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A detailed analysis is given of a recently discovered new physical effect in the form of a quantum- 
interference resonant photocurrent [A. P. Dmitriev, S. A. Emel'yanov, Ya. V. Terent'ev, and I. 
D. Yaroshetskii, JETP Lett. 49,584 ( 1989); 51,445 ( 1990); Solid State Commun. 72,1149 
( 1989) I .  This effect may appear under the influence of light in a great variety of media both with 
and without a center of inversion (symmetry). A necessary condition is the existence of an energy 
level interacting with states in the continuous spectrum of a medium. The photocurrent is not a 
consequence of a familiar quantum-interference effect which occurs under absorption conditions 
and is known as the Fano resonance. It is shown that the photocurrent has the following 
characteristic features: its direction is reversed on passage through the point of resonance and, in 
the region where the offset A from the resonance is greater than the width ofthe level, it decreases 
as 1/A; the resonance amplitude may exceed the background even when the corresponding 
optical transition is almost forbidden. A theory of the effect is developed and examples of physical 
systems in which it can be observed are given. 

INTRODUCTION 

If the energy spectrum of a physical system includes a 
discrete level interacting with states in the continuous spec- 
trum of the system, then the frequency dependence of the 
optical absorption coefficient a may exhibit an asymmetric 
peak known as the Fano re~onance.~ This antisymmetric 
Fano correction to the main Lorentzian absorption profile is 
inversely proportional t'b the offset (detuning) A from a res- 
onance and is due to quantum interference of optical transi- 
tions to the continuous spectrum. 

We show that the presence ofa level interacting with the 
continuous spectrum gives rise to a new effect in the form of 
a quantum-interference resonant drift of carriers (photocur- 
rent). This photocurrent is unrelated to the Fano correction 
to the absorption coefficient and, in particular, it may appear 

- - 

when the latter is altogether absent. 
We illustrate this by means of the scheme shown in Fig. 

1. Under the action of an optical photon of energy h an 
electron could be transferred from an initial state 1 to a final 
state 3 belonging to the continuous spectrum either directly 
(1 - 3 )  or via an intermediate state 2 corresponding to a 
discrete level ( 1 -. 2 - 3 ) . We denote the amplitudes of the 
two transitions by P, and R, . The 1 + 2 - 3 transition is reso- 
nant and its amplitude is R, = Q,, V,/A, where Q,, and V, 
are the matrix elements of the 1-2 and 2- 3 transitions 
from the level to the continuous spectrum, while 

sorption. The second term is Lorentzian IQ,, 1 2 1  V, I2/A2 and 
describes the absorption by the level 2 followed by decay to 
the band of the resultant quasistationary state. The third 
term is the above-mentioned antisymmetric interference 
correction to a. It differs from zero if the part of Re(P,R ,*) 
even with respect of the momentum does not vanish. 

We now consider the problem of the photocurrent 
which may appear in such a system. In general, it is propor- 
tional to  the total momentum of the optically excited carri- 
ers: 

j $ k W k =  8 kIprP 

In homogeneous centrosymmetric media we can expect 
only a photocurrent proportional to the photon momentum 
x. The first term in Eq. (2)  represents the drag photocur- 
rent4-6 due to the small (compared with x )  difference be- 
tween P, and P- ,. The second term vanishes because 
1 V, 1 = 1 V - ,  I. The third-interference-term is associated 
with the odd part of Re(P,R ,*): it is resonant and propor- 
tional to l/A. Therefore, the resonant contribution to the 
photocurrent j, is of the form j, = j - j,,, a %/A. Its order of 
magnitude may be greater or smaller than the background 

A = E, - E~ is the difference between the energies of the fi- 
nal and intermediate states, which is equal to the offset 
h - ( E ,  - E, ) from a resonance. The total transition prob- ';I = -  - cr,'.= 
ability W, to a state with a momentum k is proportional to 

2 
-- - -- 

IPk + R k  1 2 '  >----EIL 
€2 r 

In the simplest case of an isotropic energy band, we find , 

that 
hw Qrz 

a a I C Wli ar C I PI, l2 + C 1 R k  l 2  + 2 Re (PkRk*),  ___) 

n k  ilk 11 k n k  

where the summation is carried out over all the directions of 
4 - 

the IlUXlentum k. The first term On the right-hand side of FIG. 1.  Schematic representation of resonant absorption of light in a sys- 
Eq. ( 1 ) represents the nonresonant contribution to the ab- tem with a level which interacts with states in the continuous spectrum. 
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FIG. 2. Typical spectral dependence of a quantum-interference resonant 
photocurrent. 

contribution j,, . A typical dependence j (A)  is plotted in 
Fig. 2. 

We must stress an important distinguishing feature of 
this quantum-interference photocurrent. The ordinary drag 
current is related to the absorption coefficient by j a  da/dw 
(Appendix 1). This applies to and nonreson- 
ant4-6 photocurrents. However, it is clear that the interfer- 
ence photocurrent does not satisfy this relationship. In par- 
ticular, if Re(P,R ,*) is odd relative to k, the absorption 
resonance will be Lorentzian, because j, a l/A. 

In noncentrosymmetric media in addition to the photo- 
current proportional to x we can expect-as is well known- 
a photocurrent whose magnitude and direction are governed 
by the internal asymmetry of the crystal (this is known as the 
photogalvanic current-see Ref. 10). The presence of an en- 
ergy level interacting with states in the continuous spectrum 
may then give rise to a quantum-interference photocurrent 
whose direction is governed not by the photon wave vector, 
but by the asymmetry mentioned above. This photocurrent 
is also related to the part of Re(P,R :) odd in ?t. It is not 
proportional to a and obeys the characteristic dispersion law 
jr a l/A. 

It therefore follows that in general a quantum-interfer- 
ence resonant photocurrent consists of two components. 
One of them is proportional to the photon momentum x and 
the other exists only in media without a center of inversion 
and its direction is a function of the orientation of a crystal. 

We now describe an experiment in which a quantum- 
interference resonant photocurrent was observed. 

PHOTOCURRENTS DUE TO OPTICAL TRANSITIONS 
ACCOMPANIED BY SPIN FLIP IN n-TYPE InSb: EXPERIMENT 

Until now the optical transitions accompanied by spin 
flip in n-type InSb have been observed in the absorption and 
photoconductivity spectra."-l3 The experiments have been 
carried out in strong magnetic fields, Hz40-60 kOe. Two 
relatively weak peaks separated from one another by ~ 0 . 5  
kOe have been observed. Both peaks have the Lorentzian 
profile with a half-width of the order of 0.05 kOe. It  has been 
established that one of the peaks is due to a resonance of 
electrons bound to impurities (impurity spin resonance 
ISR) and the other is due to a resonance of free electrons 

(spin resonance SR). The difference between the resonance 
fields arises because the value of the g factor of free electrons 
is somewhat less than that of bound electrons." 

In our experiments we investigated the photocurrent in 
the region of a spin resonance in fields H = 55-57 kOe. A 
submillimeter NH, laser pumped optically by a CO, laser 
(details of the laser used were given in Ref. 14) was em- 
ployed as the source of the exciting radiation. The submilli- 
meter laser generated single pulses which were nearly trian- 
gular with halfwidth 40 ns and a maximum power of - 100 
kW. The laser radiation wavelength was 90.55 p m  
(h = 13.7 meV). At the exit from the laser cell this radi- 
ation had a weak linear polarization. 

In these experiments we used unpolarized light as well 
as light with linear or circular polarizations. In the former 
case the radiation was delivered to a sample using a metal 
light pipe terminating with a light-concentrating cone. Mul- 
tiple reflections from the walls of the light pipe and the cone 
made the transmitted radiation unpolarized. Light with lin- 
ear polarization was generated by placing a metal grid be- 
yond a laser cell. This linear polarization was converted into 
circular by a quarter-wave plate made of crystalline quartz. 
Such polarized light was focused with a long-focus lens. The 
maximum intensity of light in the sample reached 10 
kW/cm2. It was lower than the calibrated polyethylene at- 
tenuators. 

The experiments were carried out in the Faraday geom- 
etry, i.e., the direction of light coincided with the magnetic 

FIG. 3. Dependence of the photocurrent (a)  and of the photoconductivity 
(b)  on the applied magnetic field, obtained for sample No. 1 using unpo- 
larized light. The insets show the optical transitions for the impurity spin 
resonance (ISP) and the spin resonance (SR), as well as the experimental 
geometry. 
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TABLE -- I. 

field. The samples were parallelepipeds with dimensions 
3 X 3 X 10 mm and were placed inside the cavity of a super- 
conducting solenoid immersed in liquid helium at T = 2 K. 
Ring-shaped ohmic contacts (inset at the top right of Fig. 3) 
were soldered near the end faces. The orientation of a sample 
was determined by the light figure method.15 The properties 
of the investigated samples are listed in Table I. 

In these experiments we determined the magnetic field 
dependence of the photocurrent longitudinal in relation to 
the incident light. In some cases we also determined the pho- 
toconductivity of a sample. When the field became equal to 
the value corresponding to the ISR or SR, giant bipolar re- 
sonances of the photocurrent were observed and their ampli- 
tudes depended on the ratio of the densities of free and bound 
electrons. For example, in the case of sample No. 1 with a 
relatively low electron density the ISR of the photocurrent 
was several times stronger than the SR (Fig. 3a). In the case 
of samples with a high electron density the opposite was true 
(Fig. 4). 

The very appearance of the photocurrent due to transi- 
tions between two localized states of electrons was so unex- 
pected that in order to ensure a more reliable identification 

1 
2 
3 
4 
5 

of the resonances, we carried out an additional experiment 
on the photoconductivity of our samples (Fig. 3b). The posi- 
tions of the photocurrent resonances on the magnetic field 
scale coincided with the positions of the photoconductivity 
resonances which, as pointed out already, corresponded to 
the ISR and SR. 

It is worth noting a number of interesting features of the 
observed resonances. 

1. The absolute value of the resonant photocurrent may 
exceed the background although the corresponding optical 
transition is almost forbidden. 

2. The direction of the photocurrent is reversed at the 
resonance point and the transition from the minimum to the 
maximum value of the photocurrent occurs within the width 
of the corresponding optical transition. 

3. The "wings" of the resonance curves decrease pro- 

FIG. 4. Dependence of the photocurrent on the magnetic field, obtained FIG. 5 .  Dependence of the photocurrent on the magnetic field obtained 
for samples Nos. 2 (curve 1 , 0  corresponds to the active polarization of for sample No. 3 (curve 1, Ocorresponds to the active polarization of light 
light and corresponds to the inactive polarization) and 4 (curve 2, and to the inactive polarization) and sample No. 5 (curve 2, inactive 
corresponds to the active polarization, and A corresponds to the inactive polarization). The small differences between the resonance fields for sam- 
polarization). ples Nos. 2 ,4  and 3, 5 is due to the anisotropy of the g factor of InSb.I8 

,Electron density a t ,  
T = 77 K ,  cm-3 

6.10iS 
6.10" 
6.10" 

45. i0l4 
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portionally to l/SH as a function of the offset from reso- 
nance, whereas the corresponding absorption profiles are 
Lorentzian and proportional to l/(SH) *, where 
SH = H - H, and H, is the resonance magnetic field. 

A more detailed investigation of the effect was carried 
out by measurements employing linearly and circularly po- 
larized light incident on samples oriented along the [loo] 
and [ 11 1 ] directions, and also experiments involving rever- 
sal of the directions H and x .  The dependence obtained in 
this way is shown in Figs. 4 and 5. It is clear that the reson- 
ances of the photocurrent appear only in the cases of linear 
and cyclotron-inactive circular polarizations of light, and 
have mainly the same characteristic features as those exhib- 
ited by the unpolarized light case, and the effect is" even in 
H and odd in x .  As reported above, the resonances were 
observed only when a reversal of the direction of H or x was 
accompanied by a reversal of the sign of the polarization. It 
was moreover established that the effect was linear in the 
intensity' throughout the investigated range (up to I- 1 
kW/cm2). 

QUALITATIVE EXPLANATION OF THE EFFECT 

It is known that the spin splitting E ,  of the ground Lan- 
dau level in n-type InSb represents approximately one-third 
of the cyclotron energy h, because of the anomalously 
large value of the g factor (g = - 50) and in a field of 
H = 56 kOe it amounts to 13.7 meV. Then, since we have 
g <O, the 0 +  level with the spin s = 1/2 lies below the 0 -  
level with s = - 1/2. The electron states in the 0 + and 0 -  
subbands are classified in accordance with the value of the 
momentum k along the magnetic field and in accordance 
with the projection of the orbital momentum m along this 
direction. In the case of the zeroth Landau band, we have 
m = 0 ,  - 1, - 2  ,.... 

The levels of an electron bound to a charged impurity 
also exhibit the Landau and Zeeman splitting in a magnetic 
field. Consequently, near the bottom of each free-electron 
subband there is a series of Coulomb levels which are usually 

FIG. 6. Schematic representation of the optical transitions from the 000 + 

level outside the spin resonance region. 

000 + state is zero. These transitions are identified by arrows 
in Fig. 6 and these begin from the level 1 and terminate at the 
levels 3 and 3'. If we denote the amplitude of the 1 - 3 transi- 
tion by P, and that of the 1-3' transition by P- ,, we find 
that the background photocurrent is described by (see the 
Introduction) 

In the region of a resonance (Fig. 7a) we can expect also 
the composite transitions 1 - 2 - 3 and 1 - 2 - 3' via the in- 
termediate state terminating at the level 000 - , of which the 
1-2 transition is of the magnetic-dipole type, whereas the 
transitions 2 - 3 and 2 - 3' occur because of the spin-orbit 
interaction in the field of the impurity. The final states of the 
electron in the band are identical with the final states of the 
transitions 1 - 3 and 1 - 3', i.e., they also correspond to the 
projection of the orbital momentum m = - 1. In fact, the 
electron orbital momentum at the 000 level is zero and the 
spin momentum is s = - 1/2; the total electron momentum 
is conserved in the spin-orbit transition to the 0 +  band, 
where s = 1/2, so that in the final state we have m = - 1. 

We denote the amplitudes of the 1 - 2 - 3 and 1 - 2 - 3' 

denoted by the symbol (nmA) * . Here, n is the Landau level 
number; m is the projection of the orbital momentum along 
the magnetic field, which assumes the values m(n; A is the 
quantum number labeling the various impurity states with 
identical values of m and n, whereas the plus and minus signs 
correspond to s = 1/2 and s = - 1/2. We are interested in 
transitions within the lowest (n = 0)  Landau level. 

The experimentally observed impurity resonance is due 

u- 3:-w:; 
to a transition from the ground level 000 + to the level 000 - , /' fiu 

which differs from the ground level only by the spin orienta- , 
OGP+ tion. The free-electron resonance corresponds to the I -- 

I 
0 +  -0- transition. We recall that the small difference be- 
tween the resonance fields of these transitions is due to the 
difference between the g factors of the bound and free elec- 

b 0- 

trons. 
We shall now account for the experimental results. We 

'begin with an impurity resonance. Outside the resonance the 
photocurrent appears because of electric-dipole transitions 
of electrons from the 000 + level to the states in the 0 + band 
with the momenta k and - k and with the orbital momen- 
tum projection along the magnetic field amounting to 
m = - 1. This last circumstance arises because in the case 1 ooo+ ----- 
of passive polarization of light the photon momentum is FIG. 7. Schematic representation of transitions from the 000 + level in the 
- 1, whereas the momentum of an electron in its initial regions of the impurity spin (a) and band-band spin (b)  resonances. 
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transitions by R,  and R  - , . Since the spin-orbit interaction 
is odd in the electron momentum, the value of R  -, differs 
from R,  only in the sign, i.e., R  -, = - R, .  The total am- 
plitude M, of the transition from the level 1 to the level 3 is 
equal to the sum of the amplitudes P, and R,:  M, = P, 
+ R , .  We similarly find M - ,  = R p k  +P-, =P-, 
- R,.  The total photocurrent is proportional to the differ- 
ence between the squares of M, and M -, : 

The amplitude R ,  is equal to the ratio of the product of the 
matrix elements of the transitions 1 - 2 and 2 - 3 to the dif- 
ference between the energies A of the final 3 and intermedi- 
ate 2 states. Since the matrix element of the magnetic-dipole 
transition 1 - 2 is proportional to the photon momentum x 
and the quantity A is proportional to SH, we find 
R,  a x/SH. Consequently, the resonant contribution j, to 
the photocurrent is given by 

which is confirmed by the experimental results. 
In the case of active polarization of light the optical 

transition from the 000 + level to the 0 + band is impossible. 
In fact, in this case the photon momentum is unity, whereas 
the electron momentum in the 000 + state is zero and its 
momentum in the band can only assume values mgO, as 
pointed out already. This accounts for the absence of a reso- 
nance in experiments involving active polarization. 

The mechanism responsible for the photocurrent in the 
case of a band-band resonance is similar to that described 
above (Fig. 7b). The nonresonant contribution is associated 
with an electric-dipole transition within the 0 +  band 
( 1 - 3), which is accompanied by the Coulomb scattering of 
an electron by an impurity. In the resonance region it experi- 
ences interference of the composite transition 1 - 2 -+ 3. The 
1-2 optical transition is of the magnetic-dipole nature, 
whereas the 2- 3 transition occurs because of the spin-orbit 
scattering of an electron in the field of the same impurity, 
which is active in the 1 - 3 electric-dipole transition. The 
contributions of the 1 -+ 3 and 1 - 2  - 3 transitions, due to the 
scattering by different impurities, vanishes after averaging 
over the impurity positions. 

We conclude this section by noting that optical transi- 
tions accompanied by spin flip may also be due to the k 3  
terms in the Hamiltonian (known as the combined reso- 
nance-see Refs. 17 and 18). It is this process that makes the 
principal contribution to the 1 - 2 absorption, since-ac- 
cording to Ref. 18-its probability is much higher than the 
probability of the magnetic-dipole transition. However, us- 
ing the results of Ref. 18 we can show that in the Faraday 
geometry the 1 - 2 -. 3 composite transition involving a con- 
tribution of the k ' terms does not interfere with the 1 - 3 
electric-dipole transition, because their amplitudes differ in 
phase by ~ / 2 .  

ANALYTIC THEORY 

1. impurity resonance 

It follows from a qualitative analysis that in the case 
under discussion the important interaction is that between 

the state at the 000- level and the states in the O +  subband 
with the orbital momentum projection along the magnetic 
field direction ( z  axis) amounting to - 1. The correspond- 
ing wave functions will be denoted by X, ( r )  and p, (r) .  We 
shall ignore the nonparabolicity of the 0 + subband and as- 
sume that E,  = k 2/2m. The function p ,  ( r )  allows for the 
Coulomb scattering of an electron on an impurity. We adopt 
the following normalization conditions:*) 

The functions X, and p ,  are the eigenfunctions of the Ham- 
iltonian X,, which does not include the interaction V be- 
tween the level and the band. In the case of this interaction 
we assume that only the matrix elements of the 
Jp ( r )  V(r)xo ( r )dr  = Vko.  type do not vanish, since 
VOO = Vkk,  = 0. 

We now have to find the eigenfunctions @, of the Ham- 
iltonian X, + V, such that @, - p ,  in the limit V+O. This 
is the familiar Fano p r ~ b l e m . ~  We outline the solution of this 
problem. 

The function @, satisfies an integral equation 

@,* (r) =q,* (r) + G* (r, r') V (r') @,* (rf ) drr, (7) 

where G ,+ (r,rf) is the Green's function of the operator X, : 
+ m 

Gk* (r, r') = 
xo (r)xo' (r') v k r c t  (r) qkr** (r') dk' 

+ j ~ , , - -~ , ,* iy  
, 7-07 

Ek-€0 -_ 
(8) 

E, is the energy of the discrete level, whereas the plus and 
minus signs correspond to the diverging and converging 
waves, respectively. We seek the solution of the above equa- 
tion in the form 

+- 

B.* (r) =ao* (k) no (r) + j a , ,+(k)  qkrf (r) dk. (9)  
- m 

Substituting Eqs. (8 )  and (9)  into Eq. (7),  we obtain a sys- 
tem of equations 

+ m 

Vk.0 
a,,* (k)  =IS (k-k') +ao' (k) 9 

~ ~ - e k ' f  i y  

from which we find that 

( J I v o k '  1 '  dkr)- l  
~ o '  (k) = v o k  ER-EO - 9 

- rn 8,-ek,+iy 

a h r *  (k) = 6 (k-k') \ 

Below we will need the probability of a transition to the 
state @, . In calculating this probability it is necessary to use 
the function @; ( r ) .  We obtain an expression for this func- 
tion by substituting Eq. ( 1 1 ) into Eq. (9) : 
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where 
+ m  

The second term in Eq. ( 12) is the contribution of the 
wave function of a discrete level to the exact wave function of 
the continuous spectrum, whereas the third describes the 
resonant scattering of an electron by a level because of the 
interaction V. Both these terms are small compared with the 
first value of ck,  with the exception of the region of the reso- 
nancewhere lak - E, - 6, (k)  I - r ( k ) .  Thequantity 6, (k)  
is a small shift of the level due to the interaction, whereas 
r( k) is the resonance half-width. 

In fact, the wave functions of an electron at the level in 
question and in the band are spinors with the "down" spin 
(S = - 1/21 and the "up" spin (s = 1/2), respectively. We 
denote these spinors by i,, and @, , : 

h 

Then, the exact wave function is described by 

7 - 
8 0  

t v ~ : : ~ ~  j G h e ;  ( r )  V o , , k , t  
8 -  - i ( k  E ~ - E ~ ' - ~ Y  

dk' ,  (14) 

where E _ is the energy of an electron at the 000- level and 
V" is the spin-orbit interaction operator, which in the case 
of InSb can be written in the formI9 

Here, V = - e2/&r is the Coulom~ energy of the interaction 
of an electron with an impurity; k is the kinematic momen- 
tum operator; E is the permittivity; a,, g,,, and a, are the 
Pauli matrices; A, = 1/2[HXr] is the vector potential of 
the magnetic field; p is the interband matrix element of the 
momentum; m, is the mass of a free electron; A is the spin- 
orbit splitting of the valence band; E, is the width of the band 
gap; (... X ... ) and denotes a vector product; and [ ..., ...I is a 
commutator. 

It is convenient to rewrite the operator Vsoin the form 

where ,. A 

u+=*/2(uz*iuy)r i*=2-IA (kx* ikv). 

The operator of the interaction of an electron with an elec- 
tromagnetic field of the optical wave is Z' and it is described 
by 

where A, is the vector potential of the electromagnetic 
fields; p, is the Bohr magneton; m is the effective mass of an 
electron in InSb; and H, = curlA, is the magnetic field of 
the optical wave. The first term &PI in Eq. ( 17) is responsi- 
ble for the electric-dipole transition of an electron from the 
000 + level to the 0 + band and the second term &P2 is re- 
sponsible for the magnetic-dipole transition to the 000 - lev- 
el. 

The wave functions i,, and i,, of an electron at the 
levels 000 + and 000 - , considered in the adiabatic approxi- 
mation, can be written in the form2' 

and the wave function @, , for the 0 + band, corresponding 
to the orbital momentum m = - 1, is 

Here, a, = (&/eH) is the magnetic = x2 + y2, 
g, is the polar angle, x, = (a,v, ) - ', v, = fln(a,/a,, and 
a, is the Bohr radius. In the expression for @, we ignored the 
scattering of electrons by the center. 

The total amplitude Mk of an electron transition from 
the 000 + level to the 0 + band is equal to the matrix element 
%f the operator P calculated using the functions to, and 
a; : 

~ k = < 6 , - 1 % ' l < o + >  

The first term on the right-hand side of the above equation 
represents the amplitude Pk of the 1 - 3 electric-dipole tran- 
sition, whereas the second is the amplitude Rk of the 
1 - 2 -* 3 composite transition. The third term is the ampli- 
tude of the electric-dipole transition to the 0 + band accom- 
panied by simultaneous resonance scattering of an electron 
at the 000 - level. 

The vector potentials corresponding to the active (plus 
sign) and passive (minus sign) polarizations of light are giv- 
en by 

A7 ixz 
AT* - 3 (e,*ie.)'exp(T) , 

where ex and e,, are unit vectors along the x and y axes. 
Consequently, the Hamiltonian Z' is described by 

+ xlgI~*A, ixz 
2'"fi (21) 
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Therefore, in the inactive polarization case, we obtain 

It is not possible to find directly the value of the integral 
using the function X ,  ( r )  in the adiabatic approximation of 
Fq. (18), because in this approximation we have 
k - xo ( r )  = 0. A method which makes it possible to bypass 
this difficulty is suggested in Appendix 2. In the approxima- 
tion which is linear in x ,  we obtain 

where w, = eH /mc is the cyclotron frequency. If the matrix 
element is described by V:,,,, and Eqs. ( 16), (18), and 
( 19) are applied, and if we assume fix, 4 k, the result is 

The expression in the braces is approximately equal to 0.4 
under the conditions in our experiments. Now, using Eq. 
(22) and the expression in Eq. (21 ) for the operator X; , 
we obtain the amplitude of the composite 1 + 2 + 3 transi- 
tion: 

where E + is the energy of an electron at the 000 + level. 
The contribution of the third term in Eq. (20) to the 

total transition amplitude is relatively small and we shall 
ignore it. 

We describe the photocurrent by the expression 

wherep(Ek) = m/k is the density of the final states, T, is 
the momentum relaxation time, nim is the electron density at 
impurities, and ( k  ) is the average value of the momentum 
which is not equal to k because of the resonant scattering by 
the investigated level: 

In our case the momentum relaxation process is mainly due 
to the scattering by charged impurities whose concentration 
is N, so that the value of T/, is described by2' 

where E~ is the Bohr energy and the function @, (w/w, ) is 
approximately equal to 0.25 at w, z33w. Therefore, bearing 
in mind that M, = P, + R, and substituting the expres- 
sions for P, , R, , (k ), and T, into Eq. (23 ), we obtain 

where 

Here, E = wA,/c is the electric field of an optical wave. 
Since under our experimental conditions we have 

I P  + z 3 ,  we can use the known properties of InSb and 
thus obtain the final expression for the photocurrent j: 

t 

where I is the intensity of light inside the investigated crys- 
tal, IT = 5 X lo5 W/cm2, and H: = 30 Oe. 

2. Band-band resonance 

Calibration of the vector potential of a static magnetic 
field can now be selected conveniently in the form 

A,=-Hy, A,=A,=O. 

Then, the coordinate part of the wave function of a free elec- 
tron can be written as  follow^:'^ 

Y-Y, Xnq(s)=[iiaH"(2nn!)4h]-'exp [--]H. (=). 
2aH 

where n is the Landau level number, q is the momentum of 
an electron along the x axis governing the position of an 
oscillatory, on they axis, L is the size of the investigated 
crystal, and H, is a Hermite polynomial. 

The complete wave function $,,, which includes the 
spin variable has the following form for the "up" spin 

while for the "down" spin, it becomes 

The electron energy in the band is 

The plus and minus signs correspond to the "up" and 
"down" spins. We denote the spin splitting by E,. An opera- 
tor k +  acting on the functi!n $,,, transforms it into 
$, + ,,,, , whereas the operator k transforms it into $, - ,,,,, . 
For example, we find that 

These properties of the operators k * as well as the proper- 
ties of the matrices o, yield the selection rules for the elec- 
tric- and magnetic-dipole transitions. We identify those 
which will be required later. The operator R',+ transfers an 
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electron from the band O t  to the band 1 +, whereas the 
operator X; does the reverse: it transfers it from the band 
1 + to the band O +  . This means that direct absorption of 
light because of the electric-dipole interaction is possible 
only in the active polarization case. 

The operator P;C transfers an electron from the band 
0  + to the band 0-  , whereas the operator PC transfers it 
from the band 0  to the band 0  + . Therefore, in the InSb case 
(which is characterized by g < 0) we can expect direct ab- 
sorption because of the magnetic-dipole interaction only for 
the inactive polarization of light. 

In our case the optical transitions are indirect and are 
accompanied by the scattering of an electron on impurities 
with a potential V: 

where the summation is carried out over the impurity co- 
ordinates. 

We first consider the inactive polarization of light. It is 
then sufficient to limit the treatment to the second order of 
perturbation theory. An*electric-dipole transition from the 
state go,,, to the state $,, , q , ,  ( 1 - 3 transition in Fig. 7b) 
occurs in accordance with the scheme shown in Fig. 8. The 
Coulomb inter!ction with an impurity scatte!s an electron 
from the state $ ,,,, to the intermediate state $,, , 7 L q , ,  . The 
ayplitude of this transition can be written in the form 

-,,,,, I VI$,,,, ). Then a photon is absorbed and an 
electron is transferred to the final state $,,,,,, . The ampli- 
tude of this transition is (4  ,,,,,, I$  ,,,,,,,, ) (when a 
photon is absorbed, the electron momentum along the z axis 
changes by x and its momentum along thex axis is unaffect- 
ed). 

According to the selection rules of perturbation theory, 
the amplitude P, , of the process of interest to us is described 
by the expression 

FIG. 8. Schematic repesentation of an electric-dipole transition of a free 
electron from a state &,,, to a state $b0 ,,,,, . 

where the denominator is equal to the difference between the 
energies of the final and intermediate states; here, E, ,  and 
E,  , - ,< represent the kinetic energies of an electron in the 
bands. For all values of k ' the denominator is finite and close 
to - fko, - fko. Since 

it follows that the expression for a matrix element of X ,  is 

The Coulomb interaction operator is independent of the 
spin, so that ,. 

($lk'-xqrt 1 1 $0kqt)=($ihr-Xqr 1 V ( $ o k q )  

Therefore, the matrix element for an electric-dipole transi- 
tion can be written in the form 

The composite transition is shown schematically in Fig. 
9. The corresponding amplitude R,, is of the form 

The denominator in the above expression exhibits a reso- 
nance, so that 

E ~ ~ - E ~ + ~ - E ~ = E ~ , - E ~ - E ~ = ~ ~ o - E ~ .  

The matrix element of is described by .. 
($ok+xq/(%2-1 $ O ~ ~ ~ ) = ~ I ~ I P B A T I ~ " ~ ~ ~ .  

To calculate the matrix element of the operator VsO we 
need to allow only for the second term in Eq. ( 16), because 
only this term transfers an electron from the band 0  - to the 
band O + :  

FIG. 9. Schematic representation of the composite transition of a free 
electron. 
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In these calculations we used the relationship given in Eq. 
( 2 6 )  and the fact that the operator R- is the Hermitian 
conjugate of the operator I$ + . Finally, the expression for 
R ,  , becomes 

The total amplitude M, , of the transition from a state $,,,,, 
to a state qbok ,,,, is equal to the sum of the amplitudes P, , and 
D .  

The transition probability is proportional to the square of 
the absolute value of the transition amplitude: 

In calculation of the photocurrent it is important to al- 
low for the contribution which is linear in the photon mo- 
mentum. Such a contribution occurs, firstly, in the expres- 
sion for (P, , I Z  and is related to the background photocurrent 
which exists outside a resonance. The contribution of a reso- 
nance to the photocurrent is represented by an interference 
term P,,R :, + P:,R,,. 

In addition to the transitions shown in Figs. 8 and 9, we 
have to allow also for transitions to the state Yo - , ,,,, , i.e., to 

h 

a state which differs from Yo - , ,,,, only by the direction of 
the momentum k (Fig. 10). We denote the amplitudes of 
these transitions by P - ,  , and R -, , and their sum by 
M -  , , . The total probabilities W ,  , and W -  , , of the transi- 
tions from a state with a momentum k to one with the mo- 
menta k ' and - k ' are proportional to IM, , I  and IMP,,  1 2 ,  
averaged over the positions of the scattering impurities. 
Then, as pointed out in the preceding section, the contribu- 
tion to the interference term made by the 1 - 3 and 1 + 2  -. 3 
transitions, due to the scattering on different impurities, 
vanishes. The current density is then 

ca 

where f ( k )  is the distribution function of free electrons in 
the subband O+ normalized to the density of free electrons 
n,; ~ ( k  I )  is the momentum relaxation time, which-in our 
case-is determined by the scattering on impurities. Drop- 
ping the intermediate calculation stages, we obtain 

where T is the electron temperature. I t  is interesting to note 
that the photocurrent is independent of the impurity concen- 
tration N. This is because the transition probabilities W,, 
and W -  , , are directly proportional to N, whereas the relax- 
ation time ~ ( k  ') is inversely proportional to the impurity 
concentration. 

Using the parameters of InSb and assuming that the 
electron temperature is equal to the lattice temperature, we 
finally obtain 

, 
I 

We now compare the theoretical predictions with ex- I 
periments. It follows from the above analysis that a quan- 
tum-interference resonant photocurrent should exhibit a ,  
specific magnetic-field dependence: j, a l /SH.  Figure 11 
shows the experimental dependence of the photocurrent on 
the applied magnetic field in the case of an impurity reso- 
nance alongside a theoretical dependence of the type 

deduced from Eq. (24) in the limit yg6H. We can see that 
the agreement between the experimental points and the cal- 
culated curve is good if we assume that H T = 80 Oe. The 
experimental value is slightly greater than that found by cal- 

FIG. 10. Transitions of a free electron to states 40-, ,q, l  . 

FIG. 11. Dependence of the normalized resonant photocurrent 
- j,, )/j,, on the offset 6H. The points are the experimental values 

(sample No. 1 ). The continuous curve is the dependence (28). 
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culations possibly because the experimentally determined 
current also includes the contribution of intraband transi- 
tions. 

A quantitative comparison carried out for a band- 
band resonance shows that the dependence 

agrees well with the experimental data if we assume 
H z  = 40 Oe. An agreement between the calculated value of 
j,, with the experimental data is obtained when the electron 
density in the 0 + band is an order of magnitude less than the 
total density. This seems to be quite reasonable if we bear in 
mind the process of impact ionization with the ground level 
000 + by hot carriers. 

SOME EXAMPLES OF OTHER PHYSICAL SYSTEMS IN WHICH 
AN INTERFERENCE RESONANT PHOTOCURRENT MAY 
APPEAR 

1. Photocurrent in the case of resonant scattering by a 
quasistationary level 

Some semiconductors may exhibit quasidiscrete levels 
superposed on a continuous spectrum and these levels may 
be associated with excited states of deep structure defects,22 
impurity complexes, or single impurity centers. Resonant 
scattering of photoelectrons by such levels also gives rise to 
the resonant photocurrents described above. We assume 
that an electron in the grounds state of an impurity is trans- 
ferred under the influence of light to a band with an energy 
close to the quasistationary level energy E,. The expression 
for the matrix element of such a transition considered to first 
order in the momentum is 

where e is the polarization vector of light. The term 
M I  (k, w) corresponds to a dipole transition when the orbi- 
tal momentum I of an electron in the band is 1, whereas the 
term M, (k, w )  corresponds to a quadrupole transition 
(1  = 2). The absorption coefficient is proportional to 
IMl (k, w) 1 2 ,  while the photocurrent is proportional to the 
product Re [ M I  (k, w ) M T (k, w ) 1. Resonant scattering 
gives rise to singularities in the matrix elements MI or M2 . If 
the state of an electron at the level corresponds to the mo- 
mentum I = 1 (p level), then a singularity appears in the 

FIG. 12. Calculated spectral dependence of the absorption coefficient and 
of the photocurrent in the case of photoionization of an impurity level in a 
rectangular well, subject to resonant scattering by excited states of differ- 
ent syrnmetrie~:~~ a )  I = 1,p level; b) I = 2, d level. 

spectral dependences of both the absorption coefficient and 
the photocurrent (Fig. 12). However, if the level corre- 
sponds to the orbital momentum 1 = 2 ( d  level), then the 
singularity arises in the matrix element M, so that a reso- 
nance appears only in the spectral dependence of the photo- 
current. The profile of the resonant dependence j, (w) can be 
easily determined on the basis of the following consider- 
ations. If the frequency of light is close to a resonance in one 
of the channels (p or d ) ,  the matrix element corresponding 
to this channel is proportional to 1/(A + ir), where r is the 
level half-width, while the scattering in the second channel is 
weak. Therefore, the spectral dependence j, (w) is the real 
part of l / ( A  + i r ) ,  i.e., 

J ~ ( O ) ~ A / ( A ~ + I ' ~ ) .  

2. Photocurrent due toa resonant interaction with an optical 
phonon 

In all the preceding examples the resonant level appears 
superposed on the continuous spectrum of the semiconduc- 
tor. An interference photocurrent may appear however even 
in such cases provided the levels are located within the band 
gap. Then, the resonant scattering of free electrons is due to 
the interaction with optical phonons. This situation has been 
investigated by Grimmeiss et al. in the specific case of the 
Fano resonances (see, for example, Ref. 23). 

We shall assume that there are several energy levels in 
the band gap of a semiconductor and that they correspond to 
different impurities or to the ground and excited states of the 
same impurity (Fig. 13). Initially these electrons are at a 
level with the lowest energy E,. Under the influence of a 
sufficiently high frequency, such that f iw> IE, 1, they are 
transferred to the allowed band and a photocurrent propor- 
tional to ?t is observed. The value of this current depends 
smoothly on w everywhere with the exception of narrow in- 
tervals where the energy of the newly created electrons 
E~ = E, + fiw is close to E, + h, ; here E, is the energy of one 
of the levels and fiw, is the energy of an optical phonon. In 
these intervals we can expect not only the direct 1 -. 3 transi- 
tions to therbbnd, but also transitions accompanied by the 
resonant scattering of electrons on the appropriate levels ac- 
companied by the emission and subsequent absorption of an 
optical phonon ( 1 + 3 -2 - 3 transition in Fig. 13). Interfer- 
ence between the transitions gives rise to a Fano resonance 
and to a quantum-interference photocurrent. As already 
mentioned, the part of the interference term even in k is 

FIG. 13. Schematic representation of the formation of a resonant photo- 
current due to photoionization of a deep center, allowing fpr the interac- 
tion with an optical phonon. 
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with the momentum k includes the photon momentum x as a 
small correction to k, i.e., W = Wk + , . Therefore 

FIG. 14. Formation of a quantum-interference photodrift on absorption 
of light in a mixture of two gases. Here, A ,  and A, are the ground and 
excited states of the active gas; Vis the interaction of the active and buffer 
gases. 

responsible for an absorption resonance, whereas the odd 
part is responsible for a photocurrent resonance. 

3. Quantum-interference photodrift in gases 

So far we have considered the photocurrent in a semi- 
conductor. However, a similar effect can occur also in other 
media, particularly in gases. Consider a mixture of two gas- 
es, one active A and the other buffer B. We assume that the 
frequency of light is close to a resonance for the transitions 
between the ground 1 and excited 2 states of molecules of the 
active gas (Fig. 14). The collisions of these molecules with 
those of the buffer gas may induce transitions as a result of 
which the molecules A still remain in the ground state, but 
acquire a kinetic energy 

where m, and m, are the masses of molecules of the active 
and buffer gases, respectively. For =: E, - E,  , such transi- 
tions may occur in two ways: directly ( 1 - 3 )  and via an 
intermediate excited state ( 1 -+ 2 - 3 ). Interfdrence between 
the amplitudes of these transitions may give rise to a reso- 
nant drift of molecules of the active gas. It should be men- 
tioned that in order to observe this effect experimentally, the 
1-2 transition should be weakly allowed. Otherwise the ef- 
fect may be masked by what is known as the light-induced 
drift.7,24,25 

We conclude by noting that quantum-interference pho- 
tocurrents may be used as a new method for detection and 
determination of the parameters of energy levels in various 
physical systems. The advantage of such a method compared 
with the usual techniques (investigation of the optical ab- 
sorption, photoconductivity, etc.) is that it can deal with a 
resonance signal whose amplitude is of the order of the back- 
ground even if the relevant optical transition is almost for- 
bidden. An analysis of the photocurrent curve can be used to 
determine practically all the main parameters of the investi- 
gated level. 

APPENDIX 1 

We first consider the drag photocurrent which is due to 
the ionization of an impurity level. It is clear that the expres- 
sion for the probability of an electron transition to a state 

On the other hand, the absorption coefficient is described by 

A comparison of the expressions for j and a yields 

This analysis can be applied, subject to small changes, 
also to the case when the photocurrent is due to transitions 
between two subbands, as reported for example in Refs. 7-9. 
The absorption of light then exhibits a resonance and we 
have 

ala r1 (A2+r2) .  

Consequently, 

and if A r, we have j c c  1 / ~ ~  

APPENDIX 2 

A matrix element of the type 

can be calculated directly if we use the equation 

where 

%=kz/2m+V, p-=x-iy, 

and Vis the Coulomb potential of an impurity. Then, in the 
approximation linear in x ,  we obtain 

where and E + are the energies of an electron in an al- 
lowed band and at an impurity. 

The matrix elements on the right-hand side of Eq. (2.1 ) 
no longer vanish if we replace p, and X, with the approxi- 
mate functions of Eqs. ( 18) and ( 19). However, in calculat- 
ing of the latter, namely (p ,  Ip- d/dzlx,),  we are faced 
with the following difficulty. The momentum k correspond- 
ing to the final state is of the order of ii/a, and, consequent- 
ly, the main contribution to the integral comes from z-a,. 
However, as pointed out in Ref. 20, the derivatives dp,/dz 
and dx0/dz obtained in this region do not agree with the 
derivatives of the approximate functions ( 18 ) and ( 19). The 
use of more rigorous expressions for dx,/dz (or for dp,/dz) 
results in very involved calculations. Therefore, we proceed 
as follows. 
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We write down the Schrodinger equation for an elec- "In fact, in our case both ,yo and q, are spinors. We shall allow for this 

tron in the band 0 + and at the level 000 + : circumstance in specific calculations. 

We now apply the operator exp(ixz/li)k - to Eq. (2.2) 
from the left and to Eq. (2.3) from the right, and take the 
difference of the resultant expressions. Then, applying the 
following commutation relationships 

we find that after simple transformations in the approxima- 
tion linear in x the result is 

Equating now the terms proportional to x on the right-hand 
sides of Eqs. (2.1) and (2.4), we can express 
(p, lp d /dzlx, ) in terms of (p, Ip zlx, ) . Consequently, 
we find that P, is given by 

Here we use the law of conservation E,, - E~ = &B and the 
fact that in the case of the function ( 19), we have 

The final expression for P, was given earlier in the main text. 

"Strictly speaking, a change in the orientation of a sample and also rever- 
sal of the direction of x results in some change in the profile of the 
resonances, which is particularly noticeable along the [ 11 1 ] direction. 
This is possibly due to the contribution of the photogalvanic current,Ih 
which is even in SHand due to manifestation of a quantum-interference 
current in noncentrosymmetric crystals mentioned in the Introduction. 
However, reliable identification of the latter would reauire additional 
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