at these points; E, is the relative kinetic energy of a 
collision at infinity. The angular brackets denote averaging 
over the velocities. 

We shall now consider the electron part of the problem. 
The absorption of a photon occurs when the distance be- 
tween colliding particles is large: R $1 a.u. In this case the 
interaction between a hydrogen atom in its ground state and 
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a perturbing Y particle can be ignored because the electron 
wave function for the ground state is identical with the wave 
function of the hydrogen atom: 

y i = 2  exp ( - r )  YOO, (2)  

where r is the radius vector of an electron and Y,, is a spheri- 
cal function. In this approximation the ground-state term 
( U, = 0.5) is independent ofR. In calculation of the absorp- 
tion spectrum on the basis of Eq. ( 1 ) we have to proceed in 
steps of AR along a certain interval of the variable R and at 
each point we have to find the following: 1 ) the term of the 
excited state Uf(R) and the photon energy 
w = Uf (R, ) + 0.5; 2 )  the wave function Yf of the excited 
state and the dipole moment of the transition d,(Rw); 3) 
the relative slope of the terms AF(R, ), which in this case is 
identical with the modulus of the slope of the excited-state 
term 

The tasks are listed under 1 )-3) and represent the electron 
part of the problem. 

Using a zero-radius potential, we can describe the inter- 
action of an electron with a neutral particle by analogy with 
the theory of low-energy scattering postulating that the 
characteristic length of the potential of the interaction be- 
tween the electron and the neutral particle is small compared 
with the electron wavelength near the Y center. The idea 
behind this method is similar to that introduced by Fermi in 
Ref. 22. Following this idea, the potential of the interaction 
between an electron and a neutral particle is replaced with 
the S potential. The only parameter characterizing the indi- 
vidual nature of the particle Y is the scattering length a, of 
the electron colliding with this particle. The problem there- 
fore reduces to an investigation of the motion of an electron 
in the field of the Coulomb and S potentials, whose centers 
are separated by a distance R. 

The terms obtained in the zero-phase potential approxi- 
mation have been analyzed on many previous occasions 
(see, for example, Refs. 23-28). They are found by matching 
the wave functions near a point where the 6 potential is locat- 
ed (r = R).  This condition leads to a transcendental equa- 
tion for the terms29 

@ (n ,  R )  = -ao-', (3  

(D (n ,  R )  = 2 r ( l - n )  { (  --- ;; :) n 
wn,, (2yR)Mn,% (2yR) 

The following notation is used in Eq. (3)  : n = ( - 2E) I/', 

where E is the energy of an electron E(R ) = Uf (R ); r is the 
gamma function; Ma,,,, and W,,,,, are the Whittaker func- 
tions. The wave function of the system is identical, apart 
from a constant, with the Coulomb Green function: 

Yf (r ,  R)  =C ( R )  Go (r ,  R )  . (4)  

Here, the wave function Yf is normalized to unity: 

The dipole moment of the transition is 

Instead of Yi, we have to substitute Eq. (2) .  In the cal- 
culation of the dipole moment of the transition we can repre- 
sent the Coulomb Green function in the form 

r( ( r )  ) is the smallest (largest) of r and R; U(a, b, z )  and 
M(a, b, z )  are confluent hypergeometric functions. 

Substituting in Eq. (6)  the expressions (4)  and (7)- 
(9) ,  we find the dipole moment of the transition. In calculat- 
ing the integral in Eq. (6)  we shall allow for the fact that the 
selection rules leave only one term with I = 1 in the sum over 
I in Eq. (7) .  The wave function of the ground state Yi de- 
cays rapidly on increase in the distance r, so that the radial 
integral is dominated by the region r < R and we can assume 
in Eq. (7)  that r( = rand r,  = R. We then obtain 

at large distances, replacing U(2 - n, 4, 2yR) with its as- 
ymptote (2yR) " 2 ,  we obtain 

The normalization factor C is found by calculating the inte- 
gral 

C-' ( R )  = dr [ G  (r ,  R) 1'. (1  1) 

The normalization integral can be calculated using the 
circufnstance that the Green function satisfies everywhere, 
except at the point r = R, the Schrodinger equation 

Writing down the equation derived from Eq. ( 12) by differ- 
entiation with respect to the energy 

multiplying Eq. ( 12) by dG '/dE and Eq. ( 13) by G ', sub- 
tracting the latter from the former, and integrating, we final- 
ly obtain 
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Applying the Green theorem to Eq. ( 14), we can go 
over from the integral over all space (with the exception of 
the point r = R)  to the integral over a spherical surface cen- 
tered at the point r = R and characterized by an infinitesi- 
mally small radiusp. Integrating with respect to the angle q, 
(the integrand is independent of this angle because of the 
axial symmetry of the problem) and going over from the 
derivative with respect to E to the derivative with respect to 
n, we obtain 

I 

dZGC ddG" dG" j dr(dG")'=nn3limp'j d-8sin$(dG"----) 
p-ro dndp dn dp ' 

where p = r - R and 9 is the angle between the vectors p 
and R. We shall now substitute in Eq. (15) the Coulomb 
Green function in its closed form3' 

The part of Eq. (15) in the parentheses is proportional to 
p-,. Since it is independent of the angle 9 at p = 0, we can 
easily integrate Eq. ( 15) and go to the limitp = 0. The result 
is then 

If we express the coefficient C = ( J ( G )  ,dr) - in accor- 
dance with Eq. ( 17) and substitute the resultant expression 
into Eq. ( lo),  we obtain the following final expression for 
the dipole moment of the transition: 

d x exp (- 2yR) I'"2 - n) [x O, (n. R)]-', ( 18a) 

where @(n, R )  is given by Eq. (3).  
An asymptotic expression for the special case, consid- 

ered earlier,I9 of the dipole moment of a transition to an 
ionic state can readily be obtained from Eq. ( 18a). We can 
do this by utilizing the expression 

b (n, R) = 2n lim dpG" (r, R) (19) 
P-+O dp 

In the case of the ionic term we can use also the semiclassical 
expression for the Green function: 

where yo = ( - 2EA)'/,. Substituting Eq. (20) into Eq. 
( 19), we obtain @(n,R) = - yo. Bearing in mind that 
dn,/dn = (n,/n)' and no = l/yo, we find that 

d@(n,R) - y3 -- 
d n 7 (21) 

Yo 

which leads to Eq. (25) of Ref. 19 that, in the s-scattering 
case, differs only by a factor B which is unimportant in our 
problem; this factor represents a correction for the finite na- 
ture of the radius of the interaction of an electron with a 
neutral particle Y. The coefficient Cin front of the ionic term 
is given by C = 2.rry0 . 

Equation ( 18) represents the solution of the second of 
the problems in the electron part of the task, which is the 
calculation of the dipole moment of the transition. We may 
find that the final expression for the dipole moment of the 
transition should include explicitly (d@(n,R)/dn) - '. 
However, we shall show later that this is not essential be- 
cause this quantity is cancelled out in the final expression for 
the reduced absorption coefficient [see Eq. (25) 1. 

We shall now consider calculation of the slope of the 
term A F  = IdE /dR I. Naturally, wecan find /dE /dR I by dif- 
ferentiating numerically the E ( R )  dependence obtained by 
solving the transcendental equation (3) .  However, there is a 
more elegant way of solving this problem. In order to find 
dE /dR, we shall supplement the function @ (n, R ) at a point 
satisfying Eq. (3)  by increments dn and dR such that Eq. 
( 3 )  is retained with the same value of a, as before, and the 
increment 

vanishes, which gives the following expression for 
dE/dR = (dn/dR) (1/n3): 

After simple transformations and direct differentiation of 
Eq. (3) ,  we find that 

(24) 
In calculation of d E  /dR we can use Eq. (24). However, 

it should be noted that the quantity (d@(n,R)/dn) - '  is 
contained both in Idlf12 of Eq. ( 18) and in A F  = IdE /dR I of 
Eq. (24). This allows us to derive a simple analytic expres- 
sion for q if we substitute Eqs. ( 18) and (24) into Eq. ( 1 ) . 
Ignoring U, within the angular brackets in Eq. ( 1 ), we ob- 
tain 

215n3w z (1-y)2/7-5 (yR,) exp (-2yR,) 
Y=- 

3c 0 
(I+y) 2 / 7 + 6  

Equation (25) together with the equation for the terms 
(3 )  allows us to find the absorption spectrum of a collisional 
H + Y complex using the zero-radius potential approxima- 
tion. 

In the case of asymptotically large values of R, we have 
M ,,,, , (2yR). W ,,,, , (2yR)+T- ' (1  - n), which leads to 
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However, we should point out that the asymptote given by 
Eq. ( 2 6 )  is correct only at very large distances between the 
colliding particles and sufficiently far from atomic lines, 
which reduces the range of its validity to the asymptote of 
the ionic term 1/R ( I EA I. When the line of an atomic transi- 
tion is approached, the reduced absorption coefficient rises 
in accordance with q a ( A E ,  ) -', where AE, is the offset 
from the frequency (energy) of the atomic line. Equation 
( 2 5 )  is valid in the quasistatic range where AE, > a,: R, is 
the Weisskopf frequency known from the theory of broaden- 
ing of spectral lines. The range AE, 5 a, is narrow and, 
therefore, it cannot be seen on the scale shown in Fig. 1 .  

The expressions for the reduced absorption coefficient 
are obtained above in terms of atomic units and they have the 
dimensions of length to the fifth degree. In order to go over 
to the dimensions [cm5], usually employed in the experi- 
ments, the results of the calculations based on Eq. ( 2 5 )  
should be multiplied by (0.529. = 4.14. 

3. RESULTS OF CALCULATIONS 

Figures 1-3 give the results of calculations carried out 
for different values of the scattering length a,.  In all these 
figures the upper part shows the electron terms and the low- 

FIG. 1.  a )  Electron terms of HY; b) contributions made to the reduced 
absorption coefficient by various parts of the term, considered as a func- 
tion of the energy of the excited state and calculated using Eq. (25) .  The 
vertical dashed lines at n = 1,2,3, and 4 correspond to the energy levels of 
the hydrogen atoms. The same numbers are used in the upper and lower 
parts of the figure to denote the corresponding parts of the term and 
spectrum; a, = 2.61. 

er part is the spectrum, i.e., the dependence of the reduced 
absorption coefficient q on the energy E = Uf of the state in 
which the transition terminates. The spectra and the terms 
are shown for the sake of convenience in the same figure; 
such a representation helps us to understand more easily 
which range of distances contributes to a transition at a giv- 
en energy. If the scattering length is a, = 2.61, which corre- 
sponds to the presence of a stable negative ion Y with an 
electron affinity of 2 eV [EA = - ( 2a; ) - ' ] the term is 
nearly ionic. If n < 2, there is no second term at all and the 
absorption spectrum can be interpreted as a transition from 
a lower covalent state to an upper ionic state. In this case the 
results of a calculation of the spectrum are in agreement with 
the results of calculations performed in the ionic model ap- 
proximation; the discrepancy does not exceed 25% and the 
separation from the atomic line greater than the region of the 
interaction of the covalent excited term with the ionic term. 
If n > 2 the ionic term exists again, but in this case one value 
of the energy may correspond to two or more values of R. 

Figure 1 shows the contributions made to the spectrum 
both by the ionic and repulsive branches. It follows from Fig. 
1 that the contribution of the repulsive part of the term is 
considerably greater and this is due to the much higher val- 
ues of the dipole moment of the transition. Reduction in the 
electron affinity energy of Y (i.e., an increase in a , )  makes 
the contribution to the intensity of the spectrum made by the 
transition to the ionic part of the term comparable with the 
contribution of the repulsive branch (Fig. 2 ) .  However, the 

FIG. 2. The same as in Fig. 1 ,  but for a, = 5.22. 
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larger the difference between this and the ionic term, the 
larger the region of interaction of the ionic and covalent 
terms. 

We also carried out calculations that model the spec- 
trum in the case when EA = 0 ( la, I + co ). In practice, the 
case a, = 100 corresponds to EA = 0, so that on further in- 
crease in a, there are no changes in the structure of the 
terms. Reversal of the sign of a, when the absolute value of 
this quantity is large (for example, the change from 
a, = 100 to a, = - 100) again does not affect the results. 
Such large absolute values of the scattering length are not 
encountered in practice (at least in the case of atoms), but 
already for la, 1 2 10 the structure of the terms and the spec- 
trum depend weakly on a,. 

The spectrum includes contributions not only from the 
regions of rise near the atomic lines, but also due to singular 
points in other spectral ranges. These singular points corre- 
spond to AF(R,) = 0 in Eq. (1 )  or to 
M,,,,, (2yR) W,,,,, (2yR) = 0 in Eq. (25). The regions ad- 
joining these singular points must be considered additionally 
allowing for the quantum effects in the nuclear motion. 
More than one extremum may appear for one term and there 
may be corresponding maxima in the spectrum because of 
oscillations of the potential curve. In the case of low values of 
a,- I ,  even when the distance between the colliding particles 
is large, the term HY deviates considerably from the atomic 
term, its orientation is almost parallel to the internuclear 
axis (dE/dR is always small), and it oscillates slowly ap- 

FIG. 3. The same as in Fig. 1, but for a, = - 1.2. 

proximately near the middle of the energy interval between 
the n = 3 and n = 4 lines. When la, I -- ' is increased, the 
parts of the terms with a central slope are retained, but they 
lie near the atomic lines, so that it is logical to call them 
satellites (Fig. 3). The satellites are located in the spectrum 
on the high or low values of the energy relative to the atomic 
lines, depending on the sign of a,: for positive values of a, 
the offset from the atomic line is positive, whereas for nega- 
tive values of a, it is negative. 

All the spectra in the interval from n = 3 to n = 4 show 
steep falls of the intensity when the function U(2 - n, 4, 
2yR) passes through zero [see Eq. (25)l .  This 
obviously demonstrates that the asymptote 
U(2 - n, 4, 2yR) .+ (2yR ) " - ', which is valid at high val- 
ues of yR, cannot be used and, consequently, the asymptotic 
expressions (lOa), (18a), and (26) are incorrect for this 
range of parameters. Therefore, the resultant absorption 
spectrum is obtained by adding the contributions due to 
transitions to different parts of the term and then the spec- 
trum does not have such steep falls of the intensity to zero: 
instead there is some reduction in the total absorption coeffi- 
cient. The calculated values of the reduced absorption coeffi- 
cient q at the points in the figures where 
M,,,,, (2yR) W ,,,, , (2yR) and U(2 - n, 4, 2yR) vanish are 
finite due to the finite nature of the step along R (AR = 0.5 
a.u.). 

4. GENERALIZATION OFTHE THEORY TOTHE CASE OF A 
MANY-ELECTRON ATOM WITH ONE OUTER ELECTRON 

We shall now consider briefly a more complex problem 
in which the hydrogen atom is replaced by some many-elec- 
tron atom, but which has only one outer electron. Part of the 
problem related to the terms of this system has been ana- 
lyzed earlier'9x2723' and we shall not consider it here. We 
shall derive expressions for the dipole moment of a transition 
and for the spectrum on the assumption that the problem of 
the terms is solved. 

Alkali metal atoms are classical examples of the atoms 
with just one outer electron but the same description can be 
applied also to many excited states of other atoms. It is then 
usual to consider the motion of the outer electron in the 
effective field of the core X + , which includes not only the 
Coulomb part, but also a short-range correction V, which 
lifts the degeneracy of the spectra I and this should modify 
greatly also the structure of the spectrum being analyzed. 
This is formally due to the fact that the Green function can 
no longer be represented in the form of Eq. ( 16), where the 
factor r( 1 - n) that has poles for natural values of n corre- 
sponds to resonant levels of the hydrogen atom. The Green 
function with a short-range correction can be represented in 
the form of Eq. (7),  provided we replace the radial Coulomb 
functions f f ,  and f',, with f,, and f,,, satisfying the radial 
Schrodinger equation with the short-range correction V,. 
The functions f,, and f,, should be described by the following 
asymptotes when the distances are large: 

where f,, is regular at zero. 
The methods of a quantum defect32233 and of a modified 
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orbital quantum number are used most frequently in studies 
of the problem of supplementing the Coulomb potential with 
a short-range potential within the semiempirical approach 
framework. We shall adopt the latter of these two methods 
proposed by S i m ~ n s ' ~  and used successfully on a number of 
 occasion^:^^-'^ 

where B, are constants depending on the individual atom 
and on the orbital quantum number, and I lm) (lm 1 is the 
operator of projection onto the space of the spherical func- 
tions. When this potential is used, the functions f , ,  and f,, 
can be obtained from Eqs. ( 8 )  and ( 9 )  by the substitution of 
I-s,, where s, = I + A, is the effective orbital quantum 
number. The positions of the levels of an atom X are then 
determined by poles of T( - n  + s, + 1 ) in an expression 
similar tof,, described in Ref. 9, which reduces the condition 
that n  - s, is a natural number. 

If X is an alkali metal atom in its ground state, the nor- 
malized wave function is 

The defect of the orbital quantum number for the wave with 
I = 0  is given by A, = n, - 1 ,  whereas the parameter n, is 
related to the ground-state energy Ea of an atom by 
n, = ( - 2Ea ) - I / * .  Proceeding as before in the case of the 
hydrogen atom, we can obtain an expression for the dipole 
moment of the transition: 

where F(a, b, c, z )  is a hypergeometric function. The expres- 
sion ( 3  1 ) reduces to Eq. ( 10) if the defects of the orbital 
quantum number of the s and p waves were allowed to van- 
ish: A, = A, = 0. 

The expression given by Eq. ( 17) is derived for the nor- 
malization integral in the case when the potential is of pure 
Coulomb type, but it can also be generalized to the Coulomb 
potential with a short-range correction. We note that, in gen- 
eral, the Green function can be written in the form 

Writing down the Schrodinger equation with a short-range 
correction for the Green function G(r, R)  and proceeding 
exactly as in the derivation of Eq. ( 17 ) , we obtain 

where f '  = (df  / dp ) ,  , , . In the pure Coulomb potential 
case we find that f '  is identical with the function @ ( n ,  R )  
introduced above. In general, f '  is given by 

The summation over I in Eq. ( 34 )  should be carried out 
formally from zero to infinity, but in practice it is sufficient 
to include only the first few terms for which the shift of the 
levels relative to those of the hydrogen atom is significantly 
different from zero. The transcendental equation for the 
terms can be written in the form 

An analysis of the kind preceding Eq. ( 2 2 )  for the slope of 
the term of an excited state remains valid also in the more 
general case, like the expression itself, provided we make the 
substitution @(n, R )  - f ' ( n ,  R ) .  

Generalization of Eq. ( 22 )  and of its corollary to that 
for the potential of the purely Coulomb nature yields 

where a@/aR is given by Eq. (23 ) . The final expression for q 
is obtained by substituting in Eq. ( 1 ) the square of the dipole 
moment from Eq. ( 3  1 ) and also AF(R,  ) = IdE / dR  I in the 
form of Eq. ( 36 ) ,  which gives 

where 

f i l  ( R )  f 2 1  ( R )  - f i r "  (R)fzrc ( R )  
x"[ aR R ' 1. ( 38 )  

The derivative a /aR  in Eq. ( 38 )  can easily be obtained ana- 
lytically employing the familiar expressions for differenti- 
ation of the confluent hypergeometric  function^.'^ Equation 
( 38 )  is a generalization of Eq. ( 25 ) .  We can say that in this 
case once again we can eliminate the derivative with respect 
to the energy parameter n  in the final result. 

We shall now list the main limitations of the theory. 
1 .  The electron wavelength near a neutral Y center 

should be large compared with the characteristic radius of 
the interaction of the electron with the Y center,p - 1 a.u., or 
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more exactly the following conditions should be obeyed: 

In those regions where the above relationship is not satisfied 
sufficiently well the results are simply qualitative. 

2. The above theory is inapplicable in the case when an 
atom of Y has a resonance in its low-energy scattering spec- 
trum. This resonance corresponds to L +O, where L is the 
orbital momentum of an electron. 

"The atomic system of units is used here. 

' L. I. Gudzenko and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 62, 1686 
( 1972) [Sov. Phys. JETP 35,877 ( 1972) 1. 

'V. S. Lisitsa and S. I. Yakovlenko, Zh. Eksp. Teor. Fiz. 66, 1550 ( 1974) 
[Sov. Phys. JETP 39,759 ( 1974) 1. 
S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 5,259 ( 1978) [Sov. 
J. Quantum Electron. 8, 151 ( 1978) 1. 

4V. S. Dubov, Khim. Fiz. No. 12, 1642 (1982). 
5H.-J. Foth, J. C. Polanyi, and H. H. Telle, J. Phys. Chem. 86, 5027 

(1982). 
6P. R. Brooks, R. F. Curl, and T. C. Maguire, Ber. Bunsenges. Phys. 
Chem. 86,401 ( 1982). 

'H. H. Tele, J. Phys. (Paris) 46, Colloq. 1, C1-287 (1985). 
%. Debarre and Ph. Cahuzac, Ann. Phys. (Paris) 12,313 (1987). 
9V. S. Dubov and Ya. E. Lapsker, Kvantovaya Elektron. (Moscow) 10, 

1877 (1983) [Sov. J. Quantum Electron. 13, 1240 (1983) 1. 
l o  A. Jablonski, Phys. Rev. 68, 78 ( 1945 ). 

W. J. Alford, N. Andersen, K. Burnett, and J. Cooper, Phys. Rev. A 30, 
2366 (1984). 

"A. Gallagher, in Physics of Electronic and Atomic Collisions (ed. by S. 
Datz), North-Holland, Amsterdam ( 1982), p. 403. 

I3V. S. Dubov, L. I. Gudzenko, L. V. Gurvich, and S. I. Yakovlenko, 
Chem. Phys. Lett. 45, 330 (1977). 

I4L. I. Gudzenko, L. V. Gurvich, V. S. Dubov, and S. I. Yakovlenko, Zh. 
Eksp. Teor. Fiz. 73,2067 (1977) [Sov. Phys. JETP 46, 1082 (1977) 1. 

I5V. S, Dubov, L. I. Gudzenko, L. V. Gurvich, and S. I. Yakovlenko, 
Chem. Phys. Lett. 53, 170 (1978). 

I6A. K. Babaev and V. S. Dubov, Kvantovaya Elektron. (Moscow) 15, 
823 (1988) [Sov. J. Quantum Electron. 18, 525 (1988)l. 

I7V. S. Dubov, Ya. E. Lapsker, A. N. Samoilova, and L. V. Gurvich, 
Chem. Phys. Lett. 83,518 (1981). 

I R  J. Weiner, J. Chem. Phys. 72, 5731 ( 1980). 
I9V. S. Dubov and M. I. Chibisov, Khim. Fiz. No. 3, 370 (1983). 
"V. S. Dubov and M. L. Kotlyar, Khim. Fiz. No. 1, 10 (1987). 

V. S. Dubov and M. L. Kotlyar, Preprint No. 2-252 [in Russian], Insti- 
tute of High Temperatures, Academy of Sciences of the USSR, Moscow 
(1988). 

22 E. Fermi, Nuovo Cimento 11,429 ( 1934). 
23 B. M. Smirnov and 0 .  B. Firsov, Zh. Eksp. Teor. Fiz. 47, 232 ( 1964) 

[Sov. Phys. JETP 20, 156 (1965)l. 
2 4 Y ~ .  N. Demkovand V. N. Ostrovskii, Method ofZero-RadiusPotentials 

in Atomic Physics [in Russian], Leningrad State University (1975). 
25 F. I. Dalidchik and G. K. Ivanov, Zh. Eksp. Teor. Fiz. 49, 1274 ( 1965) 

[Sov. Phys. JETP 22, 882 (1966)l. 
Z6T. M. Kereselidze and M. I. Chibisov, Zh. Eksp. Teor. Fiz. 68, 12 

(1975) [Sov. Phys. JETP 41,6 (1975)l. 
"E. De Prunele, Phys. Rev. A 36,3015 (1987). 
28 L. P. Presnyakov, in V. M. Galitskii, E. E. Nikitin, and B. M. Smirnov 

(eds.), Theory of Collisions of Atomic Particles [in Russian], Nauka, 
Moscow (1981), p. 231. 

29 I. V. Komarov, P. A. Pogorelyi, and A. S. Tibilov, Opt. Spektrosk. 27, 
198 (1969) [Opt. Spectrosc. (USSR) 27, 105 (1969)l. 

''A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reac- 
tions, and Decay in Nonrelativistic Quantum Mechanics, Israel Program 
for Scientific Translations, Jerusalem; Wiley, New York (1969). 

" M. Ya. Ovchinnikova, Zh. Eksp. Teor. Fiz. 49,275 ( 1965) [Sov. Phys. 
JETP 22, 194 ( 1965) 1. 

"D. L. Moores and H. E. Saraph, in Atoms in Astrophysics (ed. by P. G. 
Burke, W. B. Eissner, and I. C. Percival), Plenum Press, New York 
(1983,), Chap. 6. 

"U. ~ a n o a n d  A. R. P. Rau, Atomic Collisions and Spectra, Academic 
Press, New York ( 1986). 

'4G. Simons, J. Chem. Phys. 55,756 (1971). 
l5 N. L. Manakov, V. D. Ovsyannikov, and L. P. Rapoport, Opt. Spek- 

trosk. 38,424 (1975) [Opt. Spectrosc. (USSR) 38, 242 (1975). 
36 N. L. Manakov, V. D. Ovsyannikov, and L. P. Rapoport, Opt. Spek- 

trosk. 38,206 ( 1975) [Opt. Spectrosc. (USSR) 38, 115 ( 1975) 1. 
j7P. F. Gruzdev and A. I. Sherstyuk, Opt. Spektrosk. 40, 617 (1976) 

[Opt. Spectrosc. (USSR) 40, 353 (1976)l. 
l8P. F. Gruzdev and N. V. Afanas'eva, Opt. Spektrosk. 49, 625 (1980) 

[Opt. Spectrosc. (USSR) 49, 341 (1980)]. 
39M. Abramowitz and I. A. Stegun (eds.), Handbook on Mathematical 

Functions with Formulas, Graphs, and Mathematical Tables, Dover, 
New York ( 1964). 

Translated by A. Tybulewicz 

413 Sov. Phys. JETP 72 (3), March 1991 V. S. Dubov and S. G. Nikonenko 413 


