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The general problem of dynamic x-ray scattering (DXRS) in crystals with randomly distributed 
crystal-lattice defects is considered. The Dyson and Bethe-Salpeter equations describing the 
propagation of coherent and diffuse waves in a cryst2are obtained. With the tse  of a diagram 
technique, expansions for the polarization operator Il and intensity operator 52 are constructed in 
the form of diagrammatic series in the cumulant averages of the fluctuations of the order of the 
crystal lattice. Solutions of the Dyson equations are found and analyzed in detail in the case of 
practical interest of DXRS with T ~ A ,  where T is the correlation length and A is the extinction 
length of the x rays in the perfect crystal. The results obtained are given in a form that permits a 
direct description of a diffraction experiment with a two- or a three-crystal x-ray spectrometer. 
The theory developed is compared with Kato's statistical theory of DXRS. 

It is well known (see, e.g., Refs. 1-6) that dynamic x- 
ray scattering (DXRS) in single crystals possesses extreme- 
ly high sensitivity to small local strains ( - 10 - 5-10- '), 
which lead to the appearance of diffuse waves alongside the 
propagation of the coherent wave field in the ideal ("on the 
average") crystal lattice. Rigorous allowance for the inter- 
action of the diffuse waves in the general case of a disordered 
crystal with randomly distributed structural defects is a 
complicated problem. On the other hand, the experimental 
x-ray diffraction methods that are used to study microscopic 
defects of a crystal structure, e.g., the method of the three- 
crystal x-ray spectrometer,'-4 the inclination method, and 
certain others that permit one, in principle, to separate the 
coherent and the diffuse component of the DXRS, are far in 
advance of the possibilities of theoretical analysis of the re- 
sults obtained. The point is that, until now, the mathemat- 
ical difficulties have made it impossible to construct a sys- 
tematic theory of DXRS in crystalline media with disorder 
arising from the random character of the distribution of the 
structural defects. 

In the literature, two limiting cases of a general theory 
are well known: 1 ) a strongly broken crystal, when the char- 
acteristic size t of a crystallite is much smaller than the ex- 
tinction length A of the x rays in the perfect crystal (here, the 
so-called kinematic approximation of the theory, first pro- 
posed by Krivoglaz,' is applicable); 2) a weakly broken 
crystal, when multiple scattering of the diffuse waves can be 
neglected.'-" 

In Refs. 1 1 and 12 a generalization of the theory of Refs. 
8 and 9 is constructed with the use of the microscopic (una- 
veraged) Takagi-Taupin equations for the amplitudes of the 
wave field in the disordered crystal. In Refs. 13 and 14 this 
approach is extended to the case of DXRS in layer-disor- 
dered crystals. To describe the statistical properties of the 
crystal lattice, the authors of Refs. 11-14 introduce a static 
Debye-Waller factor E = (exp{ih.u(R))) and the two-co- 
ordinate correlation function 

g2 (r) =<exp {ih (u (r-I-R) -u (R) ) ) >,, 

where h is the diffraction-scattering vector, u(r)  is the ran- 
dom vector of the displacement of the crystal-lattice site at 
the point r, and the symbol (...), denotes statistical three- 
dimensional (in Refs. 13 and 14, two-dimensional) cumu- 
lant averaging over the disposition of the defects in the crys- 

tal. In addition, it is assumed that the interaction of the 
coherent and the diffuse waves is sufficiently weak, so that 
the correlation length of local distortions of the crystal lat- 
tice 

w 

is much smaller than the extinction length A (the so-called 
T-approximation). For T 5 A, perturbation theory in the in- 
teraction parameter of the coherent and diffuse waves is in- 
applicable, and, generally speaking, we cannot neglect the 
contribution of the many-point correlations 

g,,(r,; r,; . . . r,-,) =exp{ih[u (r,+r,+ . . . +r,-,+R) 
-tu (rrf. . . +r,-,+R) * . . . *u(R)]) >,, 

which are not taken into account a priori in the theories of 
Refs. 11-14. 

The present paper is an attempt to move in the direction 
of constructing a general statistical theory of DXRS in disor- 
dered crystals. Without loss of generality, we have kept the 
description (inherent to the theory of Refs. 11 and 12) ofthe 
disorder of the crystal lattice by means of the phase function 
exp{lh.u(r)) of the random field of the displacements. In 
Sec. 1 we gixe a derivation of the microscopic equations for 
the matrix G(r, 6) of the Green functions of the theory of 
DXRS in a disordered crystal. In Secs. 2 an$ 3 we ojtain 
exact integral equations for the coherent part G ""h = (G ) of 
the Green function and for the matrix of the correlations of 
the Green functions 

j (r ,  r'; x, t') = < ~ ( r ,  g )  @6'(rr, 5')) 

(the Dyson equation and the Bethe-Salpeter equation, re- 
spectively; the symbol e denotes the direct product of the 
matrices), describing the propagation of the coherent and 
the diffuse waves in the crystal. The diagram technique is 
presented, and rules for writing the matrix elements describ- 
ing n-fold scattering of waves are formulated. For the polar- 
ization operator n and intensity (energy) operator 52, which 
are the kernels of the Dyson and Bethe-Salpeter integral 
equations, respectively, expansions are found in the form of 
diagrammatic series in cumulant averages 
(exp(ih(u, f u, + ... + u, ) )),, of the random phases cor- 
responding to a given multiplicity of scattering of x rays by 
fluctuations of the order of the crystal lattice. We note that 
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the idea of using the Dyson and Bethe-Salpeter equations in 
application to the present problem of DXRS in disordered 
crystals was first put forward in Ref. 15. 

In Sec. 4, from the general equations of the statistical 
theory of DXRS, we obtain the corresponding equations in 
the T-approximation, and give a comparison with the results 
of the theory of Kat0."9'~ The main differences of physical 
interest in comparison with Refs. 11 and 12 are the follow- 
ing: 1 ) The dispersion surface, determining the dispersion 
law w(ko, k, ) and hence the propagation of the coherent x- 
ray waves in the "on-average" perfect crystal, undergoes dis- 
tortions and is broadened as a result of allowance for the 
fluctuations of the order, and the corresponding expressions 
for Re Aw and Im Aw are found; 2) it is shown that the 
correlation lengths appearing in the equations for the coher- 
ent and the diffuse waves coincide, i.e., T~,, = rdi,, and this 
ensures the correct passage to the limit of the kinematic ap- 
proximation as T + O  (see, e.g., Ref. 16). 

1. MICROSCOPIC EQUATIONS OF DXRS IN CRYSTALS WITH 
RANDOMLY DISTRIBUTED DEFECTS 

In the analysis of DXRS in quasiperiodic media it is 
natural to start from the representation of the Green's func- 
tion G(r; g) in the form of a quasi-Bloch wave (see Refs. 13 
and 14) 

(k, is the wave vector of the incident radiation, 
7~ = Ik, I = W/C, and h is a reciprocal-lattice vector, multi- 
plied by 2a) ,  satisfying the inhomogeneous Maxwell equa- 
tion 

-x-z rot rot G+ [1+0 ( r ) ~ ( r )  ]G=2ix-'e6(r-5) (2)  

with a point source of radiation at the point &. In (2)  ~ ( r )  is 
the complex electric susceptibility of the crystal, and the step 
function satisfies O(r) = 1 if the point r lies inside the crystal 
and'$(r) = 0 if the point r lies outside the crystal; e is the 
polarization vector of the incident radiation. 

In going over from (2) to a system of equations for the 
components of the Green's function ( 1 ) , we shall assume 
that the disorder of the crystal lattice is described by a slowly 
varying (on the scale of the lattice constant) random func- 
tion u( r )  describing the displacement field. In this case, 
~ ( r )  at a point r of the distorted crystal can be assumed to be 
equal to the susceptibility at the point r - u(r)  of the perfect 
crystal; in other words, in our case, 

wherex, are the Fourier components of the electric suscep- 
tibility of the perfect crystal. 

Let the crystal as a whole be oriented close to one Bragg 
reflection with diffraction vector h (the so-called two-wave 
approximation: k, = k, + h, 1 k, 1 = I k, 1 ) . Substituting ( 1 ) 
into (2) and using (3)  to separate groups of terms that have 
the same exponential factors, we arrive at the following sys- 
tem of equations for the a and u components G, and G, of 
the Green's function G: 
~ - ~ A G ~ + 2 i x - ~ ( k ~ V )  GO+O (r) [x~Go+CX-I,~'~~("G~] 

where the polarization factor satisfies C = 1 for the a polar- 
ization [ e x ( k o x k h )  = 0 ]  andC=cos  (29)  f o r t h e ~ p o -  
larization [e*(ko X k, ) = 01; 9 is the Bragg angle. 

We introduce an oblique-angled system of coordinates, 
with the so axis along the vector k,, the s, axis along the 
vector kh , and they axis perpendicular to the so, s, plane. In 
this coordinate system Eqs. (4)  take the following form: 

In the derivation of (5)  it has been taken into account 
that the characteristic scales of the variation of the compo- 
nents Go and Gh are much greater than the wavelength of the 
radiation. We note that, in contrast to the Takagi-Taupin 
equations usually used in the theory of DXRS, in (5 )  we 
have kept the terms with the derivative a 2/ay2, correspond- 
ing to emergence of the scattered radiation from the diffrac- 
tion plane (k,, k, ). 

By means of the exponential substitution 
en 

G O , ~ = G O . ~  exp [ i ( ko J ds0,,+ th j ds,,,) €I (r) ] 
= ~ ~ , h  exp [ i E ( S ~ - ~ ~ + - S ~ - ~ )  2 ] 

Eqs. (5) are transformed into 

where we have introduced the notation 

(here and below, we omit the tilde symbol when writing the 
components of the Green's functions). 

The solutions of Eqs. (6)  that have physical meaning 
are those having the form of retarded Green's functions Go,, , 
which satisfy the following boundary conditions on charac- 
teristics that follow directly from (6): 

Here the quantity 2 = oh u -, = (a/A) 2, O(s) is the 
Heaviside step function, and the function F, ( r  - g )  has the 
form 

In the following it is convenient to go over to a matrix 
formulation of the theory and to introduce a 2 X 2 matrix of 
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components of the Green's functions, of which the first col- 
umn is composed of the elements G,  = Go and Gho = G, 
and the second is composed of the corresponding quantities 
Go, and G,, in the complementary DXRS geometry: 

Goo Gob 
= G o  Ghh)' 

h 

where the matrix G satisfies the equation [compare with 
(611 

Here the matrix differential operator 2, is defined as 

0 i 0' - - - i c ~ - ~ e ' ~ ~  
ds, 2x dy' 

I,, = 
i l  i 8' 

(12) 
iohe-- '1'" 

ash 2% ay2 

and i is the 2 X 2 unit matrix. 
The general solution of the DXRS boundary-value 

problem for a quasi-Bloch wave in a crystal, 

can be written as E ( r )  = C)) 
where the integration is performed over the entrance surface 
of the crystal, on which is specified the initial distribution 

of the incident wave. 
Thus, in the case of a plane wave incident on a plane- 

parallel crystal and with initial deviation q, from an exact 
Eragg position [Eo ( f )  = exp(iqo - f  ) 1, the general solution 
E ( r )  is determined by taking the Fourier transform of the 
Green's function: 

Here we make the following comment. Equations 
( 11 )-( 14) describe DXRS in a deformed crystal lattice with 
electric susceptibility (3)  and with a random displacement 
field u( r )  that depends, in principle, on the type and position 
of all the defects present in thezrystal. The dynamical coeffi- 
cients in the matrix operator L, then differ from the corre- 
sponding quantities for the perfect crystal by random phase 
factors exp( + 11-u). It can be shown (see, e.g., Ref. 13) that 
in the case when the dynamical DXRS coefficients are mod- 
ulated not only in phase but also in amplitude the microscop- 
ic equations (5)  of the theory preserve their form with the 
following replacements: 

where the relationship of the latter to the defect structure of 
the crystal is determined in the framework of a more general 
"rigid-ion" model (see, e.g., Ref. 7) .  
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2. CALCULATION OF AVERAGES. COHERENT SCATTERING 

According to the general principles of the statistical de- 
scription of the propagation of wave fields in randomly inho- 
mogeneous media, we go over from the microscopic equa- 
tions ( 1 l ) ,  ( 12)*to the matrix^ equation for the coherent 
(averaged) part G 'Oh (r ; f )  = (G( r;f ) ) of the Green's func- 
tion. 

To this end, we write Eq. ( 1 1 ) in integral form: 

( ) = (r; ) + ( r ;  ) P E  ( r ;  E d 3  (15) 
A 

where the antidiagonal matrix P(E' ( r )  has the following 
form: 

h 

E is the static Debye-Waller factor, and G '"I ( r ; f )  is the 
Green's function for DXRS in the crystal with electric sus- 
5eptibility averaged over the positions of the defects, i.e., 
G 'E'  (r;$) satisfies ( 11 ) with exp( + ih-u) replaced by E in 
9 e  operator ( 12). We shall assume that the expressions for 
G 'E' ( r ; f )  are known from the theory of DXRS in perfect 
crystals. 

We formally represent the exact solution of ( 15) for the 
Green's function in a disordered crystal in the form of the 
diagrammatic series 

rn 

h 

where the diagram ,,, G of order n corresponds to a 3n-fold 
integral of the form 

(,,)G(r; I ) =  J G(E) (r; rl) P(E1 (ri) G(E) (rl; r2) PE) (r2). . . 
x . . .F(E) (rn) (r,; t) d3r, d3r2. . . d3r,, 

with a certain specified realization of the "random" matrix 
F C E ) ( r ) .  In the exprzssion ( 17) the horizontal lines corre- 
spo2d to the matrices G '"', and the vertices W to the matri- 
ces P '"'; the multiplicity of the integrals over d 'rj is equal to 
the number of vertices in the diagram. 

A 

Separating out in (17) the coherent part G'"h of the 
Green's function, we arrive at the diagrammatic series 

where th%lines converging at a light circle denote that the 
matrices P 'E ' ( r )  corresponding to the vertices should be 
axeraged over the positions of the defects (we note that 
(P(E ' ( r ) )  = 0.) .  

In the general case, a diagram of order n is determined 
by many-point correlation functions of the type 

with an arbitrary combination of signs f and arbitrary dis- 
tances between the averaging points r ,  , r, ,..., r, . 

By going over to cumulant expansions of the averages 
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appearing in ( 18) (see Ref. 17), and regrouping the terms of 
the diagrammatic series, it is not difficult to show that the 
averaged Green's function satisfies the diagrammatic equa- 
tion 

A 

Here, the polarization operator rI'E' ( r ,  ; r, ) is the sum 
of all the compact diagrams 

where lines converging at a dark circle indicate that the ma- 
trices corresponding to the vertices form cumulant averages 
(we recall that a diagram is said to be compact if $is impos- 
sible to divide it into separate parts by cutting one G (E' line.) 

The diagrammatic equation (20) is none other than the 
integral Dyson equation (see, e.g., Refs. 18 and 19): 

Gcoh(r; g) =G(E) (r; g) 

for the averaged Green's function in the theory ofpXRS. 
We shall show that the polarization operator II'E' does 

not depend on the choice of representation of the Green's 
functions on which the diagrammatic series (21) is con- 
structed. In other words, the following identity holds: 

where fi is defined as the complete sum of all compact dia- 
grams [compare with (2 l ) ] : 

where a dashed line corresponds to the Green's function 

a(" (r-5) - G(E) (r; 1) I E-" 

In fazt. taking into account the expazsion ofthe Green's 
function G (E)  in powers of the matrix (P 'O'): 

G(.) (r; 5) =&(O) (r-E)+ 1 G(O) (r-rl) (P(O))G(") (ri-E)d3rl 

+ J acoJ (r-rl) (P(O))G(~) (rl-r,) <P(01)G(01(r2-g)d3rl d3r2+. . . 
(26) 

and the identity 

<P(E) (rl) @PE) ( r2 )  8.. . @ ~ ( ~ ) ( r , , )  ) c  

=(P(O)(r,) @P(01(r2) @. . .@Po)(r,,) )=, n>2 (27) 

(the ymbol s denogs a direct product of matrices), we 
find rI'E' ( r ,  ;r, ) = n ( r ,  ;r, ), which is what was to be 
proved. 

A 

It is easy to see that the Green's functions G 'O' appear- 
ing in the diagrammatic series (24) vary in the coordinate y 
over distances - (rA):<r. It follows from this that the 
polarization oper%or II and, correspondingly, the averaged 
Green's function G ' O h  can be represented as 

A The "two-dimensional" polarization operator n (s,  ;s, ) is determined by (24) with the simultaneous re- 
placement r = (s, y )  +s, and the Dyson equation (22) takes 
the following form [g = (go, 6,) ] : 
,coh (s; g) =(YE) (s; 5) 

Thus, the factorization of the dependence of the coher- 
ent Green's function (29) in the coordinate y makes it possi- 
ble to reduce substantially the dimensionality of the general 
problem of coherent DXRS, and this corresponds to going 
over from the three-dimensional Dyson equation (22) to the 
two-dimensional Dyson equation (30).  

In thz case of DXRS in a crystal suckthat the Green's 
function G 'E' and polarization operator II possess transla- 
tional invariance, i.e., 

(e.g., as is the case in Laue-diffraction geometry and with 
spatial uniformity of the distribution of defects), the exact 
solution of the Dyson equation (30) can be represented in 
the form of a double "inverse" Laplace integral: 

where the characteristic denominator ~9, the zeros of which 
are the poles of the Green's function G "Oh (po, p, ) in reci- 
procal space, is equal to 

h 

lI (p, , p, ) is the two-dimensional Laplace transform of the 
polarization operator: 

m m 

ri p,,) = J aso J dshii (so, sh) e - p ~ " e - p l Q .  

0 0 

In the general case the polarization operator fi, as can 
be seen from (24), is an infinite series, each term of which 
corresponds to a certain multiplicity of the many-point cu- 
mulant averages. We show now that, if the condition 
r r /A  < 1 is fulfilled, the series (24) is asymptotic in this 
paramete; In fact, we consider an arbitrary compact dia- 
gram ,,, n (s ,  ;s, ). The number of internal vertices in this 
diagram is equal to n - 2, and the integration is performed 
over 2n - 4 internal variables so, s, . Tagng into account the 
explicit form of the Green's functions G 'O' (25), of which 
there are n - 1, and the fact that the size of the range of 
integration over each internal variable is limited by the cor- 
relation length r of the cumulant averages, we obtain the 
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following estimates: 

lf3)fi(s1; s3) / - (n lA)3g2(~tr  QJ) ,  
while the first diagram of the series (24)  does not contain 
internal vertices and has the form 

The use in the Dyson equation (30) of the r-approxima- 
tion for the polarization operator (34) corresponds to all 
known formulations of statistical theory''-'4 in which co- 
herent DXRS in crystals with randomly distributed defects 
is analyzed (for more detail, see Sec. 4). 

In the practically interesting case of crystals with layer 
nonuniformity (e.g., heterostructures and superlattices), 
the macroscopic properties of the substance vary along the z 
direction (the normal to the crystal surface). In this case, 
from symmetry considerations it is clear that 

In the derivation of (36) it has been taken into account that 
the static Debye-Waller factor E depends on the coordinatez 
(Ref. 13). 

In the particular case of the 7-approximation (34) and 
one-dimensional uniform disorder, i.e., when 
g, ( s ,  ;s, = g, (z, - z, and E = const, the expression 
(36) describing the propagation of the coherent Green's 
function goes over into the asymptotic solution found in Ref. 
20. 

A 3. DIFFUSE SCATTERING 
C;(E) (~ ;  s , ) = ( ; ( ~ ' ( x - z ~ ;  Z,  z , ) ,  n (s; s,) =fi(z-x,; Z, z , ) .  

Following the general method for separating the coher- - - - 
Fourier-transforming (30) in the coordinate x along ent and diffuse scattering in statistical optics,'* we introduce 

the crystal surface in the diffraction plane, we arrive at the into the analysis the four-point correlator of the Green's 
Dyson equation in the mixed (q, z) representation: functions (the mutual-coherence function) 

GCoh ( q ;  z) =G'=) (q; z) +sin-'(2@) J(r, r'; 5, t')=<G(r; 5 ) @ F ( r r ;  5')) .  (37 

X j GtE) (9; z, z2) fi(q; z,, z,) d'Oh((q; z,)dz2 dz,, ( 3 5 )  The physical correlator j determines the angular distri- 
bution of the scattering intensity detected using a three-crys- 

h h 

where the Fourier components of G and Il are equal to tal x-ray spectrometer:" 

If, in addition, the polarization operator fi satisfies the 
condition 

=o for z e z ,  
2 0  for z>z17 

the general solution of (35) can be represented in the form of 
the Z-ordered exponential 

z 

ocoh ( q ;  z) =Z exp { f j d z ,  [i (q; i , )  
0 

dz, A 

+ J:--- n ( q ;  2,.  Z,) ])~coh(q; 0 ) .  . sin(28) 

Here we have introduced the notation 

where the integration is performed over the entrance surface 
( d  'g) and exit surface ( d  2q) of the crystal, and the wave 
vectors q and q, specify the directions of the scattered and 
incident radiation, respectively. 

Representing (37) in the form of an infinite sum of two- 
row diagrams, corresponding to the direct product of the 
series ( 17), and performing cumulant averaging over the 
positions of the defects, we arrive at the diagrammatic equa- 
tion'' 

or, in explicit form (the Bethe-Salpeter equation), 

-- iqbo i0hE (2,) Y ( r ,  r'; & g')  =Ph (r, rl; 9, E') ), ph (9; 0) =sin t2*)f1 + 1 d3r, d'r,' d3r, d3r2'.Poh(r, r'; r,, r,') 

and the geometrical parameters are given by 

yo=%-'(nko), yh=%-' (nkh) , 

where 

Poh (r, r' ; E, E') =eh (r; E) @ Gcoh* (r'; E') , 
h 

Fo= [COB (26)  yo-yh] /sin (2.6.), PI,=- [cos (2.6.) m-yo] /sin (26). and the intensity operator S1 is a sum of compact two-row 
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h 

diagrams [compare with ( 2  1 ) 1 : where R is the complete sum of all compact two-row dia- 
grams 

r; r r .  ql=r- r,' 4 
r r r,'= 4 = r,' ri 

in which, if in a lower or an upper row in (40) there is only 
one vertex, a factor S(r; - r; ) or S(r, - r, ) corresponds to 
it. 

We write the complete correlator ?of the Green's func- 
tions in the form of the sum 

j(r, r'; g, g')=Ycoh(r, r'; f ,  f')+Ydif(rr r'; %, % I ) .  (41) 

Substituting (41) into (39), for the diffusive part of the 
correlator we obtain the Bethe-Salpeter equation in the form 

The first term in the right-hand side of (42) describes 
all possible mechanisms for the generation of diffuse waves 
as a result of the scattering of coherent waves by statistical 
inhomogeneities of the crystal lattice, and the second de- 
scribes multiple diffuse scattering of diffuse waves, in which 
the propagation of the diffuse waves at the observation point 
r, r' occurs in accordance with the 5oherent-wave propaga- 
tion law specified by the correlator JcO". 

Just as was done in the case of the polarization operator 
f i ' ~ )  [see (23) 1, it can be proved that the following identity 
holds: 

6(ri ,  rip; r2, r2')=6(E)(rl, rl1; r2, r2') I E = ~  
=S)^(E)(rl, rll; r2, r2'), (43) 

As was shown above, the condition R ( r  makes it possi- 
ble to lower the dimensionality of the Dyson equation de- 
scribing the coherent DXRS and to go over to the corre- 
sponding equations in the diffraction plane. This result can 
be generalized to the Bethe-Salpeter equation. A specific as- 
pect of the proof in the latter case is that it is necessary to 
introduce the following restriction on the distances 1s - s t /  
and 15 - &' I  between the observation points and the point 
sources: 

and when this is fulfilled the three-dimensional Bethe-Sal- 
peter equation (42) goes over into a two-dimensional equa- 
tion of the form 

In the physically interesting case of small T (m/A ( 1 ), 
an estimate of the diagrams with n vertices in the upper row 
and n' vertices in 9 e  lower row in the series (44) for the 
intensity operator R leads to the following expressions: 

l ( z ,  3 )c ( s ,  st;  s,, sip) 1 - ( n / ~ ) ~ l f i ~ ( s ;  s,) Igz(sr, si1)gZ(s, s'), 
I ( . .  2iQ(s, sr; s,, s:) I - (n/~)'lfi .(s';  ~ 1 ' )  Ig.(s, ~i)g2(% i), 

I (n, z)Q(s, sf;  SI, sir) I 
- ( ~ T / A ) ~ - ' I ( J ,  2 ) 6 ( ~ ,  st; SI ,  sI1) I (031, 

~ ( z ,  n ' ) f i ( ~ ,  s'; 51, sir) I 
! 

-(xT/A) n r - 3 ( ( ~ ,  3 ) 6 ( ~ ,  s'; Sg, Sir) 1 (nT>3), 

1 ( 3 ,  3,i!(s, s f ;  SI ,  s,') 1 -(n/A)'gZ(sp, S I ' ) ~ ~ ( S ,  s,)g2(s7 s f ) ,  
I(,,,,.)Q(s, sf; st, s t f )  J - ( ~ T / A ) " + " ' - ~ ~ ~ ~ .  3,61 (n, n1>3). (48) 
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In ( 4 7 )  we have introduced the correlation function 

The Bethe-Salpeter equation ( 4 6 )  and Eqs. ( 4 7 )  and 
( 4 8 )  are the starting points for the construction of the T- 

approximation of the theory of the formation and propaga- 
tion of diffuse waves in crystals with random distributions of 
defects. y e  note that if for the calculation of the intensity 
operator R we confine ourselves just to the expression ( 4 7 ) ,  
Eq. ( 4 6 )  goes over into the Bethe-Salpeter equation ob- 
tained earlier in Ref. 15.  

4. THE 7-APPROXIMATION OF THE THEORY OF DXRS IN 
HOMOGENEOUSLY DISORDERED CRYSTALS 

As follows from (33 ), in the T-approximation the 
boundary-value problem of the propagation of coherent 
waves in a disordered crystal lattice reduces to solving the 
Dyson equation Q 5 )  with the expression ( 3 4 )  for the polar- 
ization operator Il,, which, in the (q ;  z )  representation, has 
the form 

Here E = 1 in the case of Laue-diffraction geometry 
(y,, > O) ,  and E = - 1 in the case of Bragg geometry 
( y ,  < 0 ) .  In the derivation of ( 5 0 )  it has been assumed that 
the two-point correlator g, ( s )  is an isotropic function, i.e., 
g z ( s )  = g , ( I s l ) .  

Applying to ( 3 5 )  a Laplace transformation in the coor- 
dinate z, from the Dyson equation we2btain the following 
expression for the Laplace transform GC""q, p )  : 

(q, "0) ~f (q, z=0)] 

0  

XCJ'S e - p z d z { ~ Y h ~ - i  - cm [-( p + i k q )  Yh z,] g2(z,/y,)dz1)}. 

Here g, ( p )  is the Laplace transform of the two-point 
correlation function; D is the characteristic denominator, 
and has the form 

Coh(q, z=0) = sin (26) 

while for E = - 1, 

@ O h  (9, z=0) = sin (26) 
yo-' 

[Gz(q. z=O) G$ (q, z=0) 

where the components G y t ( q ,  z  = 0 )  and G z h ( q ,  z  = 0 )  
are determined with allowance for the boundary conditions 
G 'oh h O  (9 ,  Z = 0 )  = GZh(q ,  z =  t) = 0 .  

It can be seen from ( 5 1 )  that, at least to within 
(nr /A)  '4 1 ,  the second term in the curly brackets in the 
right-hand side can be neglected, and the solution of the 
problem of coherent DXRS finally takes the form 

Without loss of generality, we shall consider a disorder 
model with correlation function 

In this case the dispersion law of the coherent waves propa- 
gating in the crystal has the form 

In writing ( 5 4 )  we have used the symmetrized variables 

It follows from the form of the dispersion equation ( 5 4 )  
that the dispersion surface p = p ( q )  has four branches, of 
which two correspond to Bloch waves attenuating over dis- 
tances of the order of the correlation length T, while the oth- 
er two are analogs of the dispersion surface of the perfect 
crystal (or of the crystal with averaged electric susceptibil- 
ity) but with dispersion laws differing from the latter and 
having the following asymptotic forms: In the region 
IPIT< 1 ,  

in addition, for E = 1 ,  
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Physically, these differences are due to incoherent scat- 
tering by the disordered crystal lattice, leading to bending 
and broadening of the "dispersion law." It is interesting that 
this phenomenon has a direct analogy with the changes of 
the electron spectrum in disordered metals near a Brillouin- 
zone b~undary.~ '  

The figure shows the form of the dispersion branches 1 
and 2 in the space Re (b(4) ), Im (b(4)),  4 in the symmetric 
Laue-diffraction geometry. It can be seen that for 1 4 1 ~  < 1 
the two branches of Im (P(4) ) coincide (to within terms 
- ( 1 - E ') Im ( a )  m/A)  with the corresponding branches 
for the crystal with the averaged electric susceptibility, but 
have the additional broadening 

In the opposite limit lijlr> 1 they go over asymptotically 
into the branches of the dispersion surface for the perfect 
crystal. 

Thus, applying the theory of residues to calculate the 
Laplace integral, with exponential accuracy we find for the 
coherent Green's function in the mixed (q, z )  representation 
[see (53) 1 

A 

The explicit form of the function GCoh in coordinate 
space is determined by applying the inverse Fourier trans- 
formation to (57). Using (55) for the approximate roots pi 
of the chaacteristic equation, after direct calculations we 
obtain for G 'Oh in the region of influence so, s, > 0, except in 
the immediate vicinity of the characteristics so, s, = 0, the 
following expression: 

ph ( S O ,  sh) 
-ED (SO/SI,) '11 ( S )  i0-hEIo ( S )  

= [ iohEI0 ( S )  -Eo (sh/so)  *I,  ( S )  

x exp [ - (1-E") u2z (s0+sh) 1. (58) 

Here Jo (S) and J, (S) are Bessel functions of real argument, 
and the function S is equal to 

The region of applicability of (58) and (59), related to the 

FIG. 1 .  Distortion Im P and broadening (absorption) Re j of the disper- 
sion law p(q) for a disordered crystal in the region of values of q in which, 
in the perfect crystal (the dashed curve) and in the crystal with the aver- 
aged electric susceptibility (the dashed-dotted curve), hyperbolic depen- 
dences Imp(q),  shifted relative to each other by an amount equal to the 
additional absorption Re po = - ( 1  - E 2 ) ~ r 2 ~ / y ~ 2 ,  would hold. The 
quantities Rep, Imp, and q are measured in units of r / A y .  In the calcula- 
tion we have taken the values E = 0.9, a r / A  = 0.1, and yo = y, = y. The 
scale along the Rep axis is magnified by a factor of 100. 

discarding of the last term in the right-hand side of (55), is 
determined by the condition 

It is interesting that the expression (58) goes over into 
the corresponding expression for the matrix of the coherent 
Green'sfunctions obtained by Kato" if in (58) and (59) we 
may neglect the ? terms, which is equivalent to the more 
stringent [as compared with (60) ] condition 

The corresponding expressions for the coherent 
Green's functions near the characteristics so, s, = 0 have the 
following form [see (56) 1: 

1) In the region s, < r / ( l  - E 2 ) ,  
S,B(I  - E*)T(TT/A)~,  

2) in the region so & r / ( l  - E 2 ) ,  S, & ( 1  - E ~ ) T ( T T / A ) ~ ,  

I 
On the characsristics the expressions (62) and (63) satisfy (58 ), (62), snd (63) obtained above in different regions of 
conditions for G 'Oh that correspond to averaging oQhe exact influence of G 'Oh do not depend on the concrete form of the 
boundary relations (8)  for the Green's functions G. two-point correlation function g, .  It is not difficult to show 

We make here the following remark. The expressions that they keep the same form if in their derivation we use for 
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the arbitrary function g, ( p )  the appropriate expansions in a 
Taylor series in powers of pr or (p r )  - ' and confine our- 
selves to the first significant terms. 

We proceed now to the analysis in the T-approximation 
of the Bethe-Salpeter equations ( 4 2 )  describing the forma- 
tion and propagation of the diffuse waves. To this end we 
introduce the new coordinates 

in which the Bethe-Salpeter equation for the diffuse part of 
the correlator of the Green's functions in the r-approxima- 
tion has the following form [see ( 4 1 )  and ( 4 2 )  1 : 

Using the symmetry of Eq. ( 6 4 )  withJespect to the 
processes of diffuse and coherent scattering ( J ~ ~ ' F ? ~ ' ~ ~ ) ,  we 
can represent Eq. ( 6 4 )  identically as follows: 

= d2pi b A l l J c u h ( p ,  A; pi ,  A,) h , ( ~ ~ ) J ~ ~ ~ ( p , ,  A,; q, 6 ) ]  

+ J d'p, d2Al d'p, d2A, [jcoll(p.  A; p,. A, )  6. (A,! 

Assuming that jd l f  ( p, A; 11,s) changes in the variables 
A and 6 over distances greater in order of magnitude than 7,  

which enables us to set A, --,A, --,O in ( 6 5 ) ,  we arrive as a 
result at the equation 

Idif (p, A; q, 6)  

where in the right-hand side we have introduced the matrix 
of the diffuse-scattering intensities 

The physical meaning ofgoing from ( 6 4 )  to ( 6 6 )  is that 
in the T-approximation the diffuse part jd t f  of the correlator 
is expressed in terms of the diffuse-scattering intensities and 
the problem reduces to solving the Bethe-Salpeter equation 
( 6 4 )  for id'': 

j d i f  (s; z) = j h s ,  d2Ai [ P h  (s, 0; sl, A,)  b. (A,)  Jc" (s,. A,; s 2 ,  0) 

which is none other than the transport equation for the ma- 

trix of the diffuse-scattering intensities, written in integral 
form. 

The matrix integral equation ( 6 8 )  makes it possible to 
obtain transport equations in differential form for the dif- 
fuse-scattering intensities of the transmitted wave 
( I & ' = I g m  ) and diffracted wave (I:;if=I;1':,,, ). 

In fact, differentiating ( 6 8 )  for and I$:,,, with 
respect to the variable so and s, , respectively, and taking into 
account the equality [see (12) and (30) 1 

after direct calculations, to terms of order (.rrr/A) < 1 inclu- 
sive, we obtain 

d i f  
- 3  1 oh 1 J g2 (0, S I J ' )  1 0 0  ( S O ,  s h - s h J )  d s ! ;  

1 

S I, 

In the derivation of ( 6 9 )  we have confined ourselves to treat- 
ing the case of Laue-diffraction geometry with the radiation 
source on the crystal surface at the point so = s, = 0. 

A system of equations of the type ( 6 9 )  was first ob- 
tained by Kato'l in first order of perturbation theory in the 
fluctuations of the amplitude of the wave field in the crystal, 
in the microscopic Takagi-Taupin equations ( 6 ) .  Here, inas- 
much as Eqs. ( 6 9 )  are not a closed system, i.e., they contain 

and ~ d ~ f  = d ~ f  "nondiagonal" averages I  :lf  - I  $:,, , , - I ,  , ,  , in the 
framework of the theory of Ref. 11 the question of the rela- 
tion of these components to the diagonal components I&' 
and I: ;  remained unsolved. From general considerations, 
Kato postulated the relation 

where the length r was taken to be equal to ( .rrE/A) - I .  

Using the matrix transport equation ( 6 8 ) ,  which is a 
closed system of integral equations, and assuming that the 
components of the matrix of the diffuse-scattering intensities 
vary slowly over distances of the order of the correlation 
length 7 ,  one can show that the relation ( 7 0 )  takes the form 
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and (of no less importance from the point of view of the 
construction of a general theory of diffuse scattering in dis- 
ordered media) the following estimate is found to be valid 
for the length r: 

As a result, from (69) with (71) and (72) taken into 
account, we arrive at the following closed system of differen- 
tial equations describing the propagation of diffuse waves in 
disordered crystals when the correlation length r( A/T: 

d t f  
-0 

+ 2 Re ( 0 2 )  J gz (so1, 0) fLf (so-so',  ah) ds.' 
aso 0 

= 2 Re { f  1 0. 1 ' gz (0, s.) GZ* (so. h-snf  ) da' G"** (so,  sh) } 

It can be seen from (73) that the characteristic mean 
free paths of the coherent and diffuse waves coincide and are 
given by a quantity 

equal, as follows from general physical considerations, to the 
absorption length associated with the extra absorption of the 
coherent waves on account of their transformation into dif- 
fuse waves [see (58) 1. 

We note that, when compared with the equations of the 
theory of Ref. 11, Eqs. (72) now contain new terms, corre- 
sponding to processes of coherent propagation of the diffuse 
waves that are formed on the characteristic s, = 0. 

In the limiting case r - 0 (the so-called case of kinemat- 
ic scattering of diffuse waves), Eqs. (73) are simplified to 
the equations 

the solution of which for the diffuse-scattering intensities 
takes a simple form in the whole region of influence: 

It is not difficult to show that (75) is an exact solution of the 
Bethe-Salpeter equation (42) for T-  0. 

It is interesting that, as follows from the differential 
transport equations (73), the boundary conditions on the 
characteristics so, s, = 0 for the diffuse-scattering intensi- 
ties: 

I:' (01 sh) =ol 

coincide [except for the relation for I g ( s o ,  0)  ] with the 
exact boundary conditions stemming from the conditions 
(8)  for the Green's functions Go and G, on the boundaries of 
the region of their influence. The difference of the boundary 
condition for I gf in (76) from the exact boundary cpdition 
I gf (so, 0)  = 0 is due to the T-approximation (R  - 0,). 
Analysis shows that this contradiction is removed if in the 
derivation of the first equation (73),jn the transport equa- 
tion (68), for the intensity operator R we take into account 
the corrections 

which are important in the T-neighborhood of the character- 
istic s, = 0. 

With the intention of applying the theory developed to 
the method of three-crystal x-ray spectrometry, we apply a 
two-sided Fourier transformation to (66). As a result we 
obtain [cf. (38)l 

Thus, Eqs. (73) and the relation (78) completely deter 
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mine~he angular distribution of the diffuse-scattering inten- 
sity Zdif(q,  q o )  in the ?-approximation of the theory of 
DXRS from crystals with randomly distributed microde- 
fects. 
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