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The derivation and analysis are given ofa new integral boundary condition for the distribution of 
electrons scattered by a randomly rough surface with arbitrary values of the Rayleigh parameter. 
It is assumed that on the average the surface irregularities are gently sloping. It is shown how the 
results can be reduced to the limits of the Born and Kirchhoff approximations. It is shown that the 
reflection of electrons from a rough surface with gently sloping irregularities is always close to the 
specular case. The only exception is a narrow range of angles of electron paths relative to the 
surface where electrons may be scattered diffusely because of the shadow effect. Under 
anomalous-skin-effect conditions a change in the nature of the surface scattering of electrons 
reaching the surface at low angles gives rise to a nonmonotonic frequency dependence and a weak 
temperature dependence of the impedance of a metal even in the lowest approximation with 
respect to the anomaly parameter. In contrast to the already known microscopic boundary 
conditions, the new condition makes it possible to analyze a number of transport phenomena 
including those involving electrons incident at large angles on a boundary. 

1. INTRODUCTION 

The problem of the elastic scattering of conduction 
electrons by a rough metal surface is closely related to the 
problem of wave diffraction by randomly irregular surfaces. 
Therefore, the main results of the theory of this surface scat- 
tering of electrons have been derived for the two limiting 
cases typical of the wave approach: the Born and semiclassi- 
cal approximations. The ranges of validity of these approxi- 
mations are determined by the value of the Rayleigh param- 
eter kxg, which represents the product of the rms height off 
of the irregularities of the normal (relative to the average 
surface of the investigated metal) component of the electron 
wave vector k, (when the x axis is directed into the sample). 

There are several effects in the physics of metals (such 
as the anomalous skin effect, cyclotron resonance, Kha'ikin 
oscillations, etc.), which are due to a small group of elec- 
trons moving almost parallel to the boundary of a sample 
(these are known as grazing electrons). For this group of 
electrons the condition k,f4 1 may be satisfied because of 
the smallness of the arrival angle e, and, therefore, the Born 
approximation may be valid. 

The opposite limiting case k,f) 1 (Kirchhoff approxi- 
mation) is of less practical importance, because the height of 
the surface irregularities [and the de Broglie wavelength of 
an electron 2r/k, are usually of the same order of magni- 
tude (k, - 10' cm- ' is the wave vector on the Fermi sur- 
face). It would therefore seem that the surface can always be 
made more rough by increasing the height <and, therefore, 
the Rayleigh parameter. However, the Kirchhoff approxi- 
mation can be used subject to the additional condition that 
the average slope of the irregularities y = 6 /L is small (L is 
the average length of the irregularities) and roughening of 
the metal surface inevitably increases the parameter y. 
Therefore, the Kirchhoff case is usually only of theoretical 
interest. 

A theory of the surface scattering of electrons is not yet 
available for a wide range of the Rayleigh parameter kx<- 1. 
This is unfortunate, because this range is extremely impor- 
tant since many electrodynamic phenomena in metals, 
which are sensitive to the nature of the surface scattering, are 
associated with electrons arriving at the surface at angles of 
p- 1. These phenomena include the skin effect in the in- 
frared range of frequencies, the static skin effect, transverse 
electron focusing, Doppler oscillations in metal plates, etc. 

Development of a microscopic theory of these phenom- 
ena has been hindered by the absence of a satisfactory model 
of wave diffraction by a rough surface with an arbitrary val- 
ue of the Rayleigh parameter. Such a model, asymptotically 
exact in terms of the parameter 

was recently developed in a series of papers published by 
Voronovich.'-we must draw attention to the fact that the 
inequality ( 1) can be satisfied only for surfaces with gently 
sloping irregularities ( y 1 ). This has made it possible to 
find an asymptotic series1-' for the amplitude of the surface 
scattering in terms of the parameter ( l ) ,  which is indepen- 
dent of the wavelength. In fact, gently sloping ( y < 1 ) sur- 
face irregularities can be regarded as forming a strongly an- 
isotropic bulk scatterer. The characteristic radius of action 
of the potential of such a scatterer along one direction is of 
order <, whereas along the surface it is of the order ofL. It is 
this strong anisotropy of the potential that makes it possible 
to solve the quantum-mechanical problem of the scattering 
for an arbitrary value of the Rayleigh parameter k,f. 

We employ the method developed by Voronovichi-' 
and calculate the collision integral for electrons reaching a 
rough surface of a metal. We do this to second order in the 
parameter ( 1 ). The Born and the Kirchhoff approximations 
are many-parameter expansions which not only impose re- 
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strictions on the value of the Rayleigh parameter, but also an 
independent requirement that the surface irregularities 
should be gently sloping ( y 1 ) . The integral parameter ob- 
tained below, however, is a one-parameter expansion in y/p. 
Studies of metal surfaces with the aid of a tunnel micro- 
scope4 showed that the slope y of the surface irregularities of 
samples used in modern experiments is indeed small 
( y - 10 - 2-10 - 4 ) .  Therefore, there are grounds for assum- 
ing that our collision integral describes sufficiently accurate- 
ly the interaction of electrons with a real surface of a metal. 

Up to now it has been held widely (see, for example, 
Ref. 5)  that the nature of the scattering of electrons from a 
rough surface of a metal is governed primarily by the Ray- 
leigh parameter. It has been assumed that for k,(> 1, i.e., 
that if the angle of arrival is p-r /2 ,  then the reflection is 
diffuse, but for k,{& 1, i.e., if p-0, then the reflection is 
nearly specular. One of the most important results of the 
present study is a refutation of this point of view. An analysis 
of our surface collision integral led us to the conclusion that, 
apart from the dependence on the value of the Rayleigh pa- 
rameter, the reflection of electrons is nearly specular if the 
condition ( 1 ) is obeyed. This condition means that the arriv- 
al anglep is sufficiently large ( y g p <  1; p- k,/k,.). We can 
expect diffuse scattering of electrons from a boundary with 
gently sloping irregularities (y  g 1 ) only in the range of very 
low arrival angles, i.e., when the condition ( 1 ) is disobeyed. 
The reason for the diffuse scattering is obviously the shadow 
effect, well known from the theory of d i f f ra~t ion,~ but not 
yet fully understood. 

2. BOUNDARY CONDITION FORTHE ELECTRON 
DISTRIBUTION FUNCTION 

The electron distribution function for a bounded sam- 
ple is found from the Boltzmann transport equation. Its gen- 
eral solution contains integration constants, which can be 
found by formulating the boundary conditions at the metal- 
vacuum interface. The boundary condition expresses the re- 
lationship between the distribution functions of electrons de- 
parting from f( k, , k )  and arriving at f( - k, , k )  surface. In 
general, this relationship can be described in the integral 
form (see the review in Ref. 6) ,  which automatically ensures 
the absence of a flux of particles across the surface of a sam- 
ple: 

Since the scattering by static defects is elastic, the following 
energy conservation law is obeyed: 

Here and below we assume, for the sake of simplicity, that 
the electron dispersion law is quadratic and isotropic; 
k = {k,, k,) is a two-dimensional wave vector. The equality 
(3  ) governs the dependence of the normal component k, on 
k =  lkl andk:(kl ) ;  k , (k )>Oandk: (k l )>O.  Thekernel 
of the collision integral V(k, k') V(kl, k )  was calculated by 
Fal'kovskii7 and in the Born approximation also by Okulov 
and Ustinov8 who used the Kirchhoff approximation. In 

order to calculate V(k, k') for an arbitrary value of the Ray- 
leigh parameter, we must consider the general problem of 
the scattering of electrons by a rough surface. 

Let us assume that the half-space occupied by the metal 
is bounded by a rough surface x = c ( r ) ,  where c ( r )  is a 
random function of a two-dimensional radius vector r = b, 
z). The average surface coincides with the coordinate plane 
x .= 0 and the x axis is directed into the metal. A plane wave 

$,, (x, r) =kcSexp(-ikj+ikr) (4)  

incident on the x = {(r) boundary creates a scattered field 
$,, (x, r ) ,  which can be represented in the form 

The function S(q,  k )  is the surface-scattering amplitude. Its 
properties were considered in the review of Andreev9 for the 
case of grazing incidence of electrons in metals with a com- 
plex Fermi surface. The general mathematical theory of the 
surface scattering matrix S was developed by Voronovich in 
Refs. 1 and 2. 

The wave functions of an electron incident and reflected 
by the boundary of a metal can be expanded as a Fourier 
integral in terms of plane waves: 

d2k 
Yrefl (x. r) = --v+ (kx. k)exp (ikxx+ikr). -- k,'" 

On the other hand, it is quite obvious that the state of a 
reflected electron characterized by Eq. (7 )  can be expressed, 
using Eqs. (4)-(61, in terms of the scattering amplitude S: 

- m 

d2q *,., (x, r )  = J' d'k cp- (k.. k) J T ~ ( q ,  k)  exp (iqsx+iqr). 
- -> _, 4. 

We interchange the orders of integration in this expression 
and relabel the integration variables k and q. Comparing the 
resultant expression with Eq. (7 ) ,  we readily obtain therela- 
tionship between the Fourier coefficients p + and p : 

m 

P+ (I;.. k) = J d2q S(k. q)qL ( * ,  q). ( 9 )  

The Fourier coefficients p + (k,, k )  are the wave func- 
tions of an electron in the mixed (x,  k )  representation at the 
average boundary of the metal in the x = 0 plane. The diag- 
onal elements of the density matrix obtained in this approxi- 
mation for x = 0 are Ip + (k,, k )  1'. Hence, it is clear that in 
the one-electron approximation the classical distribution 
function f( + k,, k )  for the average (effective) boundary at 
x = 0 is the average of lq,. (k, , k )  I over the surface irregu- 
larities: 

f (*L, k) = ( I T ,  (S ,  k) 12)e(kpZ-k2). 

The angular brackets denote here the averaging of an ensem- 
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ble of realizations of the random function {(r); 8 ( x )  is the 
Heaviside theta function. 

I t  follows from the definition ( 10) and Eq. (9 )  that the 
relationship between the distribution functions of the re- 
flected and incident electrons can be expressed in terms of 
the second moment of the scattering amplitude S. In view of 
the statistical homogeneity of a random surface, we find that 
this moment is described by 

Therefore, the required boundary condition can be de- 
scribed by 

It is obvious that the integral kernel Q(k, k ')  = Q(kl,  
k )  represents the probability density of a transition from a 
state k to a state k' as a result of collision of a particle with the 
surface. Since the boundary condition ( 12) can be satisfied 
identically, for an equilibrium distribution function, the 
probability density Q(k, k ')  obeys the usual normalization 
condition: 

The explicit form of the kernel Q(k,  k t )  depends on the 
nature of the scattered quasiparticles. They may be not only 
electrons, but-for example-also phonons. In the case of 
these two types of quasiparticle we find that different bound- 
ary conditions apply on the true (nonaverage) surface of a 
sample described by x = l ( r ) .  In the case of electrons this is 
the Dirichlet condition for a wave function: 

whereas for phonons in superfluid helium, it is the Neumann 
condition for the velocity potential: 

where n is the normal to the surface x = c ( r ) .  For this rea- 
son the explicit form of the scattering amplitudeS(k, q)  and, 
consequently, of the kernel Q(k, k') for electrons is different 
from that for phonons. The problem of phonon scattering in 
superfluid helium by the irregularities of the walls of a capil- 
lary was solved in the Born approximation by Adamenko 
and Fuks.I0 

Therefore, the scattering of quasiparticles by static de- 
fects of a boundary reduces to finding the scattering ampli- 
tudeS(k, q )  and calculating the correlation function of Eq. 
( 1 1 ) . Since in our case the quasiparticles are electrons, we 
write down the scattering amplitude to second order in the 
parameter. According to Ref. 3, we have 

N 

Here, k , ( k f k ' ) = [ k Z , - ( k ~ k 1 ) 2 ] 1 / 2  , q, = k, (q )  
= ( k ;  -q2)"2, and 

rn 

S (k)= -- I dzrt(r)erp (-ikr). 

We use the scattering amplitudes of Eq. ( 16) to form a 
bilinear combination of Eq. ( 11 ), and we shall subject it to 
averaging. Clearly, the averaging result depends on the law 
governing the distribution ofthe random functions {(r). We 
shall assume that the distribution of fluctuations obeys the 
Gaussian law. This most frequently used distribution de- 
scribes satisfactorily a random surface of a metal formed 
under the influence of a large number of independent fac- 
tors. If the averaging is carried out in accordance with the 
rules of the Gaussian statistics, we obtain the following 
expression for the probability Q(k, k ') :  

w 

The integration with respect to q in Eq. ( 17) is carried out in 
domains where the quantities k, ( k  + q) and k, (k  - q )  are 
real. The rms height < of the surface irregularities and the 
correlation functions YY(r) and W(k) are defined as fol- 
lows: 

The binary correlation function 7J/'(r) varies over distances 
of the order of the average irregularity length L and its Four- 
ier transform W(k) on a scale of 27~/L. 

We apply the boundary condition in the form of Eq. ( 2 )  
because it will be convenient both in our analysis and in ap- 
plications. The kernels Q(k, k') of Eq. (12) and V(k, k ')  in 
Eq. ( 2 )  are related by 

We can determine V(k, k' ) if we represent the function Q(k, 
k ')  of Eq. (17) in the form of a sum of smooth and circular 
(delta-function) terms. Dropping the cumbersome identity 
transformations, we give the final result for the function 
V(k, k t )  : 

V(k, k')=-462kzkzk.. 2 n  o .I r d r r '  ( r )  

X J k k ' l r  e ~ p { - 2 ( k + k ) [ l - r ) ] } .  (19) 
I k-k' I 
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Here, J, ( x )  is a Bessel function of the first order and a prime 
on the correlation function denotes a derivative with respect 
to r. Representation of the kernel Q ( k ,  k ' )  in the form of Eq. 
( 18) is possible only if it satisfies the normalization condi- 
tion of Eq. ( 13). Otherwise, Eq. ( 18) has no solution. 

The boundary condition of Eq. ( 2 )  together with the 
kernel of Eq. ( 19) is valid for any value of the Rayleigh 
parameter k,c. Its range of validity is limited only by the 
inequality ( 1 ). 

3. ANALYSIS OF THE BOUNDARY CONDITION 

1. We now investigate the boundary condition de- 
scribed by Eqs. ( 2 )  and ( 1 9 )  as a function of the Rayleigh 
parameter k,{ and determine how this condition reduces to 
the familiar  condition^.'.^ 

In the Born approximation if 

the exponential function in the integral of Eq. ( 1 9 )  can be 
assumed to be unity. The kernel V ( k ,  k ' )  then becomes 

V ( k ,  k ' )  =41;2k,k,'W(lk-k'I). (21 

This is precisely the transition probability used in Ref. 7 .  
In the Kirchhoff approximation, when 

the main contribution to the integral of Eq. ( 19) comes from 
the vicinity of the point r  = 0  and this contribution must be 
calculated by the Laplace method. Then, the difference 
1 - 7 Y ( r )  is replaced with r2/%""(0)1/2  and we have 
7 F ( r ) ,  - r/  7/ -" ( 0 )  1 .  Integration then gives 

The function V ( k ,  k ' )  of Eq. ( 2 3 ) ,  used in the boundary 
condition ( 2 ) ,  is sharper than the distribution function 
f (  - k  :, k ' ) .  It follows that the collision integral in Eq. ( 2 )  
can be obtained also in the Fokker-Planck approximation'' 
by expanding it in terms of a small change in the momentum 
k  - kt .  Therefore, the boundary condition ( 2 )  assumes the 
following differential form: 

Here, V and V2 represent the two-dimensional forms of the 
gradient and Laplacian in the k  space. The relationship ( 2 4 )  
was first obtained for the limiting case of Eq. ( 2 2 )  in Ref. 8. 

2. In general, the nature of the surface scattering of elec- 
trons is not governed by the Rayleigh parameter k,<, but by 
the ratio of the angular width 4 of the scattering indicatrix 
( 19) and the angle 47 - k,  / k ,  of arrival of electrons at the 
boundary of a metal. In the boundary condition ( 2 )  these 
quantities determine, respectively, the scales of changes in 
the integral kernel V(k ,  k' )  and in the distribution function 
f( - k : ,  k ' ) .  WenowanalyzeEqs. ( 2 )  and ( 1 9 )  asafunc- 
tion of the values of the parameter 4/47. 

We begin with the case of large-scale irregularities typi- 

cal of metals, when the correlation radius L  is much greater 
than the de Broglie electron wavelength 2r /k , :  

We can readily show that if the condition ( 2 5 )  is obeyed, the 
probability of the transition described by Eq. ( 19) and con- 
sidered as a function of the difference ( k  - k'j has a maxi- 
mum at k' = k  whose width is of order ( 1 + k , f ) / L .  Such a 
change in the longitudinal wave vector k  corresponds to the 
angular width of the scattering indicatrix 

@ OC (If k,c),'k,L. ( 2 6 )  

We now consider the case of steep incidence of the elec- 
trons on a rough surface of a metal when y < 4 <+, i.e., 

It follows from the inequality of Eq. ( 2 7 )  that in the steep- 
incidence case the indicatrix V ( k ,  k' ) becomes sharper in the 
integral ( 2 ) .  Therefore, the difference between the distribu- 
tion functions can be expanded as a Taylor series in the small 
momentum transfer k  - k'. It follows that in the situation 
described by Eqs. ( 2 5 )  and ( 2 7 )  the surface collision inte- 
gral in Eq. ( 2 )  can be calculated in the Fokker-Planck ap- 
proximation. Naturally, the kernel V ( k ,  k' ) can be described 
by a general expression ( 19) and not by the asymptote ( 2 3 ) ,  
which is valid only in the Kirchhoff approximation. 

The differential boundary condition which is then ob- 
tained is exactly the same as that given by Eq. ( 2 4 ) .  This 
agreement confirms the validity of the earlier assumption 
that when electrons are scattered by a rough boundary, phy- 
sically different situations differ not in the Rayleigh param- 
eter k,{,  but in the ratio of the characteristic arrival angle 
p- k , / k ,  to the width of the scattering indicatrix 4. In fact, 
the condition ( 2 7 )  for validity of Eq. ( 2 4 )  includes not only 
a wide range of the values of the Rayleigh parameter of Eq. 
( 2 2 ) ,  but also partly the range of the Born approximation of 
Eq. ( 2 0 ) .  In other words, the Fokker-Planck expansion for 
the kernel of Eq. ( 2 1 )  also gives the boundary condition of 
Eq. ( 2 4 ) .  

We next consider the case when electrons are incident 
at a smaller angle ( y 4 p 4 4)  : 

The distribution function f(  - k  :, k ' )  in the integral of Eq. 
( 2 )  is sharper than the kernel V ( k ,  k ' ) .  Therefore, the effec- 
tive integration domain for the incoming term in Eq. ( 2 )  is 
considerably less than for the outgoing term, and we can 
ignore the incoming term. Therefore, the boundary condi- 
tion ( 2 )  transforms to the algebraic condition of Fuchs12 
with the specularity parameter p dependent on the electron 
momentum and on the microscopic parameters of a rough 
boundary: 

d2k' 
, = I  - 

(an)' 
V(k, k') .  

k ' < k g  

Since the inequalities of Eq. ( 2 8 )  may be satisfied only if 
k , f  < 1 ,  the transition probability V ( k ,  k ' )  in Eq. ( 2 9 )  is 
governed by the Born approximation of Eq. ( 2  1 ) . 

The case of small-scale irregularities 
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may be realized in semimetals and in metals with a complex 
Fermi surface for small groups of electrons with k, & 10' 
cm - I. In the case of samples characterized by small-scale 
(k,L & 1 ) gently sloping (c /L 4 1 ) irregularities the Ray- 
leigh parameter is always small (k,(g 1 ), and the transition 
probability V(k, k') is governed by Eq. (21 ). The correla- 
tion function W( I k - k' 1 ) in the boundary condition (2)  
can then be regarded as constant throughout the domain of 
integration with respect to kt  and equal to W(0). The Born 
approximation of Eq. (2 1 ) is then valid also in the case when 
k,L- 1. 

It should be pointed out that the above analysis of the 
boundary condition of Eq. (2)  with the kernel of Eq. ( 19) 
can be carried out from a unified standpoint if the angular 
width of the scattering indicatrix is described by the follow- 
ing interpolation expression: 

which is valid for any value of k,c and k, L. 
3. A fundamental property of the boundary condition 

(2)  with the integral kernel (19) is that, throughout the 
range of its validity given by Eq. ( 1 ), it represents the case of 
near-specular reflection of electrons from a rough surface of 
a metal. In fact, we can readily see that in all the cases under 
discussion the "diffuse" (integral) term in Eq. (2) is small 
compared with f( - k,, k).  For example, if y < 4 &p,  when 
the Fokker-Planck equation can be applied, the second term 
in Eq. (24) representing the degree of diffuseness is gov- 
erned by a small parameter of the theory (y/p) < 1. Hence, 
we reach a nonobvious conclusion that the diffuse reflection 
of electrons is possible only in the range of very small arrival 
angles when the condition ( 1) breaks down. Here ( p  < y), 
the shadow effect5 increases the probability of scattering 
through large angles and this makes for diffuse scattering. 

The shadow effect is governed not only by the param- 
eter p/y,  but also by the relationship between the average 
height of irregularities c and the size of a Fresnel zone 
(L /k,) lI2. If 

electrons "bend around" irregularities because of diffraction 
and reach the geometric shadow region. '"he scattering of 
quasiparticles arriving at a boundary at angles p < y is then 
described by the Born approximation and is consequently 
near-specular. 

It therefore follows that the conditions 

ensure almost specular reflection of electrons for any arrival 
angle p. The scattering can be diffuse if the slope of the irre- 
gularities is steep 

CIL>1 (34) 

or when the following inequalities can be satisfied simulta- 
neously: 

In this connection it is worth mentioning the experi- 
ments of Tsoi14 and of Van Kempen et aL4 on transverse 
focusing of electrons in a magnetic field. Near-specular re- 

flection on a (001) face of silver was reported in Ref. 14. It 
was closer to specular than for a (01 1 ) face. A study of the 
structure of the faces of silver, carried out using a scanning 
tunnel microscope reported in Ref. 14, showed that the aver- 
age slope [ /L of irregularities on the (01 1 ) face was consid- 
erably greater than on the (001 ) face. The listed experimen- 
tal observations can be explained in a natural manner using 
the theory proposed above. 

4. The above conclusion that the diffuse reflection of 
electrons is possible in the case of extremely small arrival 
angles leads to an unexpected prediction of frequency and 
temperature dependences of the impedance Z of a metal un- 
der anomalous skin effect conditions. 

The anomalous skin effect is observed in the following 
range of the incident wave frequencies w :  

where v,, v, and w, are the Fermi velocity, the frequency of 
bulk collisions, and the plasma frequency of a gas of conduc- 
tion electrons; c is the velocity of light. The hf admittance of 
a metal is governed by the effective electrons with low inci- 
dence angles p: 

It is obvious that by varying the wave frequency w or the 
temperature T (i.e., the relaxation frequency v) we can alter 
the arrival angle g, without disturbing the condition of 
anomalous behavior of the skin effect of Eq. (37). If such a 
change in p results in a transition from the inequality ( 1 ) to 
the inequality (35), then the same sample may exhibit both 
specular and diffuse reflection of electrons. Since the imped- 
anceZ for the diffuse reflection case is 9/8 times greater than 
in the specular case, it follows that in the range of tempera- 
tures corresponding to such a transition the temperature de- 
pendence of the impedance should be smooth. The frequen- 
cy dependence of the impedance however becomes 
nonmonotonic. Note that the dependence Z (  T) appears - - 
even in the lowest approximation in terms of the anomaly 
parameter S / I ,  and not in the temperature corrections in- 
vestigated earlier.6.'5~16 

We can determine the range of frequencies w corre- 
sponding to the diffuse scattering of electrons if we bear in 
mind that the arrival angle of Eq. (37) has its minimum 
p = pmln at w - v. If p,,,,,, > < /L, the reflection is near- 
specular throughout the full range of frequencies defined by 
Eq. (36) and the nonmonotonic frequency or temperature 
dependence does not appear. The last inequality means that 

The condition (40) is satisfied by a typical metal with 
wi, - 1013 s '  and v- lo9 s - '  if ( / L  < 1 0 "  This is a fairly 
stringent requirement on the quality of the surface treat- 
ment. If it is not satisfied, there is a frequency interval where 
the shadow effect is important. In fact, if the left-hand in- 
equality in Eq. (40) is reversed, i.e., for 

the condition ( 1 ) breaks down at frequencies 
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The shadow effect then increases the probability of the dif- 
fuse scattering of electrons. For example, for </L - 10 2, 

Y -  lo9 S -  ', and w,, - 10" s -  I ,  then in the range of frequen- 
cies w from lo7 to 101° s - I ,  the reflection is diffuse although 
at all other frequencies from a,, to w,, the reflection is near- 
specular. 

We can observe the transition from the specular to dif- 
fuse reflection most conveniently by considering the tem- 
perature rather than the frequency dependence. At suffi- 
ciently low temperatures when the condition (41) is 
satisfied, the reflection is diffuse. An increase in temperature 
increases the relaxation frequency v and the angle of arrival 
p. In the temperature range where Y = v*- w,, ((/L)3'2, 
there is a change in the nature of the scattering of electrons 
from diffuse to specular and the impedance decreases by a 
factor of 9/8. A further increase in temperature does not 
alter the impedance considered in the lowest approximation 
as long as the anomalous skin effect condition (36) holds. 
Then, Z(T) begins to rise in the range of the normal skin 
effect. This nonmonotonic behavior of Z(T) should be ob- 
served for any frequency of a wave w ,  provided it is less than 
w,,  . However, the frequency w = v* is the most convenient 
for observations. At this frequency the temperature interval 
where the nature of the scattering changes is the narrowest. 
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