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A field-theory approach using a replica method is proposed for calculating the thermodynamic 
and correlation characteristics of polymer solutions and melts containing macromolecules of 
various chemical compositions and various structures. The distribution of components among 
phases and the conditions for thermodynamic equilibrium are derived for arbitrary sets of 
macromolecules by a mean-field theory. In the case of solutions of linear heteropolymers in which 
the alternation of monomer units in the macromolecules obeys Markovian statistics, a phase 
diagram is constructed, and the conditions for the appearance of periodic spatial superstructures 
are derived. Over a wide range of the composition of such heteropolymers, there can be a third- 
order phase transition to a superstructure with a rhombohedra1 symmetry and a period which 
depends strongly on the parameters of the bulk interactions. The possibilities of this new general 
approach are demonstrated in the particular case of a calculation of the correlation function for 
density fluctuations in solutions of branched statistical heteropolymers of fairly arbitrary 
chemical structure. 

INTRODUCTION 

Most theoretical papers on polymers in which the ma- 
cromolecules have a given chemical structure (or configura- 
tion) take Flory's classic approach.' It starts from a mean- 
field expression for the free energy F{n (C))  of the polymer 
which depends on the numbers {n(C)) of macromolecules 
of a given configuration C. In this approach, the position of 
the spinodal temperature of a spatially homogeneous state is 
found from the vanishing of the determinant of a matrix with 
the elements 

wherep (C) is the chemical potential of a macromolecule of 
configuration C. For a polyphase system the distribution of 
the numbers n'"(C) of macromolecules among the various 
phases s is found in the usual way by equating their chemical 
potentials p'" (C).  

It is important to note that the condition for the applica- 
bility of Flory's approach, n(C) $1, is satisfied only for lin- 
ear homopolymers and mixtures thereof. In the case of 
branched polymers or heteropolymers, the number of differ- 
ent configurations (C) of macromolecules in a specific sam- 
ple increases exponentially with increasing degree of poly- 
merization, I, of these molecules. For real systems of large 
but finite volume, the mean numbers of macromolecules of a 
given configuration are small, ii( C )  4 1, since they cannot be 
chosen as independent components in a conventional ther- 
modynamic description. 

In Sec. 1 we propose a more general approach, which is 
capable of describing polymers with arbitrary values of 
ii (C).  This approach is essentially one of choosing monomer 
units M, of various types i as independent components. A 
similar approach has been taken previously to describe poly- 
mer systems which are in chemical equilibrium with respect 
to the formation and rupture of  bond^.^.^ In contrast with 
the latter, in the case of systems with a fixed distribution 
{ii (C))  one should switch from the usual d-dimensional Eu- 
clidean space to a dm-dimensional replica space, in which 
the position of a point is characterized by the set 

X = (x'", ..., x ' ~ ) )  of coordinates x ' ~ '  of the units M, in each 
of m identical "replicas" of the system of interest. To de- 
scribe the system obtained as a result, one uses the standard 
methods of the molecular theory of polymer systems in 
chemical eq~ilibrium.~ An important point is that the ap- 
proach which we are proposing below makes it possible in 
principle to go beyond the scope of the mean-field theory on 
which Flory's classic theory is based. 

In Sec. 2 we take this new approach to calculate correla- 
tion functions. We find a condition on the spinodal tempera- 
ture which generalizes ( 1 ) to the case of arbitrary Z (C) . We 
also describe a polyphase system of such polymers, and we 
find the distribution of numbers n'"(C) and the condition 
for a phase equilibrium. 

In Sec. 3 we take this approach to study periodic spatial 
structures which form in heteropolymer systems. Structures 
of this type have been studied previously, both theoretically 
and e~periment'ally,~-' in the case of regular copolymers 
consisting of a small number (two or three) of blocks of 
units Mi of a common type and of a given length. As is shown 
below, the nature of these structures is different from that 
studied below. 

We examine the effect of a configurational disorder on 
the conditions for phase separation and on the characteris- 
tics of the spatial structure which results for the case of Mar- 
kovian heteropolymers, which are the most common in 
pra~t ice .~  For them, the mean numbers of macromolecules 
of a given configuration C (which is set by the sequence of 
alternation of the I units along the chain) are given by 

'-1 

where Z is the total number of polymer units in the system, 
and the transition matrix elements vijc,, + , determine the con- 
ditional probability that unit n + 1 of the chain is of type 
in + , in the case in which unit n is of type in .  The quantities 
ij,, and ?lo are the probabilities for finding initial and final 
units of types i, and i,, respectively. Their normalization 
conditions are 
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The quantities ij; and vij are usually treated as indepen- 
dent  parameter^.^ Below we assume that the chains 
(i, ,..., i, ) and ( i  ,,..., i, ) are identical. The condition that the 
numbers of macromolecules in (2)  must be independent of 
the direction in which the units of these molecules are num- 
bered leads to the reciprocity relations 

which make it possible to express the parameters iji in terms 
of the elements of the matrix v in the case of symmetric he- 
terop~lymers.~ For two-component systems we find from 
(4) and (3) 

where the fractions of units of type i are 

Expressions (2)-(6) describe chemically different 
classes of polymers, depending on the ratios of vii. The case 
v,, = Y,, = 0 corresponds to a mixture of polydisperse ho- 
mopolymers each of whose macromolecules consists of units 
of a common type. In this limit the parameters iji are equal to 
the fraction of the units which are of type i, and the quanti- 
ties 17; determine their mean length: li = T ~ -  I .  The case v,, , 
v,, #O corresponds to heteropolymers (or copolymers9 ) for 
which the mean number of units in the macromolecules is - 
I = (P, 17, + z-, T~ ) I .  The case v,, = v,, = 0 describes 
copolymers with regularly alternating units, the case 
Y, v2, = Y,, v,, corresponds to completely random (Ber- 
noulli) copolymers, and the case v, , v,, 9 v,, v,, describes 
multiblock copolymers. 

1. REPLICA METHOD FOR SYSTEMS WITH AN ARBITRARY 
MOLECULAR-STRUCTURE DISTRIBUTION 

We use a known model2z3 to describe, t$e polymer sys- 
tems. In this model, the interaction of ur;its M, and M, is 
described by a potential V,,, and the conditional probability 
for finding the units of a bond (n,n') separated from each 
other by a given distance Ix, - xn, I is given by 

hd(xn-xn,) = (4naz) exp (-x2/4a2), ( 7 )  

where a is the mean size of the bond. 
As was shown in Ref. 3, the partition function of an 

ensemble of macromolecules with a given distribution 
{n (C))  can be represented as the mean of the partition func- 
tion of the same noninteracting (ideal) macromolecules 
whose units are in a random field v = {v,): 

Here ei = exp( - h,/T), where hi is the external field acting 
on the Mi units; z: = exp ( - vi/T); and the factor n (C)! 
appears because macromolecules with an identical configu- 
ration Care themselves identical. The angle brackets in (8)  
denote the average over stochastic fields v with a probability 

and the matrix V - ' is found from 

The partition function Zd of an ideal macromolecule 
with a configuration Cis given in the model of Refs. 2 and 3 
by the expression 

where the first product is over all units Mi, in a macromole- 
cule with configuration C, and the second product is over all 
its bonds (n, n'). 

Various sets of configurations {n ( C ) )  can be realized in 
the synthesis process. We assume below that the probability 
for each set {n (C)) is given by a Poisson distribution 

The mean value of the free energy of the system is found by 
taking the average of the logarithm of the partition function 
( 11 ) over all the {n ( C ) }  with probability ( 12). To carry out 
this averaging procedure, we use the following equation, 
which holds in the asymptotic limit m -0: 

In the replica method,'0v" the parameter m in (13) is 
assumed to be some arbitrary integer, and the limit m -0 is 
taken only at the end of the calculations. The product of m 
identical factors in ( 13) can be represented as an average 
01 r the fields V = { V ' ~ ' ( X ' ~ ) ) ) ,  k = 1, ..., m with a mea- 
sure equal to the product of the measures (9) of each of the 
replicas k: 

Substituting (14) into (13), and taking the average of the 
resulting expression over the sets {n(C)) with probability 
( 12), we find the following expression for the free energy of 
the polymer: 

* 

where ad, is the thermodynamic potential of the chemically 
equilibrium system whose units are in a dm-dimensional 
space 

exp (-+) = <ap (- {zi* (x) e, (X)I 
T ) >  (16) 
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and is the thermodpamic potential of the dm-dimen- 
sional system of chemical bonds3 which consists of ideal 
macromolecules: 

According to ( 17 ), the quantities E(C) serve as the activities 
of the macromolecules in such a system. 

The interaction V,, of the monomer units of the macro- 
molecules in expression ( 16) is described by a strongly fluc- 
tuating stochastic field i. Over length scales short in com- 
parison with a,  such fluctuations do not contain the 
"polymer specifics." Their contribution should thus be 
summed beforehand. In the field formalism, this purpose is 
served by transforming to an integral over the new variables 
z:(" in ( 1 6 ) :  

As is shown in Appendix A, the functional R* can be 
expressed directly in terms of the pressure P '"(pi ) and the 
chemical potentials pJ"(p,) of the "system of ruptured 
units":' an equilibrium ensemble of monomer units which 
interact with each other with a potential V,, but which do not 
form chemical bonds, 

In the lattice model of Ref. 3, excluded-volume effects are 
described by a parameter u, and binary interactions of units 
Mi and M, are described by dimensionless Flory parameters 

Xo: 

Expressions ( 17)-(20) completely determine the ener- 
gy of a polymer system with arbitrary given mean values 
E(C) of the numbers of macromolecules of the various con- 
figurations. 

2. MEAN-FIELDTHEORY 

A .  General theory. When density fluctuations are ig- 
nored, the functional integral in ( 18) can be evaluated by the 
method of steepest descent. The equation for the saddle- 
point function z: determines the mean density of units in the 
case of a spatially homogeneous state in the limit m -0 :  

Here V''' is the volume of the system, and ii(1) is the com- 
position distribution, i.e., the number of macromolecules 
with a composition vector 1 which has a given value and 
whose components li are equal to the numbers of units Mi in 

the molecule. From ( 15) and ( 18) we find the following 
expression for the free energy of the system: 

where we have set 

Expression ( 2 2 )  agrees with the results of Flory's theo- 
ry' for the lattice model in ( 2 0 )  only in the limit ii (C) > 1 ,  in 
which the sum over n in ( 2 2 )  reduces to an integral which we 
can evaluate by the method of steepest descent. In this case 
the position of the spinodal temperature can indeed be found 
through a calculation of the determinant of matrix ( 1 )  with 
the help of ( 2 2 ) .  In general, the spinodal temperature should 
be found from the condition for the divergence of the Fourier 
component of the density-density correlation function: 

B i j  (x-x')  =<tipi ( x ) 6 p j ( x 1 )  )=-T 
6'F 

6 h i ( x ) 6 h , ( x r )  ' 

Here Sp, ( x )  are the fluctuations in the density of the Mi 
units. An important point is that the Fourier component g, 
of the correlation function ( 2 4 )  is discontinuous at the point 
q = 0.  Exactly at the point q = 0 ,  this Fourier component is 
identically zero because of the conservation of the total num- 
ber of the Mi units, but it is nonzero in an arbitrarily small 
neighborhood of this point. Everywhere in the discussion 
below, we understand the case q = 0 as meaning the limit 
q - 0  from the right ( q > O ) .  

Two qualitatively different cases are possible, depend- 
ing on the magnitude of the wave vector q,, at which the 
following conditions first hold: 

The first of them, q, = 0 ,  corresponds in particular to the 
ordinary spinodal transition. In the second case, qi > 0 ,  the 
critical value of the external parameter (of the temperature, 
the pressure, etc. ), at which stability is lost, is found from the 
condition dD(qi )/dqi = 0.  

Evaluating the variational derivatives ( 2 4 )  in the 
mean-field approximation, we find the following expression 
for the Fourier components of the matrix of correlation 
functions: 

On the right side of this expression are Fourier components 
of the structure function g, 

gij (x-x') =m-'T-'GZS2d,,"c {z*) 16 ln zi' (x) 6  In zj' ( x ' )  1 ,,,=,, ( 2 7 )  

and of the matrix of the direct correlation functions C, 

Expression ( 2 6 )  is a generalization of the corresponding 
expression which was derived in Refs. 2 and 3 by a thermo- 
dynamic approach. 
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We now consider a polyphase system for arbitrary val- 
ues of E ( C) . In finding the q values of the various phases, we 
partition the replica space of dimensionality dm into qm re- 
gions, each of which has a volume 

where n, is the number of replicas in phases. The number of 
regions with identical sets of numbers n, (Zn, = m) is equal 

to the number of combinations [&]. It is then not difficult 

to verify that the total number of regions and their total 
volume are qm and V ", respectively, with V = B V "'. 

To evaluate the free energy, we separate from expres- 
sion ( 1 1 ) (for the partition function of a macromolecule 
with configuration C) the integration over the collective 
variable of its center of mass, X,: 

where z*'") is the value of the function zT(x) in phase s. 
Carrying out the summation over n, in (29), and using the 
resulting expression in ( 17) and ( 15), we find the difference 
between the energies of the q-phase system and that of a 
single-phase system, (22) : 

We are assuming here that the densities pjs' of units M, in 
phases are related to z:'" by ( 19). Minimizing the right side 
of (30) with respect top,!'', we find the equilibrium values of 
these densities to be 

where E'")(l), the mean numbers of macromolecules in 
phases with a given composition vector 1, is given by 

The equilibrium values of the volumes V'"' of each of 
the phases are found by minimizing the functional (30) with 
respect to V '"' at a fixed total volume V. The conditions for a 
minimum are equations stating that the pressures P "' iri all 
the q coexisting phases are equal: 

Equations (30)-(33) give a complete description of this q- 
phase system. The correlation functions in (26) and the dif- 
ference between free energies in ( 30) are described correctly 
by Flory's equations, although Flory's theory is not valid at 
small values E ( C) < 1. 

B. Markovian heteropolymers. The direct use of rela- 
tions (22), (26), and (30) of the general theory requires a 
summation of series over all configurations C. A distinctive 
feature of the new approach of the present paper is that in the 
basic cases of practical interest this approach leads to a 
closed expression for the functional i2Tm in ( 17), without 
the need to carry out tedious combinatorial calculations. 
The calculation for branched polymers is discussed in Ap- 
pendix B. In the case of linear n-component Markovian 
heteropolymers, (2),  this functional can be written in the 
comparatively simple form 

n 

d X ~ X '  (hi; ) (X-X' )cpi (X) rp,(Xf) 

where the functions and p are found by minimizing the 
right side of (34). They are functionals of z* ( X )  . It is not 
difficult to verify that the expansion (34) in a functional 
series in powers ofz* (X) does indeed reproduce series ( 17). 

Evaluating the variational derivatives in (27) and (34), 
we find the following expressions for the Fourier compo- 
nents of the matrix g of structure functions (27) and of the 
density of the Mi units: 

where A, = exp( - a2q2) is the Fourier component of the 
function A, in (7) .  

To determine the boundaries of the region of absolute 
instability of the solution of a binary heteropolymer with the 
help of (25 ) and (26), we find a function D(q2) for it, work- 
ing from (35) : 

The sign of D is the same as the sign of the numerator of 
expression (36), since the denominator is always positive. 
The condition for an instability, (25), for fluctuations with 
( a )  a zero value or ( b )  a nonzero value of the wave vector go 
is, correspondingly, 

B=A+C ( a ) ,  BZ=4AC ( b ) .  (37) 

Figure 1 shows a phase diagram of this heteropolymer 
solution for the case A > 0. In the opposite case A < 0, which 
corresponds to an absolute thermodynamic instability of the 
system of ruptured units, the polymer system is always un- 
stable. It can be seen from this figure that a necessary condi- 
tion for the loss of stability at the wave vector qo > 0 is that 
all three coefficients A,  B, and C be positive. Since 
A,, = B /2C = 2A /B, only a small neighborhood of the 
point M in Fig. 1, in which the inequality qoa & 1 holds, is of 
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FIG. 1. Phase diagram of a solution of Markovian copolymers. The 
boundary of the hatched region, which is the region of thermodynamic 
instability, consists of a straight line a and a parabola b, both defined in 
( 3 7 ) .  

practical interest for research on phase transitions of this 
sort. 

Let us examine in more detail the most interesting case, 
q,, R > 1,  where R --a7 "' is a length scale of the macromole- 
cules. Solving the second of equations (37) for v,, + v,, , 
and using ( 3 )  and ( 6 ) ,  we find 

v12+v2,=2B2/ [ ((B2+az) ( B Z +  y2))'h+f)2+ay], 

p2= (p,c1,-pzc2z)2+4plpzC,2z, u=l-p1pz (C,,C22-C,22), 

From (38) we find 0 < v,, + v,, < 1; this inequality should 
hold at the spinodal temperature in (37b). In the two impor- 
tant limiting cases of a mixture of homopolymers 
(v12 + v2, = 0 )  and Bernoulli heteropolymers 
(v , ,  + v2,  = I ) ,  this phase transition to a state with a non- 
zero wave vector q, > 0 is therefore not possible. 

3. PERIODIC SPATIAL STRUCTURE IN MARKOVIAN 
HETEROPOLYMERS 

We now consider a heteropolymer melt, which can be 
described quite accurately as incompressible. In this case we 
can use the lattice-gas model in (20).  In the present section 
of the paper we assume for simplicity that the probability ?ji 
for observing an initial unit of type i is equal to the mean 
fraction .rri of the units of this type [see (6)  1. From ( 5 )  we - 
then find 7 ,  = 7, = I  - I .  

According to results (36)-(38) of the preceding sec- 
tion of this paper, a spatially homogeneous state in the in- 
compressible system under consideration here can become 
unstable only at q, = 0. The incompressibility condition 
corresponds to the limit p+v- '  in expression (20) for the 
function p: (pj ) of the lattice model. That function deter- 
mines the parameters C, in (28).  As a result we find that the 
region of absolute instability corresponds to the condition 

takes the following simple form in the heteropolymer limit - 
I(v12 + ~ 2 1  1% 1 :  

Below we show that under the condition x >x,, despite the 
condition go = 0, there is a periodic structure with a period 
proportional to ( X  - X ,  ) - which is much greater than 
the length scale of an individual block. Incommensurable 
structures of this sort are qualitatively different from those 
discussed previously,4-6 for which these length scales are 
comparable. 

To study the nature of the transition near the point 
x = xc, we expand the functional a",', in (34) in powers of 
the functions 

U ,  ( X )  =n,z1*(X)+n2z2. ( X )  -1, 

us ( X )  --z,' ( X )  -2,' ( X )  , (40) 

treating the latter as a small perturbation. With ui = 0, the 
quadratic form in (34) can be diagonalized by transforming 
to the new variables 

In the momentum representation, the eigenvalues of the re- 
sulting quadratic form are proportional to the quantities 

whereAi are the eigenvalues of transition matrix v, given by 

Using (42),  we can put the expansion of nTrn in powers 
of the Fourier components of the functions in (40) in the 
form 

where A(Q) is the Kronecker delta, and all the momenta Q, 
P, and T are defined in the dm-dimensional space. 

The functional a* in ( 19), which describes the interac- 
tion of the units in an incompressible system, takes its sim- 
plest form, 

in terms of the variables u and v, which are related to the 
parameters zi in ( 19) by 

where the parameter Expressions (45) and (46) are found in the la t t ic~ model by 
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taking the limitp- v -  in (20) and ( 19). The function u(x) 
is proportional to the deviation Ap, (x )  of the density of the 
monomer units of the first type at the given point x from its 
mean value over the volume: 

v ( 4  =%Apt (x) Ip, Apt (x) =%pi ( 4  -nip2 (x). (47 

The densities of units Mi are therefore 

pt (x) =nip+ Apt ( 4 ,  pz(x) =nzp-Apt (x) . 
Substituting (45), (46) and (431, (44) into (18), we 

find, in the mean-field approximation, 
m 

Here it is assumed that all the momenta q and q' lie in the d- 
dimensional space. Minimizing expression (48) with respect 
to u ik ) ,  we find 

Substituting (50) into (48), we find a functional ad, which 
depends only on the field v. We are interested below in the 
momentum region 7 - &a2q2gv12 + vZ1. In other words, 
we are interested in characteristic dimensions q - which are 
small - in comparison with the size of the macromolecule, 
R = a1 'I2, but large in comparison with the characteristic 
dimension a(vI2 + v21 ) - of one of its blocks. Restricting 
the discussion to the terms linear in q2 in the expansion of the 
functions g,, in (42) in this approximation, and introducing 
the dimensionless variables 

~ ( ~ t z + v a i ) ~ p  X c  
v,, = 2=1--, 

[nln2(I-vtZ-v2t) I " ' X 
(vt2+vz1) (2-vtz-vz1) 

(51) 
P q = - r"T'", 

'I = 2(1-v12-vzt) 9 a 

we ?nd the following expression f o ~  the functional Lkdm : 

We restrict the discussion below to the solution 
cik' = cp, symmetric with respect to replicas, of the equa- 
tions which describe the conditions for a minimum of func- 
tional (52). A nontrivial analytic solution, which exists at 
T > 0, can be found as a power series in the parameter I A 1 .  In 
the leading approximation in 1 A 1, we find 

sgn A 1 
c=-(l+ 35.2'" ( $ ) I h  ~ A I ) ,  ( I )  u4) 

where e, ,  i = 1, ..., 6,  are unit vectors directed along the edges 
of a regular tetrahedron. Solution (53) corpsponds to an 
absolute minimum of the free-energy functional (52) with 
A # 0. Solutions of this sort, which belong to a rhombohedral 
(trigonal) crystal symmetry system,I2 could not be derived 
in Refs. 4-8, where periodic structures in heteropolymer sys- 
tems were studied theoretically. It is not difficult to see that 
solution (53) is stable at small values I A 1 & 1. In the follow- 
ing orders in / A  ( in the sum in (53), higher harmonics with 
wave vectors Zniei (the ni are integers) of the reciprocal 
rhombohedral lattice contribute to sum (53). A solution of 
this type exists only under the condition I A 1 < A, - 1. For 
the quantity A, it is a simple matter to derive an upper esti- 
mate A, < (3/2) through the use of the variational prin- 
ciple with the trial function (53). 

The condition a2q2&v12 + v21 for the applicability of 
expansicn (52) holds only at T & 1. At T- 1, the amplitude of 
the superstructure, Ap, (x) in (47),  (5 1 ) , reaches values on 
the order of the total density p, and its period reaches values 
on the or&-L- of the size of a block. In expansion (52) of the 
thermodynamic potential, at T k 1, we should thus retain 
only the small terms of higher order in dk' and u'". This 
solution is a clearly defined domain structure with a period 
equal to the size of a block. Similar spatial structures have 
been described in previous theoretical  paper^,^-^ based on 
models different from our own. However, a description of 
such structures goes beyond the scope of our Ginzburg-Lan- 
dau approach. 

The difference between the free energies of a state with 
superstructure (53) and the spatially homogeneous state, 
(22), is 

Since the cubic invariants of the order parameter (53) are 
finite, the expansion of the free energy in (55) contains odd 
powers of IAl. Because of the factor T', the transition in 
which we are interested here is a third-order phase transition 
in the parameter T, even if the functional (52) contains terms 
which are cubic in v. This situation, which is a totally unu- 
aual one for the conventional Ginzburg-Landau approach, 
stems from the long-range nature of the fourth-order term 
A,, in (49), which describes the interaction of the different 
replicas. The presence of a term of this sort, which incorpo- 
rates configurational disorder, was also demonstrated in 
Ref. 13, in the description of an isolated, statistically random 
macromolecule of a heteropolymer, although in the symmet- 
ric case we have n l  = .rr2 = 1/2. 

The conclusion, reached in that previous study, that 
there exists a spatial structure in a heteropolymer system 
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with Bernoulli statistics for the distribution of units in the 
macromolecule contradicts the results of the present paper. 
According to the present results, such a structure could arise 
only if there were long-range correlations in the order of 
alternation of the types of units along the chain. There is 
absolutely no such correlation in Bernoulli heteropolymers. 
This discrepancy between results apparently stems from the 
incorrect use in Ref. 13 of a continuum model for the chain 
in a description of Bernoulli heteropolymers. In particular, 
the conclusions reached in that earlier paper are extremely 
sensitive to the length scale of the bulk interactions, but that 
scale has no bearing on the polymer specifics of the problem 
under consideration. 

Erukhimovich14 and LeiblerI5 have also developed a 
theory for domain structures in heteropolymers. They as- 
sumed that the magnitude of the wave vector of the super- 
structure, q, can be found by analyzing terms of the Ginz- 
burg-Landau functional which are quadratic in the order 
parameter. However, the value found for q, by that ap- 
proach applies only to the transition point itself, T = 0. We 
have shown that at this point we have q, = 0 but that the 
characteristic value of q (of the reciprocal-lattice vector of 
the structure) increases in proportion to T " ~  with distance 
from this point, with increasing T. 

The mean-field theory used in this section of the paper 
is valid only in the case in which the benefit achieved in terms 
of the free energy of the superstructure, (55),  over a length 
scale equal to the period of this structure, 277/q, is large in 
comparison with the temperature T. This condition imposes 
a restriction on the values of the parameter T: 

For real polymers we would have v"' 5 a, so the Ginzburg 
number in (56) would always be small (7, 1 ) in the case of 
block copolymers. Consequently, except for a narrow fluctu- 
ation region T 5 T, the mean-field theory gives a correct de- 
scription of the periodic superstructure. 

CONCLUSION 

In this paper we have proposed a new and fairly general 
approach to the description of solutions and melts of poly- 
mers of arbitrary chemical structure. We have discussed in 
detail the important case of Markovian linear heteropo- 
lymers, and we have studied the possibility that they would 
form periodic structures. It has been shown that it is impos- 
sible in principle for structures of this sort to form in the case 
of Bernoulli heteropolymers, which is a case of practical im- 
portance. In block copolymers, the period of the structure 
dep&ds on the strength of the interaction between the mon- 
omer units. It may be much larger than the spatial size of one 
block. An incommensurable superstructure of this sort 
stems from the presence of configurational disorder, and it 
cannot exist in the case of chemically regular copolymers. 

Another important distinction between (on the one 
hand) real multiblock heteropolymers and (on the other) 
the chemically regular copolymers and block copolymers 
with small numbers of blocks in a macromolecule which 
have been studied previously is in the nature of their transi- 
tion to a state with a periodic structure. In the latter cases, 
this is a first-order phase transition, which can give way to a 
second-order transition only at the symmetry point 

T, = T, = 1/2 (Ref. 15). As we showed above, this transi- 
tion is a third-order phase transition in Markovian heteropo- 
lymers, even if there are terms in Ginzburg-Landau func- 
tional (48) which are cubic in the order parameter. T o  
describe this unusual fact let us examine the Ginzburg-Lan- 
dau functional which depends only on the amplitude Ap of 
the superstructure and which is found by minimizing (48) 
with respect to the magnitude of the wave vector q. Substi- 
tuting the value q2- (&I, found as a result of this minimiza- 
tion, into (48), we find that the coefficient of the cubic term, 
1401 ', is positive in the case A < A,. Consequently, a nontri- 
vial solution Apf.0 which minimizes the Ginzburg-Landau 
functional exists only under the condition T > 0, which is the 
condition under which the quadratic form of this functional 
loses its positive definite nature, and Ap is not discontinuous 
at the transition point. 

The Ginzburg-Landau functional method which has 
been used in all studies of phase transitions in heteropolymer 
systems of which the present authors are aware, makes it 
possible to describe only those first-order phase transitions 
which are approximately of second order. The formalism 
developed above makes it possible to go beyond that limita- 
tion. This flexibility is important in practical calculations on 
specific polymer systems. In addition to heteropolymer sys- 
tems of linear macromolecules, the general approach pro- 
posed here can describe branched polymers. As an example, 
we give a closed expression for the thermodynamic potential 
[expression (B2) in Appendix B] in replica space. That 
potential makes it possible to find an exhaustive statistical 
description of solutions of tree-shaped polymers, which are 
frequently encountered in practice. In principle, incorporat- 
ing the fluctuations of the functions z: in ( 18) would make 
it possible to carry out a correct study of fluctuation effects 
in polymer systems with a given arbitrary distribution of 
numbers of macromolecules, {n ( C )  ). 

APPENDIX A 

Let us evaluate the functional R* defined by the expres- 
sion 

Q' { z ' )  
e x p [ - T ] - ( ~ 6 [ z i ' ( x ) - e x p [ - v i ( x ) / ~ ] ] )  . 

Y 

(A1 

Representing the S-function as an integral over the complex 
field z, (x)  and transposing the average over v and the inte- 
gration over z,, we rewrite ( A l )  as 

where we have used the representation3 of the partition 
function of the system of ruptured bonds as an average over 
the fields v(  x )  , 

At this point we assume that the system of ruptured 
units is far from its critical point. Since the density fluctu- 
ations of such a system are small, the integral in (A2)  over 
the variables zi ( x )  can be evaluated by the method of steep- 
est descent without difficulty. The result of these calcula- 
tions can be put in the form in ( 19). 
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APPENDIX B 

Let us evaluate the functional 0% in ( 17) for a system 
of tree-shaped macromolecules obtained through a polycon- 
densation of Mi units which have respectively fa, functional 
groups of type a. The mean numbers of these macromole- 
cules, E(C),  are described by the Flory distribution: 

f i  (C) = iiv (a,, ya*) nz:z JJ l/:;p, 
i a($ 

(B1) 

where E is their total number, I, and mao are respectively the 
number of M, units and the number of the bonds between 
groups a and fl, and the functional dependence of the nor- 
malization factor Y on the parameters z, and 
yap (0 < z, , yap < 1 ) is derived below. These parameters may 
be thought of as the activities of the units and bonds of a dm- 
dimensional system at chemical equilibrium. The thermody- 
namic potential of such a system, ( 17),  can be written in the 
form 

where y -- ' is the matrix which is the inverse of y, and the 
function A ; ' is related to A, by an equation like ( 10). The 
function pa ( X )  should be found from the condition which 
minimizes the right side of (B2).  

According to definition ( 17),  the thermodynamic po- 
tential in (B2) can be expressed in the case rn = 0 in terms of 
the total number of macromolecules, E. Setting m = 0 in 
(B2), we find the following expression for the normalization 
factor Y in ( B l ) :  

where the parameters ?' are found from the solution of the 
equations 

Expression (B2),  along with general relation ( 18 ), can 
be used as the starting point for constructing a microscopic 
theory of solutions of branched polymers, in the same way 
that expression (34) was used in the main body of this article 
to describe linear heteropolymers. As a very simple example 

of the use of (B2),  we will calculate the structure function 
(27) for a spatially homogeneous system. It is not difficult to 
show that the minimum of (B2) in the limit m --0 is reached 
with the solution pa (X)  = p $) and that we have 

Differentiating free energy ( IS), (B2) with respect to h,  we 
find the Fourier component of the structure function (27):  

where the matrix which is the inverse of xq is 

I t  can be shown that (B6) and (B7) can be put in the form 
which was found previously for the case of a concentrated 
system in chemical equilibrium,"f we switch from z, and 
y ,  to the new variables p j u '  in (B5) and P ( , ~ :  

This result seems quite natural, since in this case the molecu- 
lar-structure distribution is the same as ( B  1 ). 
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