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The behavior of the effective elastic moduli and of the density of phonon-fracton states near 
percolation phase transitions in elastic isotropic solids is investigated by the field 
renormalization-group method. 

The development of a theory of phase transitions in dis- 
ordered materials is still one of the central problems in solid- 
state physics. The model of a percolation phase transition 
plays the same role among the models put forward to ac- 
count for phase transitions in disordered media as does the 
Ising model for second-order phase transitions in ideal crys- 
tals. In addition to the clear picture of the processes occur- 
ring in the course of a percolation phase transition, a scaling 
theory has been developed and various techniques have been 
used to calculate the critical exponents describing the ther- 
modynamics of a medium in the vicinity of the percolation 
threshold. 

An enormous amount of work has been done on the 
behavior of the effective transport coefficients of a percola- 
tion medium, including the thermal conductivity, diffusion 
coefficients, tunnel conductivity, and elastic moduli (see, for 
example, Refs. 1-13). However, the attention has been con- 
centrated on the dynamic properties of "limiting" problems 
such as composition-induced insulator-metal and metal-su- 
perconductor phase transitions, statistics of random walk of 
"an ant or a termite in a maze" or calculation of the effective 
elastic moduli of harmonic lattices with randomly broken 
bonds. In all such cases the ratio of the values of the param- 
eters of different phases is zero. The progress in the descrip- 
tion of the transport coefficients of such media has depended 
largely on simple scaling relationships following from their 
fractal (self-similar geometry) within certain spatial 
 scale^.^^'^^'^ However, such fractal objects can be modeled 
quite readily numerically or physically, so that the values of 
the critical exponents describing the behavior of a number of 
transport properties of "limiting media" near the percola- 
tion threshold are known quite a~curately.~. '~~'"  

Analytic calculations of the critical exponents have re- 
quired much more intensive effort and have been proved to 
be technically more complicated than in the case of the ther- 
modynamics of second-order phase transitions character- 
ized by thermal fluctuations. The existence of scaling rela- 
tionships makes it possible to reduce the problem of 
determinating the composition dependence of the coefficient 
describing the stiffness of spin waves in an isotropic Heisen- 
berg magnetic material and the effective diffusion coefficient 
for a random walk of the "ants in a maze" type to calculation 
of the exponent t of the electrical conductivity of a random 
percolation network. Calculations of the exponent, carried 
out using the field theory with a nontrivial effective Hamil- 
tonian requiring series of delicate limiting transitions in a 
number of parameters, were carried out to first order in 

E = 6 - d (d  is the dimensionality of space and d, = 6 is the 
upper critical dimensionality of the theory) and were report- 
ed in Refs. 17-19 (see also Ref. 20). 

However, it is important to note that for the majority of 
phase transitions that occur in solids with large-scale inho- 
mogeneities the ratios of the diffusion coefficients, electrical 
conductivity, elastic moduli, and densities of various phase 
states do not differ greatly from unity. If the framework of a 
phenomenological scaling approach to the description of the 
behavior of an effective characteristic of a two-phase medi- 
um near a percolation threshold is adopted, it is convenient 
to introduce a parameter h (O<h< 1 ) as the ratio of the cor- 
responding coefficients of different phases."he parameter 
h plays the role of a dimensionless external field and the 
value h = 0 corresponds to the above-mentioned "limiting" 
problems in two possible ways when the value of the coeffi- 
cient for one of the two phases is zero or infinity. If the solu- 
tions for both versions are known, we can construct scaling 
asymptotes of the effective characteristics of media with 
O<h<l .  

We shall adopt a field-theoretic approach in a study of 
acoustic properties of disordered solids undergoing percola- 
tion phase transitions characterized by h z 1. Among these 
transitions we shall concentrate on the case with the simplest 
type of striction interaction when the solution of a stochastic 
vector differential equation of motion describing the behav- 
ior of an elastic medium in the critical region can be reduced 
to a scalar equation. 

The results of our calculations by the field renormaliza- 
tion group method confirmed the existence of the scaling 
relationships between the critical exponents and also the 
conclusion on the nature of short- and long-wavelength vi- 
brations near the percolation threshold, which follow from 
phenomenological considerations of the scaling theory. The 
values of the upper critical dimensionality and of the critical 
exponents of the problem will be shown to differ from the 
values applicable to percolation phase transitions character- 
ized by h<  1. 

PERTURBATION THEORY AND REGION OF STRONG 
FLUCTUATIONS IN A PERCOLATION ELASTIC MEDIUM 

We shall assume that we can describe a phase transition 
in a solid with large-scale inhomogeneities (due to, for ex- 
ample, the presence of extended clusters of impurities or in- 
trinsic point defects) simply by introducing a Gaussian ran- 
dom field of local values of the phase transition temperature 
T, (r)  whose correlation scale is identical with a characteris- 
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tic dimension R, Sr ,  (r, is the radius of thermal fluctu- 
ations). We assume that the local phase transition is of the 
first order, as is true of the majority of structural and ferroe- 
lectric transitions. Since we are mainly interested in a fairly 
narrow range of temperatures AT- AT, (7" [AT, is the 
variance of the field T, ( r )  and 7, is its average value] near 
the percolation threshold, it is convenient to approximate 
the temperature dependences of the components of the order 
parameter by "step" functions'' 

]'l(T) =I','e(T, (r )  - T ) .  B(a<O) =O. @(a>O) =I, 

Then, the local values of the elastic moduli and of the density 
occurring in the equation of motion of an inhomogeneous 
linear elastic medium 

can be expressed in terms of an indicator function O(r) of the 
new phase: 

where E; and AcU,, are discontinuities of the dilatation and 
of the elastic moduli that accompany a local phase transi- 
tion. We show below that anomalous acoustic properties are 
due to an increase in the dimensions of a typical cluster near 
the percolation threshold, so that random fields p ( r )  and 
cV,,, ( r )  can be iegarded as static. The dynamic tensor of the 
effective elastic moduli ZiAj,, ( a ,  T, ), where T, = (x - x, ) /  

x,, x is the fraction of the new phase, and x, is the critical 
value of this fraction, and also the density of states N ( ~ , T ,  ) 

can be determined provided we calculate the coordinate and 
time Fourier transforms of the averaged-over the field con- 
figurations B(r )-retarded Green's function (G,, (a, T, ) )  
of Eq. (1): 

The correlation corrections to the zeroth approximation of 
this Fourier transform have a relatively simple tensor struc- 
ture only in the case of elastic isotropic phases and a quadrat- 
ic striction of the type 

Below we consider precisely these phase transitions, but they 
are selected not only in order to simplify the matrix notation, 
but also because of the possibility of a radical change in the 
whole spatial structure of a heterophase state of a material, 
compared with a percolation medium, when these condi- 
tions are not satisfied. In fact, in the latter case the shape, 
dimensions, and spatial positions of the nuclei of a new phase 
are governed not only by the local values of the random field 
T, ( r ) ,  but also by the interaction between these nuclei via 
long-range elastic fields. 

In the case of crystals with sufficiently few defects a 
heterophase structure of the percolation type, which appears 
at the beginning of the phase transition process ( x 4  1 ), may 
be transformed-because of the elastic interaction between 
the nuclei-in a certain range of intermediate values of the 
fraction of the new phase near x=: 1/2 over distances of me- 
soscopically large scale I- (Lr, ) "* (L is the size of a sam- 

ple) into a regular superstructure2' (Refs. 21 and 22). Such 
a phase transition has been observed experimentally for 
some crystals (see, for example, Refs. 23 and 24), but we 
shall consider an alternative variant of a percolation-type 
phase transition when the spatially ordered heterophase 
structure does not appear in an elastic isotropic medium 
with the dilatation striction in the rangex 4 1 (up to x = x, ) . 

We determine the range of validity of perturbation the- 
ory on approach to the percolation threshold by calculating 
(G,, ), iterating Eq. ( 1 ) subject to the fact that the pair cor- 
relation functions (Ap(r) Ap(rl)), (AK(r)AK(rl)), and 
( Ap(r) AK(rl) ) are proportional to the Green's function in 
the continuum percolation theory: 

C(r-r ' )  = [ < e ( r ) e ( r ' )  ) -<0>2]  (Ro / r j e sp [ - r lR] ,  

where the correlation radius is R = R, I (x - x, )/x, I - ". In 
the limit x-x, the perturbation-theory iteration series for 
(G ) corresponds to the following expansion for the dynamic 
effective bulk modulus: 

where K = KO + xK * and (Aa, ha, ) are averages of the 
form 

aV andPo,, are complex numerical coefficients, and k is the 
average wave number. It follows from Eq. (2)  that near the 
percolation threshold the effective dimensionless perturba- 
tion theory parameters are 

The diagonal elements of g,, can be given a clear physical 
interpretation: g,, z R  /I,, where I, is the mean free path of a 
phonon calculated in the approximation of single scattering 
by spatial fluctuations of the density or of the elastic modu- 
lus. 

The range of validity of perturbation theory is limited 
by the values R < min (I, ) = R, /Gi, where Gi is a dimension- 
less parameter which in our problem plays a role similar to 
the Ginzburg-Levanyuk parameter for a second-order 
phase transition. Clearly, in an analysis of acoustic proper- 
ties of a percolation medium in the critical region when 
T, < Gi we have to carry out an effective summation of the 
series (2).  Before doing this, we show that in the isotropic 
model an investigation of the solutions of the vector equation 
( 1 ) in the range R > R,/Gi can be replaced by an analysis of 
the solutions of scalar equations with a fluctuating density. 

We first consider the scattering of an acoustic wave em- 
ploying a simpler model of an elastic isotropic medium in 
which the density p, and the shear modulusp, are constant, 
and only the bulk modulus K( r )  = K, + AK.B(r) fluc- 
tuates (this is known as a Hill medium). In this case Eq. ( 1 ) 
becomes 

We represent the field ui (r, t) in the form of a sum of the 
potential and solenoidal fields: 

U=V+W, curl V-div w=O. 
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Applying the curl and div operations to Eq. ( 3 ) ,  we can 
show that the components of the field wi satisfy the follow- 
ing equations: 

i.e., the transverse waves are not scattered. The field of a 
longitudinal wave is described by 

Introducing the scalar potential @ ( r ,  t )  of the field ui = d, @, 
we obtain the following equation describing it: 

Therefore, the problem of propagation of sound in a two- 
phase Hill medium reduces to a solution of the scalar equa- 
tions (4 )  and (6 )  for any fraction of the second phase 
O<x< 1. We now turn back to the problem of acoustic fields 
in a solid that undergoes a percolation phase transition, for 
which not only the modulus K ( r ) ,  but also the density 

exhibits fluctuations. We can readily demonstrate that in the 
critical region near the percolation threshold (R > R,/Gi) 
the equations describing the propagation of an acoustic wave 
are obtained by a simple replacement ofp, w i thp( r )  in Eqs. 
(4)-(6).  In fact, singular corrections to the effective values 
of the elastic moduli appear when we evaluate the relevant 
integrals originating from narrow ( - 1/R) intervals of the 
momenta in the vicinity of poles of the bare phonon Green's 
functions. On the other hand, terms of the d,,ud,,O, 
ud,,d,, 6, ... type, which appear when the di operation is ap- 
plied to Eq. ( 1 )  for media with a fluctuating density p ( r ) ,  
fail to make singular contributions in the critical region near 
the percolation threshold. I t  should be mentioned that it is 
precisely because of their pole origin that the corrections due 
to the fluctuationsp ( r )  and K ( r )  are equally singular [com- 
pared with the expansion described by Eq. ( 2 )  1. 

Expanding the operator L  - ' in powers of w,p, we obtain 
the solution of Eq. (8 )  in the form 

fi (r) ={~ ,+bowocpbo+ D,u.,,&,w,cFD,-t . . .} . [ I +  (c,,/m,,')(r]l 

h 

where the operator Do = - (mi + A) is represented by 
the solid lines, the field q, by the dashed lines, and the factor 
w, by a dot. 

Averaging Eq. (9) over fluctuations of the Gaussian 
field p ( r ) ,  we obtain 

where the thick line is the average Green's function 
h 

D = ( L  - ' )  ofEq. ( 8 )  without a fluctuation correction to I, 
whereas the triangle represents a full three-legged vertex; the 
dashed curve is the Green's function in the continuum per- 
colation theory. Using the "skeletal" representation of the 
Dyson equation, we find that the Fourier transform of the 
field ( i i  ( p )  ) = u ( p )  is described by 

The statistics of percolation clusters is known to be de- 
scribed by a non-Gaussian effective H a m i l t ~ n i a n . ~ ~  How- 
ever, in an analysis of the scalar stochastic equation [of the 
form of Eq. (4)  with a random density p ( r )  ] in our previous 
i n ~ e s t i g a t i o n ~ ~  we found that all the qualitative features of 
the behavior of the Green's function D(w, T,, ) of this equa- 
tion, averaged over the percolation field, are already includ- 
ed in the Gaussian approximation. Non-Gaussian graphs 
simply result in some changes (of the order of the Fisher 

RENORMALIZATION PROCEDURE AND OF THE exponent of the percolation theory 7) in the critical expo- 

RENORMAL~ZAT~ON GROUP EQUATIONS IN THE CRITICAL nents of the relevant asymptotes, but this complicates great- 
REGION ly the mathematical treatment. Since the numerical values of 

It therefore follows that in the critical region we have to 
solve the scalar equations (4 )  and ( 6 ) ,  replacing p, with 
p ( r ) .  We first establish a simple relationship between the 
average Green's functions of these equations in the case of 
the Gaussian statistics of the field 8 ( r ) .  We introduce into 
the relevant equation a monochromatic source I exp(iot) .  
Then the amplitude of a longitudinal wave ii in the critical 

the exponents are approximate in any variant of these calcu- 
lations, we describe the percolation medium by a Gaussian 
random field p ( r )  whose correlation function is identical 
with the percolation-theory Green's function C ( r  - r ').  

I t  follows from Eq. ( 1 1 ) that we can find the Green's 
function of Eq. ( 7 )  by calculating the Green's function D of 
the equation 

region obeys - [mO2+A+wncp]u=I. (12) 

(7 )  The problem of calculation of D ( r  - r' ) can be represented 
in the Hamiltonian form by writing down D in the standard 
manner 

where A, = AE: and A, = AK */K, . After multiplying by 
( 1 + AK 6) - I and substituting 8 = x + p ,  Eq. ( 7 )  becomes D (r-rf)=c ( j D ~ L ~ D U , , + U ~  (r) u1+ (rf)c~xI~(--11) ) , 

P 

LC---[moLSA+w,cp]u"= [I+ (iZo/mo2)cp]l(r). (8  v 

1 (13) 
where = - j d r { z  i~ .* [rno2+A+~~~.y]u , ,  . 

, a -  I 
m o L = p o ~ 2 K , - 1 [ 1 + x ( A p - A ~ )  (l+AK)-'],  

~ o = p u ~ 2 K t - 1 ( A , - ~ , )  ( l+AK)-I ,  ~ O - - A , ~ ~ o ( l + A K )  - I .  Here, c is the normalization constant and N - 0 .  In view of 
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the Gaussian nature of the field q,, the effective Hamiltonian 
nesded to calculate D is obviously of the form 

= I +  + i ,  = T ~ ~ .  (14) 

Before renormalizing the Hamiltonian ( 14), we first 
demonstrate that, because of the absence of loops of q, 
(N-O), the part of the Hamiltonian which depends directly 
on this field is not renormalized. When considering the re- 
maining part of the Hamiltonian (14) derived within the 
framework of dimensional regularization and the scheme of 
.minimal residues (see, for example, Refs. 27 and 28), we 
note that the only nontrivial singular graph is the first cor- 
rection to the 1-irreducible pair Green function of the field u, 
which diverges logarithmically ford = 4. Consequently, the 
renormalization constant of the field u ( r )  is trivial: Z ,  = 1. 

A renormalized form of perturbation theory in a 
( d  = 4 - 2~)-dimensional space is obtained using a Hamil- 
tonian which differs from Eq. (14) because w, and m: are 
rerlaced with the renormalized values of wMEand m2: 

The renormalization mass M is an additional parameter 
with the dimensions of momentum. The counterterm in the 
renormalization of the mass Am2 is determined by a simple 
pole with respect to 1 / ~  for a single-loop graph of the self- 
energy part C: 

The existence of the renormalization-group equations fol- 
lows from the invariance of any quantity that depends on the 
set of unrenormalized parameters e,, = {T, m;, w,) when 
M is altered: 

where e = {I-, m2, W, M). Using the explicit iorm of Eq. 
( 15 ), we obtain an expression for the operation R in terms of 
the renormalized variables: 

In Eq. ( 17), we have DM = MaM, d, = a/&, 
c, = (16r2)  - I. Substituting the variables u = c,,w2/m2 in 
Eq. X17), we can represent the renormalization group opera- 
tor R in the form 

We can see that thep,, function of Gell-Mann and Low has a 
nontrivial fixed point v, = E, which is infrared-stable: 

whereas the charge v plays the role of the anomalous dimen- 
sionality y, of the mass m. 

Using the existence of a stable fixed point v, = E, we 
can calculate the average Green's function D(p)  in the vicin- 
ity of a polep2 = m i  in the form of an unrenormalized per- 
turbation-theory series in v, , we can then determine theden- 
sity of states N(o,  T), as well as the effective moduli z and 
,ii. First of all, we shall find the position of a pole, governed 
by the condition D - ' ( p Z  = m i  ) = 0, and in the zeroth ap- 

proximation we have m i  = m2. Since m i  (like D)  is a re- 
normalization group invariant, it satisfies the following 
equation: 

where y = m2/M ', z = T/M ', dm = 2( 1 + u) .  The general 
solution of Eq. ( 19) in the critical range can be written in the 
form 

n ~ . ~ - . r n ~ y - ~ P ( z y - ~ ) ,  

Calculating m i  in the form of a series in v, , we obtain 
asymptotic forms of the function P(s )  : 

where PI and Q, are real positive constants. The function 
Z = (p2 - m i  ) e ( p )  also satisfies the renormalization 
group equation RZ = 0, the general solution of which is 

wherej, I, and fi are the first integrals described by the equa- 
tions 

In the critical range we have Z = Z(m:/p2, zy but for 
z = 0, we obtain 

where SZE, while for zyPD> 1 we find that ZZB, where A 
and B are real positive constants. 

The condition zy -"- 1, which determines the change 
in the asymptotic forms of the functions P and Z ,  implies the 
existence of a characteristic frequency 

o.= [max (A,,  A,)] - ' I  ( X - X , ) / Z , ~ ~ ( ' + ~ ~ .  (24) 

For wsw,, the asymptotic expression for the effective elas- 
tic moduli k and ,ii is determined by the fixed point v, = E 

and is given by 

This asymptotic form is reached by the motion of an invar- 
iant charge fi(t) to the fixed point v, along a path 

at a fixed frequency. 
The anomalous dispersion law of elastic waves and the 

appearance of a large imaginary part in the case of the modu- 
li K(w) andp (w) in Eq. (25) corresponds to a change in the 
nature of elastic vibrations of the solid at w > w, from a 
phonon to a fraction, when short-wavelength vibrations be- 
come localized because of self-similarity of a heterophase 
structure on the scale of r < R. For w < w, , the renormaliza- 
tion group equations admit the possibility that in the vicinity 
of the fixed point v, = E the solutions for the effective modu- 
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li depend on the proximity to the percolation threshold in 
accordance with the power law: 

However, in the case of percolation phase transitions charac- 
terized by small abrupt changes Ap*/po and AK*/Ko 
( h z  1 ), which are under consideration here, the critical 
asymptotic form of Eq. (27) is not reached, because the mo- 
tion of an invariant charge along the appropriate path 
t = JJ''~," does not result in the attainment of the fixed point 
u, = E. When the effective moduli K and ji are calculated for 
the range wgw,, it is sufficient to use unrenormalized per- 
turbation theory. In  general, the reason for the phonon na- 
ture of long-wavelength vibrations in the range x < x, is the 
existence of a translation symmetry of a percolation medium 
over distances r > R .  At the percolation threshold, when 
w, -0, the geometry of a heterophase structure becomes 
self-similar for all the physically attainable scales and the 
fracton nature of localized vibrations changes completely to 
the phonon nature. 

The density of states N(w, 7 )  for long- and short-wave- 
length asymptotes can be calculated using the standard 
expression 

If w > w,, the asymptote G,, is given by the dependence 

Gii=G+ ( d -  1 )  Did, 

Substituting Eq. (29) into Eq. (28),  we find that the density 
of the fracton states is 

where the spectral dimensionality exponent d, is 

For w <w, , phonons are retained in the system and the fre- 
quency dependence of N,,, (w, r) has its standard form 

It  should be noted that if the fixed point v,  had been attaina- 
ble in the limit w -0, the function a ( r )  would have exhibited 
a power-law dependence on w, : a ( r )  cc ad,' d .  However, as 
pointed out above, in the case of a phase transition charac- 
terized by h =: 1 this asymptotic form is not realized and the 
dependence of the function a (7)  can be calculated using con- 
ventional perturbation theory. 

DISCUSSION OF RESULTS 

The results obtained in an analysis of acoustic proper- 
ties are easily applied, because of the obvious analogy of the 
equations, to other transport characteristics, such as the ef- 
fective diffusion coefficient or  the stiffness of spin waves near 
the points where percolation phase transitions with h z  1 
takes place. For example, the critical exponent of the effec- 
tive diffusion coefficient is 8 = 2yz .  Moreover, it follows 

from Eq. (31),  describing the exponent of the spectral di- 
mensionality d,, that if we adopt the field-theoretic ap- 
proach described above, we automatically satisfy the Alex- 
ander-Orbach scaling relationships applicable to fractal 
systems:'' 

where in the case of a two-phase medium we have to re- 
place-in contrast to the "limiting" problems-the fractal 
dimensionality d, with the spatial dimensionality d (Ref. 
10). Then, the "stronger" Alexander-Orbach hypothesis 
d, = 4/3 cannot be confirmed analytically, irrespective of 
the dimensionality of space, as already demonstrated earlier 
for the "limiting" problems.'v~20 

It  follows from the above considerations that the char- 
acteristic frequency w, corresponds to the localization 
threshold in the problem of motion of an electron in a ran- 
dom field. In an analysis of acoustic properties of such a 
system at w=:w,, as in the solution of the problem of the 
Anderson transition, we have to calculate the average two- 
particle Green function for a random field with an Ornstein- 
Zernike correlation function. We note that the problem of 
phonon localization in a medium with a Gaussian S-corre- 
lated random field had been investigated earlier2" for a 
( 2  + &)-dimensional space by a method applied earlier to a 
similar electron problem. 

An interesting aspect is the possibility of describing 
both the "limiting" problems with h = 0 and the percolation 
phase transitions with h =: 1 by a single field theory. The de- 
velopment of such a theory would make it possible to calcu- 
late the effective characteristics of a composite percolation 
medium with arbitrary values of h and r, and not only the 
asymptotic behavior of these characteristics in the cases 
when r<  1, h g 1 or  r<  1, h-, 1 .  Note that the qualitative 
difference between the nature of the effective Hamiltonians 
used to calculate the configurational averages in the prob- 
lems with h=: 1 and h = 0 is not surprising, because exactly 
the same situation occurs in the description of magnetic 
phase transitions in crystals containing paramagnetic im- 
'durities at various temperatures and impurity concentra- 
tions. 

Fracton effects due to the scattering of acoustic vibra- 
tions by heterophase fluctuations near the percolation phase 
transitions in disordered crystals are less easy to observe ex- 
perimentally using acoustic methods than by the method of 
low-angle scattering of light because the acoustic wave- 
lengths are fairly long.-"' For example, when the characteris- 
tic scale of an inhomogeneity of a random field is R,, - 10 p 4  

cm and the relative jumps in the elastic moduli due to a local 
phase transition amount to A, -0.1, the critical frequency 
becomes w, -5.10" Hz in the temperature interval 
I T - T, I =:ATd. Therefore, the phonon localization effects 
should manifest themselves not in ultrasonic experiments, 
but in an analysis of the spectra observed in the Brillouin 
scattering of light. Moreover, these effects should result in 
an anomalous behavior of the thermal diffusivity in the vi- 
cinity of a transition point if the inelastic scattering of phon- 
ons is sufficiently weak. 

The authors are grateful to A. N. Vasil'ev, S. L. Ginz- 
burg, and S. V. Maleev for valuable discussions of the topics 
considered above. 
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" This approximation is not of any fundamental importance, but it gives 
rise to simplification of some of the expressions. It is justified quantita- 
tively if (aP/dT) I , 7, gP*/ATd. 

" In the final stage of the'transition (when 1 - x (  1 ) this structure loses 
its elastic stability and the crystal passes through a "chaotic" state. 
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