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A new mechanism of exciton-biexciton modification of semiconductor spectra in the presence of a 
polariton pump wave is examined. This mechanism is attributable to the direct virtual coupling of 
two excitons forming a biexciton by Coulomb-like interaction. It is demonstrated that it is 
precisely this mechanism that is responsible for the spectral modification previously attributed 
exclusively to the "giant" oscillator strength of the exciton-biexciton optical transition and, 
specifically, may lead to an effective dynamical red-shift of the exciton level. This makes it 
possible to attribute this phenomenon to the exciton-biexciton optical Stark effect which can be 
observed at substantially lower pump wave intensities compared to the ordinary exciton Stark 
effect. A consistent microscopic theory of the exciton-biexciton Stark effect is formulated both on 
the basis of the exciton quasiparticle approximation and an analysis of the photon-electron-hole 
Hamiltonian of the semiconductor. 

1. INTRODUCTION 
Dynamical coherent phenomena in semiconductors are 

receiving extensive theoretical and experimental attention 
currently. Such phenomena are manifested as a modification 
of the spectra of elementary semiconductor excitations in 
the presence of intensive coherent electromagnetic radi- 
ation. One specific field of research has been devoted to an 
analysis of the case where the electromagnetic wave frequen- 
cy lies in the transparency region near the exciton ground 
level characterizing the fundamental absorption edge. In 
this case, an intense electromagnetic wave, which will hence- 
forth be referred to as the pump wave, travels as a polariton 
wave with virtually no damping in the semiconductor and 
can be treated as an external source wave. Such a pump 
wave, specifically, can lead to a number of dynamical phe- 
nomena in the crystal. 

We will first focus on the exciton optical Stark-effect 
which is an active area of research at present.'-6 This effect is 
manifested as a blue-shift of the exciton line in the presence 
of a high intensity polariton wave. This intensity is given by 
the parameter Na: - 1, where a,, is the Bohr radius of the 
exciton in the ground state, while N here is the exciton con- 
centration of the pump wave. 

Studies of the dynamical changes in the polariton and 
biexciton spectra of the semiconductor are more convention- 
al.'-l4 Here the discussion primarily concerns the pump 
wave stimulated exciton-biexciton splitting of the semicon- 
ductor spectra near the resonance frequency 
w = R p  - o , ,  where w, is the pump wave frequency, 
while f i R p  is the biexciton excitation energy relative to the 
valence band. A theoretical description of this effect7-" has 
customarily been based on an analysis of a system of inde- 
pendent boson excitations: Photons a,, excitons B, and 
biexcitons A, with ordinary polariton exciton-phonon mix- 
ing and a phenomenological incorporation of three-particle 
interaction of the form V - "*M, (p,q)A ,+ Bqa, -, . In this 
case, the matrix element MI ,  was attributed to the "giant" 
oscillator strength of the exciton-biexciton optical transi- 
tion:-'7 

(1)  

form of the wave function of exciton relative motion in the 
biexciton, and Vis the crystal volume. The subsequent intro- 
duction of the polariton pump wave into the quasiparticle 
system resulted in this spectral splitting, which is deter- 
mined by the matrix element M, and pump intensity I. 

The purpose of this paper is to formulate a consistent 
microscopic approach to analyzing the exciton-photon-biex- 
citon system of a semiconductor in an intense polariton 
wave. Such a consistent analysis makes it possible to identify 
a new spectral modification mechanism determined by the, 
direct virtual coupling of two excitons that form a biexciton 
by their Coulomb-like i n t e r a~ t ion . ' ~~ '~  This therefore refers 
to a process described by terms of the form 
V - 1'2M2 (p,q)A P+ BQBP - in the corresponding quasipar- 
ticle Hamiltonian. Here, as we will demonstrate below, the 
stimulated exciton-biexciton splitting is not determined by 
the giant oscillator strength ( 1 ) of the exciton-biexciton 
transition, but rather solely by the matrix element M, (p,q). 

However, the most interesting result obtained here is 
the dynamical red-shift of the exciton level, which is depen- 
dent on pump wave intensity. This effect is also directly de- 
termined by Coulomb-like exciton-exciton interaction and 
can be defined as the exciton-biexciton optical Stark effect. 
This exciton-biexciton Stark effect has a lower pump wave 
intensity threshold compared to the exciton optical Stark- 
effect, since in this case the condition for observing the shifts 
is determined by the parameter Nu:,,, $ Na:, , where a,,,, is 
the radius of the biexciton in the ground state. 

The following is pertinent in this connection. On the 
one hand, the exciton-biexciton optical Stark-effect has the 
same fundamental nature as the exciton Stark-effect: an ex- 
citon-exciton interaction in the semiconductor excited by 
the pump wave. On the other hand, the specific nature of the 
exciton-biexciton Stark-effect, particularly, its low observa- 
tion threshold, arisen because under moderate (Nail,, <1) 
semiconductor excitation, in addition to the single charac- 
teristic dimensions a,, in the exciton system, another natural 
scale, a,,,, , appears. 

2. THE EXCITON-BIEXCITON STARK-EFFECT IN THE 
EXCITON QUASIPARTICLE APPROXIMATION 

where a, is the polariton parameter characterizing the exci- We begin the analysis of the exciton-biexciton optical 
ton-photon interaction strength, q ( p )  is the Fourier trans- Stark-effect with the exciton quasiparticle approximation 
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which treats excitons as unstructured quasiparticles, and 
holds for Nu:, ( 1 (Ref. 20). In our case this is a valid ap- 
proach, since the effects of interest to us arise at a substan- 
tially lower semiconductor excitation Nu:,,, - 1. The char- 
acter of exciton-exciton interaction is essentially dependent 
on the spin structure of the interacting excitons. This makes 
it necessary to introduce into the model two types of excitons 
whose annihilation operators will be denoted by Blp and B,, , 
respectively. 

In the simplest case, the various dipole-active excitons 
correspond to the doubly-degenerate exciton term and the 
only difference in their internal structure is that the spins of 
both the electrons and the holes comprising the excitons are 
in opposite directions. Optical excitation of excitons of var- 
ious types may be related to the use of photons of specific 
polarizations whose annihilation operators in turn will be 
denoted by a lp and a,, . A possible experimental example of 
such a model will be discussed below. We therefore use the 
following exciton-photon Hamiltonian as the initial Hamil- 
tonian: 

where 

are the unperturbed exciton and photon dispersions, respec- 
tively; E~ is the background permittivity, M is the transla- 
tional exciton mass, ~, is the energy of the exciton state, 
and Wuu, (q)  is the Fourier transform of the exciton-exciton 
interaction potential. A number of ~ tudies~l - ,~  have been 
devoted to determining the Coulomb-like potential Wow, (q)  
in connection with analyses of the character of exciton-exci- 
ton scattering and calculation of a series of biexciton states. 

It is significant that identical excitons are always mutu- 
ally repulsive, e.g., W,, (q )  > 0, while excitons of different 
type experience attraction. A characteristic plot of the rela- 
tion W = Wl, (q) = W,, (q) for the isotropic semiconduc- 
tor examined in the case below is shown in Fig. 1. The given 

potential W ( q )  may correspond to the coupled two-exciton 
complexes, biexcitons whose corresponding annihilation op- 
erator A, is given by 

where Y(1) is the wave function in the momentum space 
relative to the motion of the two excitons in the biexciton 
normalized to unity. Note that such a representation is valid 
only for the case where the binding energy of the biexciton is 
substantially lower than the binding energy of its constituent 
excitons. An important element in the subsequent analysis 
will be the commutation relations characterizing the degree 
of independence of the quasiparticle excitations of the semi- 
conductor 

where O(B + B) here and below denotes the concentration 
corrections determined by the population level of the exciton 
states. 

The complete biexciton series {Y, (1)) of both the cou- 
pled states and the states of the continuous spectrum can be 
found together with the corresponding self-energies R p  
from the Heisenberg equation for the operator A,, [A,, is the 
annihilation operator of state j of the biexciton q determined 
by Eq. (3)  1.  This yields 

which for the case of a weakly-excited semiconductor is nat- 
urally the Schrodinger equation reduced to the center of 
mass of the two excitons in the momentum representation 
with the given potential W(1). It follows from the complete- 
ness condition of the wave functions {Y,) 

Taking this into account the initial Hamiltonian (2)  can be 
reduced to 

where the self-adjoint matrix E~ is determined by the expan- 
sion of the potential W(l- 1') in a complete set of biexciton 
wave eigenfunctions 

FIG. 1. 
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Certain qualitative conclusions can already be drawn from 
the form of Hamiltonian (8) near the fundamental biexciton 
resonance, when only a single term can remain in the sum 
over the states i, j with i = j = 1. First, in contrast to the 
conventional approach,'-" E = E,,  is not equal to the unper- 
turbed biexciton energy Sl?, but rather is determined by 
the average potential exciton interaction energy in the biex- 
citon 

where q (1) = qi= , (I), fip = fibiex ,= I ( p )  = a? 
+ @2/4M. This result has a clear physical meaning and 

derives directly from the representation (3). Second, the 
term V - 'l2M2 (p,q)A pf BlclBZp - used in this analysis is in 
fact already found in the Hamiltonian (8).  At the same time 
Eq. (8)  can be recast by retaining this term in its explicit 
form and altering the isolated term E,, A A,, =&A ;A, ac- 
cordingly. 

Our approach is to analyze the properties of the exci- 
ton-photon-biexciton system of the semiconductor in the 
presence of a coherent polariton pump wave k of frequency 
w, in the transparency region near the exciton absorption 
line. Such an intense wave will produce virtual electron-hole 
transitions, and therefore will drive the semiconductor to a 
strongly nonequilibrium state. Here, the pump wave, which 
for definiteness will be associated with the first type of exci- 
tons and photons, can be treated as a wave produced by an 
external source, while in our approximation its description is 
related to replacing the exciton and photon operators of the 
particular mode k with C-numbers: Blk -. V1/*P0 
Xexp( - iw,t); aIk -. V"2Eoexp( - wkt) which in fact 
represent the exciton and photon components of the polari- 
ton pump wave. 

The nonequilibrium state in which the semiconductor 
ends up generally will make it impossible to treat the exciton 
and biexciton excitations as independent. This derives di- 
rectly from the form of the commutators (4),  (5)  for the 
case where the exciton creation-destruction operators on the 
right side of these relations operate on the states of mode k. 
In this case, even in the thermodynamic limit V- co, finite 
corrections arise in the commutation relations that do not 
permit treating the excitons or biexcitons as independent bo- 
son excitations. In our approach this difficulty is easily over- 
come if the mode k is explicitly distinguished in the defini- 
tion (3) of the bierciton operators as well as in the 
Hamiltonian (8); thid mode can formally be regarded as ma- 
cropopulated: 

In fact such an explicit procedure for distinguishing the 
mode k is nothing other than the construction of a new vacu- 
um state of the semiconductor in the presence of the polari- 
ton pump. And if the vacuum state can be formally obtained 
in such an approach by the ordinary Glauber canonical 
transform that incorporates the polariton pump wave source 
in mode k, the procedure for formulating the new vacuum 
state in the general case examined below will be more com- 
plicated. 

It is important to emphasize that this introduction of a 
new vacuum state and the formulation of independent exci- 
ton and biexciton excitations are rigorous due specifically to 
the virtual nature of electron-hole pair creation by the pump 
wave, when the actual population processes of the electron- 
hole levels are suppressed. In this case the latter terms in the 
expressions for and & function as concentration correc- 
tions in the new vacuum state, and can be neglected in what 
follows. 

It follows from general Eq. (12) that the complete 
Hamiltonian & consists of two parts. Its first component HI 
describes the behavior of the photons and excitons of the first 
type in the presence of a polariton pump wave of the same 
type. The second part g2 characterizes under an identical 
condition the second type of exciton-photons and the biexci- 
tons. Using the canonical transformation 

which introduces explicit time dependence in the Hamilto- 
nian ( 12), and summing over the indices i and j ofthe biexci- 
ton series in the third term in the expression for H,, we ob- 
tain 

where the index 2 on the excitons and photons of the second 
.ype will be dropped in this section. 

At this point in the analysis it is appropriate to consider 
diagonalization of the quadratic form (12) subject to Eq. 
( 13 ) to find the true spectrum of the exciton-photon-biexci- 
ton excitations of the semiconductor in the presence of the 
polariton pump field. Such diagonalization in the language 
of the diagram technique corresponds to an exact solution of 
the diagram equations shown in Fig. 2 relative to the one- 
particle and two-particle exciton Green's functions deter- 
mined in the vacuum state of the semiconductor with the 
particular macropopulated mode k. In these graph equa- 
tions the solid and wavy lines denote the exciton and photon 
propagators, respectively; the dashed line represents the ex- 
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FIG. 2. 

citon-exciton interaction potential W, and the arrows denote 
the exciton component Po or P,* of the pump wave; the 
square represents the biexciton vertex function r. We be- 
lieve that the exciton resonance shift S F  in the presence of 
the pump wave is of primary interest; as follows from Eq. 
( 13), this shift is given by 

and is nothing more or less than a way of accounting for the 
second diagram in the exciton diagram equation. Such a lev- 
el shift of the excitons of the second type is a red-shift for the 
characteristic exciton r n o m e n t a p ~ a ~ :  and in fact is due to 
the attraction of the test exciton of the second type p to exci. 
tons of the first type k of the pump wave. 

If the analysis is limited to the biexciton ground level, in 
this approximation the Hamiltonian ( 12) is substantially 
simplified: 

where the parameter E is determined by Eq. ( 10). Taking 
this approximation into account we naturally proceed to ex- 
plicit diagonalization of Hamiltonian ( 12) which is quadrat- 
ic in the independent boson operators a,, B, and A,  + ,. 
Such diagonalization employs a canonical transformation 
and also involves introducing new elementary excitations of 
the semiconductor a;, B ; and A ; + , consisting of photon, 
exciton and biexciton components: 

The transformation to diagonal form denotes in the familiar 
sense an exact treatment of both exciton-phonon and exci- 
ton-exciton interactions in this approximation. The corre- 
sponding new dispersion equation takes the form 

Q,Z 
vlv2v3 - -v3- ( m  1 'vi=O, 

4 (17) 

~ 1 = 0 p ~ ~ - ~ k - ~ ,  v2=mpexf  6 p e X - 0 k - 0 ,  

b i e r  bier 
~ 3 = Q p + k  f 6 p + k  - 2 0 k - 0  

and reflects the nature of unification with subsequent split- 
ting of the exciton-photon-biexciton terms of the semicon- 
ductor in the presence of the polariton pump wave. The exci- 
ton S F  and biexciton SF,", shifts in Eq. (17) together with 
the matrix element m are determined by 

p-li 
6 p e x = ~ l ~ o 1 2  I Y  1 , 

The dispersion equation ( 17) has three branches of the solu- 
tions w = wi (p),  i = 1, 2, 3 while the corresponding weight 
mult ipl iers~~ characterizing the specific contribution of the 
photon, exciton and biexciton components to the new ele- 
mentary excitations, are given by 

Unlike the exact Eq. (14) for the exciton level shift, the 
approximate relation ( 18) contains the biexciton wave func- 
tion of the ground state and the biexciton potential E. As 
follows from Eq. (9)  this corresponds to an approximation 
near the biexciton level n = 1 (see Fig. 1 ) of the exact poten- 
tial Wof its expansion in eigenfunctions ITj)  and retention 
of the principal term. 

The dispersion equation ( 17) obtained here is essential- 
ly different from the equation used previously.7-" Above all 
we emphasize that the spectral modification of the elemen- 
tary excitations of the semiconductor in the presence of a 
polariton pump wave examined here is not determined by 
the "giant" oscillator strength M, (p, q)  of the exciton- 
biexciton transition, but rather solely by the matrix element 
M, (p, q)  characterizing direct resonance coupling of two 
different excitons to form a biexciton. Such coupling of the 
excitons forming a biexciton in turn is determined by the 
potential Wwhich may be due to the presence in the system 
of the third quasiparticles, photons, which resonate with the 
excitons. In other words the polariton effect itself may be 
responsible for satisfaction of the law of conservation of en- 
ergy in the resonance pairing of excitons that forms a biexci- 
ton. 

The most interesting new result is the dynamic shifts S F  
and SF:, of the exciton and biexciton levels which are de- 
pendent on pump wave intensity. This effect is also related to 
Coulomb-like direct exciton-exciton interaction. Indeed, the 
dynamic red-shift of the exciton level given by Eq. ( 18) has 
the following origin. An exciton of the second type p pro- 
duced, for example, by an electromagnetic probe wave, is 
attracted to excitons of the first type of the k-pump wave, 
which results in virtual formation of biexcitons., The effec- 
tiveness of this interaction is characterized by the corre- 
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sponding biexciton potential E <O, while IY ( ( p  - k)/2) (' 
determines the probability of virtual formation of the biexci- 
ton p + k from the p and k excitons. Regarding the biexciton 
shift 6,b'T;",, evidently this is a blue shift consistent with Eq. 
(19). 

This result represents direct evidence that the blue shift 
6; z 2 ) P 0  IZVW,, (0) of the level of the first type of exciton 
comprising the biexciton in the presence of the pump wave is 
more significant than the red-shift Sex of the second type of 
exciton. Here any further stabilization of the exciton-pho- 
ton-biexciton system is associated with the absence of exci- 
ton complexes that are more complicated than the biexciton. 
It is generally w e l l - k n ~ w n ~ ~ , ~ ~  that interexciton repulsion 
predominates in a uniformly excited system in thermody- 
namic equilibrium. However this case of effective exciton 
attraction can be implemented in a "probe radiation-pump 
wave" experiment. Such an optical experiment can be for- 
mulated for a CdS semiconductor in a geometry with pl(kllc 
using a pump wave and probe radiation of opposite circular 
polarizations. 

Finally we emphasize one additional significant ele- 
ment. The dispersion equation ( 17) reflects the fact that all 
three components of the new excitations-the photon, exci- 
ton and biexciton components-are in a certain sense equiv- 
alent. In other words, the new spectrum cannot be treated as 
a modification of the polariton or biexciton spectra,' but 
rather it is necessary to uniformly treat all three components 
of the initial excitations as constituent elements. 

Regarding the polariton pump wave itself, a self-consis- 
tent description of this wave is given by 

The carrier frequency w, of the pump wave is established by 
an external source, in accordance with the actual experimen- 
tal situation. Equations (22) in many respects resemble the 
equations obtained in Ref. 1 and reflect b&h the polariton 
character of pump wave propagation and its nonlinear self- 
action, which is manifested as a blue-shift of the exciton level 
due to the interaction W , ,  of like excitons. We note that the 
exciton Po and photon Eo components are normalized to the 
concentration of the corresponding excitations, consistent 
with the method used to isolate the macropopulated mode k. 
Thus, for example, N = (Po  12-1 is the exciton concentra- 
tion of the pump wave. 

3. THE EXCITON-BIEXCITON STARK-EFFECT IN THE 
ELECTRON-HOLE APPROXIMATION 

In this section we formulate a consistent microscopic 
theory of the exciton-biexciton optical Stark-effect based on 
an analysis of the electron-hole Hamiltonian of the semicon- 
ductor. This approach is required by the lack of a precise 
understanding of the exciton-exciton interaction potential 
W(1). The corresponding initial microscopic Hamiltonian 
describing the Coulomb interaction of the electrons and 
holes in the semiconductor and the electromagnetic field 
generating the band-to-band electron transitions takes the 
form 

+ E[BI ( P ) ~ t d t b ~ . + + f i ;  (p) al+b-pap+tl,  (23) 

where w, (p) = E, + h 'p2/2mC and w, (p) = fiY/2mc are 
the electron energy (operator a, ) and hole energy (operator 
bp ), respectively; E, is the bandgap of the semiconductor; 
and V,, = 4 7 ~ e ~ / V ~ , q ~  is the Fourier transform of the Cou- 
lomb potential. In turn the matrix element p, (p) is deter- 
mined by 

where ii,,, i i , ,  are the Bloch electron functions in the con- 
duction and valence bands, respectively and fi is the momen- 
tum operator. The exciton and biexciton destruction opera- 
tors are introduced as 

where ~ ( 1 )  and r ( p ,  1, s) are the wave functions of the exci- 
ton and biexciton normalized to unity, respectively; 
a = m,/(m, + m,), p = m,/(m, + m,). Regarding the 
spin structure of these elementary excitations we consider, 
as in the preceding section, exclusively the dipole-active ex- 
citons with total spin S = 0 and biexcitons for which the 
spins of the electrons and the holes cancel. Accounting for 
the simple relationship between the results obtained below 
and the relations examined previously, we will not write out 
the indices 1,2 on the different exciton or photon operators 
nor the spin indices. 

The commutation relations analogous to the commuta- 
tors (4) ,  (5 )  examined in the exciton quasiparticle approxi- 
mation take the form 

1,s :?7) 

[A,, A p t ]  =6 , , , [ I+O(afa)  +O(b tb )  1, (28) 

where the following properties of the biexciton wave func- 
tion were used in deriving Eq. (28): 

which reflect the antisymmetry properties of the total func- 
tion r ( p ,  1, s) with respect to permutation of electrons or 
holes. It is possible to find the corresponding Schrijdinger 
equation for the wave function r (p, 1, s) of a weakly-excited 
semiconductor based on the equation of motion for the biex- 
citon operator A,  (26) obtained by means of Hamiltonian 
(23): 
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+V,[r(p-r, l+ar, s-ar) +r(p-r, 1-pr, s+Pr) 

- r (p-r, l+ar, s+pr) 
biex -r(p-r, 1-pr, s-ar) ] ) = s J ,  r ( p ,  1, s) .  (30) 

The terms under the summation sign can be arbitrarily 
grouped into two parts by brackets. In this case, the first 
term will characterize the potential self-energy of each of the 
two excitons comprising the biexciton, while the second will 
correspond to exciton-exciton interaction. It is precisely this 
second term that will determine the dynamical shift of the 
exciton level in the presence of the pump wave. 

The polariton pump wave k is formally introduced to 
this photon-electron-hole system of the semiconductor by 
adding the Glauber macroscopic photon source to the initial 
Hamiltonian (23) : 

which henceforth will be examined self-consistently by relat- 
ing the generated classical electromagnetic field 
Eo exp( - iwkt) to the photon component of the pump 
wave. The new vacuum state of the semiconductor in the 
presence of the pump wave can be introduced by means of 
two successive canonical transformations of the Hamilto- 
nian (23). The first such transformation is an ordinary 
Glauber transformation which eliminates the photon source 
(3 1 ) . The second transformation, analogous to that pro- 
posed in Ref. 20, is implemented by the operator 

which results in the following substitution of electron-hole 
operators: 

where up = cosp,, up = sinp,, u: + v: = 1. After these 
operations, including a time transformation, the Hamilto- 
nian takes the form 

where 

L(P) = [o,(p+k) +o,(p) - o ~ I u , v , + P ~  ( P ) E ~ u I I - B ~ ' ( P ) E o ' ~ ~ ~  

where 

B (p, 1, S) = V s [ ~ p ~ ~ ~ l + s ~ p - s + ~ p ~ ~ ~ ~ + ~ ~ p - s  

+ u , u ~ - , v ~ v ~ + ~ + ~ u ~ ~ I + , u ~ u , - ~ ]  , (42a) 

G (p, 1, S) =V. [ U ~ U I ~ I + ~ V ~ - ~ + U ~ U ~ - ~ V I ~ I +  

-ulup-sul,s~p-up-svpu~vl+sl . (42c 

The remaining unknown parameter p, of the transforma- 
tion (32) is determined by the stability requirement of the 
new vacuum state relative to creation of the hole pair elec- 
tron. This condition in fact results in the requirement 
L(p) = 0 in Eq. (39) for H,,. As we shall demonstrate be- 
low the parameter pp is determined by [Po 12a,3, (1, which 
validates approximate relations (p, ( 1 ) 

In order to determine the parameter pp we therefore obtain 
the following equation: 

Accounting for the conditions of this problem, we can ap- 
proximate the isolated exciton level n = 1 in Eq. (44). Spe- 
cifically, in this case the following representation is valid: 

c~~-er=V'"cp (p)Po, (45) 

where the exciton wave function p(p) ,  as follows from Eq. 
(44), is determined by the Schrodinger equation. 
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The parameter Po in fact represents the exciton polarization 
of the pump wave and is related to Eo by Eq. (47), which can 
be obtained from Eq. (44): 

Qc 
(orex-ok)Po=i- E,, 

2 

where the polariton parameter fl, is given by 

It is evident that Eq. (47) directly corresponds to the second 
equation of the previous system (22) in a linear approxima- 
tion. The source H, of the electromagnetic wave Eo intro- 
duced in the initial Hamiltonian (23) is self-consistently re- 
lated to the exciton polarization Po by means of the first 
equation of the polariton system (22). 

After determining the parameter p,, the subsequent 
analysis involves formulating new exciton and biexciton 
quasiparticle excitations by means of Eqs. (25 ), (26) where, 
however, it is necessary to use new exciton and hole opera- 
tors. It is this approach that makes it possible to treat the 
excitons and biexcitons of the semiconductor in the presence 
of the polariton pump wave as independent boson excita- 
tions: [A,, B ,+ ] = 0, [Aq, A ,+ ] = S,,, i.e., to neglect the 
concentration corrections. 

Using the approximation (43) in conjunction with the 
transformed Hamiltonian & , it is possible to find the corre- 
sponding equations of motion for the photon operator a, 
and the new exciton for the biexciton operators B, and 
A, + , . The corresponding dispersion equation for the intrin- 
sic exciton-photon-biexciton excitations of the semiconduc- 
tor in the presence of the pump wave can be obtained in turn 
from a closed system of these equations. This dispersion 
equation is entirely analogous to Eq. ( 17), which was pre- 
viously considered in the exciton quasiparticle approxima- 
tion. In this case some rather involved calculations make it 
possible to express (for the case I Po 1 2a2,,, ( 1 ) the dynamical 
shift S$ and the matrix element m, previouslydetermined by 
Eqs. (18) and (20), respectively, through the microscopic 
characteristics of the electron-hole system of the semicon- 
ductor: 

where the exciton p (p )  and biexciton r ( p ,  1, s) wave func- 
tions of the ground states are determined from the corre- 
sponding Schrodinger equations (46) and (30). It can be 
demonstrated that the final equations (49), (50) become the 
previous results (18), (20) in the limiting case of a weakly- 
coupled biexciton, when it is possible to factor (when the 
symmetry properties are properly accounted for) the func- 
tion r: r -t Ypp. 

4. DISCUSSION OF RESULTS 

We return to a simpler model based on the exciton qua- 
siparticle approximation for analyzing the exciton-biexciton 
optical Stark-effect. Figure 3b, provides a graph of the dis- 
persion curves of the modified spectrum of a CdS semicon- 
ductor with the following parameters: w, = 2552 MeV, 
f l y = 5 1 0 0  MeV, M=0.9m0, E, =8.87, E =  - 5  MeV, 
IY (0) I = 2.10- l 8  cm3 in the presence of a polariton pump 
wave of frequency w, = 2547 MeV and intensity I = 5 ,  
MW/cm2. The dispersion curves were found by numerically 
solving Eq. (17), while the unperturbed terms of the semi- 
conductor, i.e., in the absence of the pump wave, are shown 
in Fig. 3a, for comparison purposes. A numerical calculation 
was carried out for the case of double resonance, when the 
frequency a:"" - w, falls within the unperturbed exciton 
line, i.e., in the range w, f a,,, where w,, represents the po- 
lariton longitudinal-transverse splitting. In the inverse case 
of distributed resonances it is natural to divide the exciton- 
biexciton induced splitting range at the frequency 
fly - w, and the pump-induced effective shift of the 
exciton level. The following equation can be obtained from 
the dispersion equation ( 17) for this purpose: 

Therefore the effective dynamical shift of the exciton level is 
determined by two components. Specifically, the first com- 
ponent in Eq. (5 1 ) represents the red-shift from renormal- 
ization of the vacuum state of the semiconductor in the pres- 
ence of the pump wave, as examined previously. The second 
term which roughly characterizes the level shift due to in- 
duced splitting of the terms at the resonance frequency 
at;"" - wk may have either a positive or negative sign de- 
pending on the sign of the denominator. However for the 
more interesting case (from the experimental viewpoint), 

FIG. 3. 
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when the resonance exciton-biexciton splitting frequency 
lies above the exciton level w,, the second term in Eq. (51) 
corresponds, like ST, to a red-shift of the exciton level. 

The dispersion equation (17) was obtained in an ap- 
proximation of an isolated biexciton ground level, which is 

biex valid in the frequency range ISIF+xk + Sp + - wk - w I < E. 

It follows that the effective exciton shift S$ is primarily de- 
termined by the second term in Eq. (5 1 ), i.e., it occurs due to 
the effect of pump-induced splitting on the position of the 
exciton level. However this claim requires some additional 
analysis. 

At the same time we have so far considered the case 
I Po 12a;,,, < 1 of moderate pump wave intensities. Formally 
this derives from the use in the expansion (9)  of the unper- 
turbed biexciton wave functions {%)determined by the cor- 
responding Schrodinger equation (6)  or, in other words, a 
replacement in the diagram equations (see Fig. 2) of the 
exact vertex function r by the function r0 which does not 
contain pump lines. In the general case, it is possible to de- 
rive a solution to the problem within the framework of the 
exciton quasiparticle approximation for rather high pump 
wave intensities I Po 1 2ad, 4 1 < 1 Po 1 2a:i,,, as well. Using pre- 
cisely the same method of introducing the independent qua- 
siparticle operators for the general Hamiltonian (2)  with the 
particular macropopulated mode k as before, we obtain the 
system of equations 

which determines both the new dispersion law 
o = w ( p, o,, I Po 1 2 )  and the modified series(@,) of the 
biexciton wave functions. The use of the unperturbed biexci- 
ton wave functions {Y,) as such a series naturally leads to 
the previous results, specifically, the Hamiltonian ( 12). 

In the general case, the complete analysis of Eqs. (52) is 
a separate problem, even for the case of biexciton ground 
state selected by virtue of resonance conditions. However, a 
qualitative analysis of this sytem may yield a number of con- 
clusions. Specifically, it is possible to obtain an equation 
analogous to the Schrodinger equation (6) containing the 
effective potential fi= @(a, I Po 1 2 )  in place of the poten- 
tial W for the modified wave function @, (I) of the biexciton 
ground state. Such a transition to the effective potential i? 

explicitly reflects the screening action of the pump wave ex- 
citons k on the biexciton formation process, which will re- 
duce the attractive potential @as the pump wave intensity 
grows (the potential @is represented in Fig. 1 by the dashed 
line). This change in potential in turn results in an effective 
reduction of both the parameter E and the matrix element m 
determining the exciton-biexciton spectral splitting in ac- 
cordance with Eq. ( 17). At the same time the red-shift S$ 
continues to be determined by Eq. ( 14), which is determined 
directly by the form of system (52). Moreover, in this case 
the approximate relation ( 18), which was written by means 
of modified wave function @ ( I ) ,  becomes invalid. It is there- 
fore possible to draw a qualitative conclusion that the role of 
the first term for the effective shift of the exciton level will 
grow with increasing pump wave intensity in Eq. (5 1 ). 

The exciton level shift phenomenon described here is 
dynamical in nature and in this sense is entirely analogous to 
the exciton optical Stark-effe~t.'-~ In the latter case, how- 
ever, the observation threshold of the blue-shift of the excita- 
tion level is determined by the dimensionless parameter 
I Po l2a:, and is characterized by significant pump wave in- 
tensities I. Thus a 1 MeV dynamical shift of the exciton level 
in a GaAs crystal requires a pump intensity I- 1 GW/cm2 
(Ref. 6).  

This exciton and biexciton level shift effect is naturally 
related to the low-threshold optical Stark-effect, since in this 
case the observation threshold of such shifts is determined 
by the parameter I Po I 'a:,,, ) I Po I 'a:, . In this case, a corre- 
sponding 1 MeV shift of the exciton level for, for example, a 
CdS crystal, requires a pump wave intensity I- 1 MW/cm2. 

We note the following in concluding our discussion of 
the dynamical shift phenomenon of the exciton level. The 
relatively short-range character of the exciton-exciton inter- 
action which is responsible for the formation of biexcitons as 
a rule permits us to assume Y((p  - k)/2) z\V(O), i.e., to 
treat the exciton level shift as a complete shift within the 
optical range of interest to us, p( lo6 cm - '. Moreover, in 
some sense, this discussion concerns the modification of the 
exciton, photon and biexciton spectra of the semiconductor 
due to the proposed mechanism in all of phase space 
p( l/abie, and not solely in the vicinity of exciton-biexciton 
resonance flz, - w, usually treated. 

The specific nature of this low threshold exciton-biexci- 
ton optical Stark-effect, like the exciton optical Stark-effect, 
is that they are both determined by the exciton, e.g., the 
polarization, component Po of the polariton pump wave. In 
the case where a pump wave of intensity I established by an 
external source is normally incident on the semiconductor 
surface, we can obtain the following expression for the char- 
acteristic energy parameter: 

which determines the features of the modified spectrum in 
accordance with the dispersion equation ( 17). Here the po- 
lariton refractive index n is found from 
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which is valid for Iw, - w, I % w,,. The spectral changes here 
are therefore determined, in accordance with Eq. (53), by 
two parameters: The exciton-photon interaction strength 
(the parameter a, ) and the exciton-exciton interaction po- 
tential E. However, as demonstrated above, the potential E is 
itself responsible for the specific nature of this spectral modi- 
fication mechanism. 

We pause to note another interesting result. The terms 
V - "2M, (p, q )A p+ B2, a,, - , are not generally present ex- 
plicitly in the quasiparticle Hamiltonian (8)  obtained here, 
where the matrix element M, is determined by Eq. ( 1) and 
characterizes the "giant" oscillator strength of the exciton- 
biexciton tran~ition.'~-" Nonetheless the Hamiltonian (8)  
formally contains this matrix element, which is now natural- 
ly determined by the form of the biexciton operator (3) and 
the polariton term of the quasiparticle Hamiltonian. This 
follows from 

where 10) is the ground state of the quasiparticle system 
considered here. 

The fact that the modification of the semiconductor 
spectra is not determined by the giant oscillator strength, 
i.e., the matrix element MI (p, q), is due to the following 
circumstance. The corresponding states A ,+ Jk) and 
a,+, B $, - , 1 k )  are not independent, e.g., orthogonal states, 
in the presence of a coherent polariton pump wave, as was 
the case for the states A ,+ 10) and a L B  $, -, 10). Therefore 
formal introduction of the matrix element M, (p, q )  for this 
transition is not valid. Moreover, along these same lines, it 
follows that even the ordinary two-photon biexciton absorp- 
tion coefficient is not determined by the matrix element MI 
but rather by the matrix element examined above 

The matrix element M2 (p, q) also characterizes the giant 
oscillator strength of the exciton-biexciton transition in the 
generally understood sense," although by an amount %/a, 
times smaller then in the case of the ipatrix element 
MI (p, q). We note that this conclusion evidently eliminates 
the existing qualitative contradiction between the results of 
experiment and theoryI4 and also provides a physically valid 
result in the limiting case E + 0, since here the matrix element 
satisfies M, - a, in accordance with Eq. ( 1 ) , while M2 - 0 in 
accordance with Eq. (56). 

In light of these results, some commentary on recently 
published ~ t u d i e s ~ ~ . ~ ~  devoted to an analysis of similar is- 
Hues, seems appropriate. We emphasize that the authors of - -  . 

these studies basically limited their approach to the applica- 
tion of perturbation theory and a "three-level" model: The 
groundstate, the exciton and the biexciton levels, neglecting 
spatial dispersion. Moreover, the discussion in these articles 
does not concern the dynamical shift 6: of the exciton level, 
but rather focuses on ordinary exciton-biexciton splitting. 

The authors wish to express their sincere gratitude to A. - 
I. Bobrvsheva for many discussions of the results of this 
study and a wide range of valuable critical commentary. The 
authors are also grateful to G. S. Vygovskii, E. A. Zhukov 
and S. G. Tikhodeev for their assistance in this work. 
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