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The time evolution is considered of an incommensurate structure, a film of wetting liquid, and the 
Arbikosov vortex lattice transformed discontinuously at  the points of transitions into the 
incommensurate phase, the wetting state and to the boundary of the mixed and Meissner states 
respectively. I t  is shown that in the absence of inhomogeneities at  zero temperature (and in three 
dimensions at any temperature) the size of the incommensurate phase domain, the thickness of 
the liquid film, and the period ofthe vortex lattice grow logarithmically. At finite temperature in 
the two-dimensional case the soliton density decreases as t - ' ,the film thickness grows as t 'I4, 

and the vortex density decreases as exp( - const. t In the presence of inhomogeneities at zero 
temperature relaxation does not occur in general. For T # 0 equilibrium is achieved via thermally 
activated jumps of the corresponding surfaces over the potential barriers created by the 
inhomogeneities. The structure periods and the film thickness grow in this case according to a 
nontrivial logarithmic law. In three dimensions the size of the incommensurate phase domain and 
the film thickness increase according to a universal law ( T In t )  ''2irrespective ( to  logarithmic 
accuracy) of the nature of defects and of their concentration. 

For many years incommensurate structures and related 
systems have been the object of ongoing attention of the re- 
searchers. At present the equilibrium properties of these sys- 
tems in the vicinity of the transition to the incommensurate 
phase may be regarded as well understood (see, e.g., Refs. 1- 
3 ) .  As far as nonequilibrium phenomena are concerned, 
they have not yet been properly studied. 

The aim of this paper is the solution of a kinetic problem 
having a simple experimental realization: in the case of the 
incommensurate phase the latter is discontinuously trans- 
ferred to the point of transition (or  to its vicinity) into the 
commensurate phase. Since zero density of solitons (domain 
walls) now corresponds to the equilibrium, relaxation to a 
new equilibrium position begins. Below we will find an 
asymptotic time law according to which the soliton density 
vanishes as a function of temperature, inhomogeneities and 
space dimensionality. As specific objects of study, we con- 
sider the relaxation of a one-dimensional incommensurate 
structure ( a  lattice of domain walls), the related growth of a 
film of wetting liquid, and the time evolution of an Abriko- 
sov vortex lattice in type I1 superconductors. To the author's 
knowledge, a problem of this sort has been considered only 
in two papers. In Ref. 4 the law governing the growth of a 
film of wetting liquid in a system without defects has been 
found; this law has been confirmed in a numerical experi- 
ment.' The result of Ref. 4 will be obtained below by means 
of a simpler natural technique. 

1. Let us recall first how the commensurate-incom- 
mensurate phase transition is described.' In the vicinity of 
the transition point the specific free energy of a soliton sys- 
tem has the form 

and the self-energy of a single soliton (the expression in the 
parantheses) is positive, the limit n = 0 (the commensurate 
phase) corresponds to the minimum of ( 1 ). As soon as the 
self-energy becomes negative, creation of a large number of 
solitons becomes advantageous. However the latter process 
is inhibited by the intersoliton repulsion. As a result, for 
p > p ,  the soliton density increases continuously from zero 
by a law depending on V(n) as n -0. The specific form of 
V(n) is determined by several factors. At zero temperature 
and in the absence of inhomogeneities, V(n) is an exponen- 
tial function decreasing on a scale of the order of the width A 
of a domain wall:' 

When the temperature is finite and/or in the presence of 
inhomogeneities an extra long-range term is added to the 
exponential repulsion. The origin of this term can be under- 
stood from the following considerations. In the presence of a 
source of fluctuations (temperature, inhomogeneities) a so- 
liton is strongly displaced in the transverse direction (be- 
comes rough). Therefore, however far apart the neighboring 
walls may be, they are sure to "collide" (draw together at a 
distance of order A) as the size of the system increases in the 
direction perpendicular to the modulation. After the first 
collision further collisions will occur, so that the notion of a 
mean free path may be introduced. All that means that the 
radius of effective interaction due to collision is infinite. This 
interaction is easily estimated as the density of elastic energy 
of collisions. ' Since the maximum transverse displacement 
of a soliton is described by a quantity of the order of the 
intersoliton distance I = n - ', the required estimate has the 
form 

where n is the soliton density, p is an external parameter 
& In-'/L(n) 1: 

describing the proximity to the transition point p, (tem- where E is the soliton stiffness and L ( n )  is the mean free 
perature, pressure, chemical potential, field, etc.), and V(n) path. The function L ( n )  may be easily found, if the relation 
is the energy of the intersoliton interaction. If at  large dis- between the characteristic transverse displacement w of the 
tances ( n  4 0 )  the domain walls repel each other [ V(n) > 0]  wall and the length L is known:'-' 
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HereA and 5 depend on the source of fluctuations. Substitut- 
ing the mean intersoliton distance n - ' for w, we obtain 

L ( n )  =I/ ( A n )  ' 1 ~ .  

Substituting L ( n )  into the estimate of the elastic energy, we 
obtain for the total potential 

Assume now that the system with a given soliton density 
determined by the minimum of Eqs. (1  ), (2 )  is out of equi- 
librium, so that n = 0 ( p  = p, ) corresponds to a new equi- 
librium state. The driving force of the initial relaxation is 

Consider first the case, when inhomogeneities are absent. 
Then it is natural to assume that the time evolution n ( t )  is 
given by a simple relaxation equation (the point denotes 
time differentiation) 

where k is the kinetic coefficient. The asymptotic form of 
n ( t )  as n -0 is determined by the first long-range term in Eq. 
(2) .  Hence 

n ( t )  x i / [  (a2-1)  Blct] ' I( '-". 
( 5  

This dependence is also valid when there is a long range 
repulsion between solitons whose own exponent r is smaller 
than thequantity 2( 1 - 5)/5(2) .  As seen from ( 5 ) ,  thecase 
r = 1 (which occurs in a superconductor; see below) is a 
special one and should be examined more thoroughly. Using 
the known expression for A and 5 (Ref. 1 ), 

and the expressions ( 2 )  for B and 7, we find that in the two- 
dimensional case, d = 2, the soliton density vanishes as 

n ( t )  x e / T 2 k t .  

In three dimensions we have 5 = 0, hence 7 = c~ , which cor- 
responds to a logarithmic dependence. The same result is 
obtained at zero temperature irrespective of the space di- 
mensionality. One can easily prove this substituting the sec- 
ond term in Eq. (2)  into the relaxation equation. Thus, at 
zero temperature (in three dimensions, at any temperature) 
the domain wall density vanishes logarithmically; in two di- 
mensions, at finite temperature, it vanishes at t - '. These 
results are dynamic analogs of the well-known ones related 
to the effect of thermal fluctuations on equilibrium proper- 
ties of incommensurate phases.' 

If at the moment of "tempering" of the incommensu- 
rate phase the condition p = p, is satisfied only approxi- 
mately, the laws found above will have other forms at very 
late times. For p, - p < 0, i.e. at equilibrium, we have a fi- 
nite density n, , at very late times ordinary exponential re- 
laxation to this value will occur. The crossover time can be 
easily estimated by comparing both terms in ( 1 ). For exam- 
ple, for d = 2, T = 0, the law n a l / t  will be replaced by the 

law n-n ,aexp( -cons ta t )  at t of order 
[ d T Z k  '(p - p , ) ]  F o r p ,  -p>O, i.e., when the tem- 
pering into the commensurate phase has occured, at very 
late times linear relaxation takes place: 

h=-k (pc-p) , 

n (t) =const -k(~, - -~)  t, 

and the process of achieving equilibrium takes a finite time. 
The time at which transition to the linear dependence occurs 
is estimated in the same manner. Similar relaxation behav- 
ior, which is observed when the equality ,u = p, probably 
does not hold, will also take place in the cases considered 
below. In what follows, we will always assume, for simpli- 
city, that p = p,. 

2. Consider now the growth of a film of wetting liquid. 
The expression for specific free energy in the vicinity of the 
wetting transition point recalls Eq. ( 1 ) of Ref. 1: 

Here I is the film thickness. The first term is the local excess 
free energy of the film layer in comparison with the energy of 
the neighboring phase of the same thickness, and the second 
one is the energy of interaction between the film surface and 
the substrate. The equilibrium film width obtained by mimi- 
mization ofg(1) diverges a s p  -pc,  which corresponds to the 
wetting transition. If the system under consideration has 
been discontinuously transferred to the wetting transition 
point ( p  = p, ), the relaxation to equilibrium is described by 
an equation analogous to Eq. (4)  : 

As above, we find that in the presence of long range forces 
[the first term in Eq. (2 )  1,  the film grows according to the 
law 

1 ( t )  = [ z  ( ~ + 2 )  kB t ]  '1 (Z+2) .  

When the long range interaction is related to "collisions" 
between the film surface and the substrate, substituting 
expression ( 2 )  for r, we obtain the result of Ref. 4: 

Thus, in two dimensions we have I(t)  a t and in three 
dimensions (and, irrespective of the space dimensionality, at 
zero temperature) the width of the wetting film increases 
logarithmically. 

3. In the cases considered above the relaxation occurs 
according to a power (logarithmic) law. More exotic time 
dependence is realized in a type I1 superconductor tempered 
from the mixed state to the boundary between the latter and 
the Meissner phase. The expression for the specific free ener- 
gy as the function of the vortex density at fields close to the 
lower critical field H,, has the form6 

Here @, is the magnetic flux quantum, R is the London pene- 
tration depth of magnetic field, K,  (x) is a modified Bessel 
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function of the second kind and E is the linear energy of a 
vortex. The last term arises due to collisions between vorti- 
ces, and the logarithmic factor reflects the fact that vortices 
can go around one another. This naturally decreases the effi- 
ciency of collisions in comparison with the soliton interac- 
tion in the two-dimensional incommensurate phase. If the 
external field decreases rapidly to H = H,,  the time evolu- 
tion n( t)  again obeys the equation 

and the asymptotic form n(t)  at t- co is determined by the 
last term in (7): 

4nT2nk 
,i = -- . --------- . 

E ln (llnL2) 

Hence 

At zero temperature logarithmic relaxation determined 
by direct interaction of vortices [the second term in (7)  1 
takes place. 

4. Up to now we considered only systems without de- 
fects. On the face of it, the above consideration holds also for 
systems with defects, the only difference being that the pa- 
rameters A and T given by Eq. (2)  must b e  expressed 
through other well known formulae depending on the nature 
and concentration of the defects.'-' However, this point of 
view is erroneous. In fact, a dynamic description based upon 
a relaxation equation of the form (4)  or (6)  implies that 
application of infinitesimal force to the system brings about 
motion at a velocity proportional to this force, the propro- 
tionality factor being the kinetic coefficient. 

In an inhomogeneous system the situation is different: 
at zero temperature motion does not occur at all if the ap- 
plied force is smaller than a critical one. At finite tempera- 
ture the velocity depends exponentially on the applied force, 
so that the notion of the kinetic coefficient cannot be intro- 
duced.' Therefore relaxation in the presence of defects is 
governed by metastability effects. The driving force for the 
growth is given, as before, by the right-hand side of the kinet- 
ic equations (3)  ,(4),  (6)  (without the kinetic coefficient k) .  
However, for the motion to begin, the driving force should 
not be smaller than the dry friction force (the so-called pin- 
ning force F,,, Refs. 2, 3). 

Consider first the relaxation of an incommensurate 
structure and growth of a wetting film. In the limit of large 
1 = l/n the driving force per surface (per one soliton) is 
given by the formula, which follows from Eq. (6),  

The expression for the pinning force per surface is given in 
Ref. 2: 

Here a is the radius of interaction between a defect and a 
domain wall (a  film boundary) and w is a microscopic hop- 
ping frequency. At zero temperature the largest pinning 

force arises from the smallest distances (of order a )  in the 
direction perpendicular to the surface.' Therefore, if when 
tempering takes place the equilibrium intersoliton distance 
(or the film width) is larger than a, then the driving force of 
the growth (8)  is smaller than the dry friction force (9). As 
a result, the system remains in a frozen state for an arbitrar- 
ily long time. Let us explain the meaning of the time depen- 
dence ofF,,,, [see (9)  ] at finite temperat~re.~ It is natural to 
assume that for a surface area of size L with characteristic 
transverse displacement w (L ) metastable states are separat- 
ed by a distance of order w(L) and by energy barriers of 
height 

These barriers create pinning forces 

which increase with decreasing L. Therefore the largest pin- 
ning force corresponds to a scale L,,, in the wall plane such 
that a z A L  5,. However, at finite temperature small scale 
barriers are overcome by thermally activated 
Thus, pinning at these barriers is ineffective. According to 
the Arrenius law, the barrier E,,, (L)  is overcome in a time 

E p i n  ( L )  EA2Ld-3+2t 
t ( L )  = ( , - I  exp ------ z *-' e x p  

T 

Therefore in a time t barriers at distances 

will be overcome. Hence at T#O we must substitute 
max [L,,, ,L(t) ] into the expression for F,,,, (L), whence 
the expression (9) .  However, in this case also, the motion in 
these systems will begin not immediately, but only when the 
magnitude of the dry friction force decreases to the magni- 
tude of the driving force (8) .  When mechanical equilibrium 
is established, i.e., for 

the domains (or the film thickness) begin to grow. The con- 
dition ( 10) analogous to the critical state condition in type 
I1 superconductors will hold at all later times. Substituting 
(8)  and (9)  into ( l o )  and using the definition (2)  for T, we 
finally find the time dependence I( t )  : 

It is remarkable that in the most interesting case, d = 3, the 
period of the incommensurate structure (or the film thick- 
ness) increases according to the universal law 

irrespective of the nature of the defects or of their concentra- 
tion. Since the methods used have logarithmic accuracy, the 
universality should be understood with this proviso. 

In type I1 superconductors the period of the vortex lat- 
tice diverges according to the law obtained from (1 1)  at 
d = 2 :  

t / ( 2 L - - I )  

1 ( t )  =A(*) E A 
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Using the exact value = 0.6 for the case of an uncorrelated mogeneous medium lies in its strong temperature depen- 
p~ten t ia l ,~  we obtain dence, reflecting thermally activated motion of surfaces. 

' M. E. Fisher, J. Chem. Soc. Faraday Trans. 2 82, 1569 ( 1986). 
2(t )  a (T In T. Netterman and J. Villain, Phase Transitions 11, 5 ( 1988). 

". Netterman and P. Rujan, Int. J. Mod. Phys. (1990). 
4R. Lipovsky, J. Phys. A 18, L585 (1987). 

Note, in conclusion, that logarithmic behavior takes ' M. Grant, K. Kaski, and K. Kankaala, J. Phys. A 20, L571 (1987). 

place even in the absence of inhomogeneities (always at zero "+ R. N e k ~ n l  Phys. Rev. Lett. 60* 1973 
'L. V. Ioffe and V. M. Vinocur, J. Phys. C 20,6149 (1987). 

temDerature, and, in three dimensions, at any temperature). 
The fundamental distinction of logarithmic growth in inho- Translated by E. Khmelnitskii 
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