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The three-dimensional equilibrium of a modulated ultrarelativistic electron beam (or of a train of 
electron bunches) in a plasma is analyzed in the self-focusing case. The compression of a bunch by 
the field of the plasma wave excited by the beam is balanced by the gradient of the kinetic pressure 
in the bunch. Self-focusing occurs if the beam modulation frequency w, is lower than the plasma 
frequency w,. An analytic solution derived for arbitrary modulation frequencies w, < u p  shows 
that a deviation from the resonance w, zw,  results in an elongation of the bunches, without a 
change in the distance between the edges of neighboring bunches, Sz = .rrc/w,, or in the beam 
radius r, - Sz. 

A problem of current interest in plasma physics is the 
transport of intense electron beams over large distances 
through dense plasmas. One approach to the solution of this 
problem, proposed in Ref. 1 ,  is to break the beam up into 
distinct bunches with a modulation frequency w, = 2.rrv/l 
( I  and v are, respectively, the spatial period and velocity of 
the beam) lower than the plasma frequency of the plasma, 
a,. In this case the dielectric constant E = 1 - wi/wf, is 
negative, and a radial self-focusing of the electron bunches 
occurs. 

It was shown in Ref. 2 that under the condition E <O it 
becomes possible to maintain equilibrium longitudinal di- 
mensions of bunches in a situation in which the repulsive 
Coulomb force and the force associated with the gradient of 
the kinetic pressure are balanced by the field of the focusing 
wave mode. It was pointed out in Ref. 2 that transporting a 
beam in the form of distinct bunches has the advantage that 
the growth rate for the instability of satellite modes is lower 
than in the case of a solid beam. 

It was shown in Refs. 3 and 4 that it is possible to simul- 
taneously achieve radial focusing and phase focusing of elec- 
tron beams in a plasma with a "negative" dielectric constant 
for the case of an azimuthally symmetric nonrelativistic 
beam under resonant conditions with J E I  < 1.  A radial and 
longitudinal compression of the bunches is caused by the 
space-charge wave which is excited by the beam and which 
displaces plasma electrons from the beam volume. The ion 
potential wells which arise, and which are synchronized 
with the beam, capture the bunches and lead to a three-di- 
mensional equilibrium of the beam with the wave.' 

In the present paper, the nonrelativistic theory'-4 of the 
self-focusing of a modulated electron beam in a plasma is 
generalized to relativistic energies, at which the emission by 
the beam in the plasma is not electrostatic, and the problem 
goes beyond the scope of the electrostatic approximation. 
The magnetic field of the wave weakens the Coulomb repul- 
sion of the electrons in the bunches to an extent proportional 
to y - = 1 - v2/c2 and expands the region of modulation 
frequencies w ,  <a, which correspond to self-focusing, 
since the focusing polarization field does not depend on the 
relativistic factor. 

An analytic solution of the problem is derived in the 
nonresonant case w, < w, for ultrarelativistic energies, 
y - < 1, at which the nonlinear wave equation for the self- 
consistent potential simplifies, and variables can be separat- 

ed. It  thus becomes possible to treat the radial and longitudi- 
nal equilibria of the electron beams independently. 

When we go to relativistic energies, the growth rate of 
the beam instability5 decreases in proportion to y - ', and 
there is a corresponding increase in the distance over which 
the beam can be transported in the plasma. 

1. NONLINEAR EQUATION FOR THE SELF-CONSISTENT 
POTENTIAL 

The emission by an electron beam with a densityp and a 
velocity v in a dense (linear) plasma is described by a system 
of inhomogeneous wave equations for the potentials A and 

'P : 

These potentials satisfy the gauge condition 

We direct thez axis of the cylindrical coordinate system 
along the beam velocity, and we consider an azimuthally 
symmetric steady-state solution: 

v 
$=v- ;Az ,  A7=Ae=0, 

$=$ ( r .  z'), zl=z-vt. 

Switching to the function qb in Eqs. ( 1 ), we obtain the equa- 
tion 

where A, is the radial part of the Laplacian. 
We find the functional dependence p($)  by the 

trapped-particle m e t h ~ d , ~  taking the electron distribution 
function in the bunches to be, in the frame of reference of the 
beam, 
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where& is the electron density at the bottom ofthe potential 
well, +&,. The discontinuous function on the right side of 
(51, 

reflects the condition for capture of the electrons by the 
wave. 

Integrating ( 5 )  over velocity, we find the density of the 
trapped particles as a function of the potential in the frame of 
reference of the beam: 

A transformation to the frame of reference of the plasma is 
made with the help of a Lorentz transformation: 

Equation (4) simplifies substantially in the ultrarelativistic 
limit $) 1, at which term of order y - 2  << 1 can be discarded: 

The boundary conditions on Eq. (8), which reflect the 
conditions for self-focusing of the bunches, are 

The point { = = 0 corresponds to the center of a bunch, 
where the potential reaches its maximum with respect to 
both variables. 

2. RADIAL SELF-FOCUSING OF A BEAM 

Separation of variables can be carried out in the nonlin- 
ear partial differential equation (8)  : 

In this case the radial potential profile is described by 

and the boundary conditions in ( 1 1 ) are a consequence of 
(9).  The prime means the derivative with respect to the vari- 
able {. 

A solution of ( 1 1 )  in the form of a soliton with a maxi- 
mum at the beam axis corresponds to radial self-focusing of a 
bunch. Since we cannot find an integral of this equation, we 
take the approach of Ref. 4 and examine the equation qual- 
itatively, drawing on the mechanical analogy with the mo- 
tion of a particle in a potential well.' Omitting the term 
4 - ' R  ', which acts as a friction force, from the left side of 
( 1 1 ), and carrying out the integration, we find 

where the integration constant C corresponds to the total 
energy of the particle in the potential well W(R ). Figure 1 
shows a plot of this function, whose zeros are at R, = 0 and 
R, = 3/2. For C >  0, the motion is infinite, while for C <  0 it 
is periodic. The case C = 0 corresponds to the soliton solu- 
tion. 

If the friction force - 'R ' in Eq. ( 1 1  ) is instead re- 
tained, the particle loses energy and falls to the bottom of the 
well. If the starting point in this case is sufficiently high, the 
particle will still have enough energy at the potential mini- 
mum for a return motion. Numerical integration shows that 
at R, = R (0) = 2.392 the particle first falls to the bottom of 
the well, then rises, and asymptotically approaches the point 
R, = 0. This case corresponds to the soliton solution of Eq. 
( 1 1 ) . Figure 2 shows a plot of the function R (0 for this 
case. 

3. LONGITUDINAL EQUILIBRIUM OF BUNCHES 

An equation for the function Z(f) follows from (8)- 
( 10) and describes the potential distribution along the 
beam: 

Z"=-Z+Z" ( 2 )  , 

where the constant R, = 2.392 was determined in Sec. 2. 
Pursuing the mechanical analogy,' we analyze the first 

integral of Eq. ( 13 ) : 

[Z, = Z(0) 1. It follows from the plot of the function U ( Z )  
in Fig. 3 that a physically meaningful periodic solution exists 
in the region 

Z,,,,GZGZo<i, Z,i,=- (2E)"  

and corresponds to motion of the particle between turning 
points Zmi, and Z,. 

FIG. 1 .  The radial potential well W(R ). 
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FIG. 2. Profile of the radial part of the potential, R,  along the radial FIG. 3. plot of the longitudinal potential well U(Z). 
variable {. 

Integrating Eq. ( 14),  we find 
20 

The period L is determined by Eq. ( 15 ) : L = 2 J ( Z m i ,  ) . 
Allowing for the discontinuous function O ( Z ) ,  we can write 
this period in the form 

20 

L=n+2'" 
dz ( 1 6 )  

(E-C/2+Z3i3)'1*' 

where the term n corresponds to the range of integration 
outside the bunch, and Z,,, <Z<O. 

The integral in ( 1 6 )  reduces to an incomplete elliptic 
integral of the first kind:' 

Since the arguments of the function F ( p o , k )  depend on 
Zo a $; ', Eq. ( 17) can be used to reconstruct the depend- 
ence of the depth of the potential well, $, , on the dimension- 
less spatial period of the beam, L = w, I /c.  Figure 4 shows a 
plot of $, ( L ) .  

Similar manipulations lead to an expression for the 
function Z ( < )  in terms of elliptic functions:' 

where 26, = L - T,  and the point J,, = nL corresponds to functions can be used. In the limit Zo -0,  we use power se- 
the center of the bunch of index n. Without any loss of gener- ries in Zo,  
ality, we can set n = 0 at this point; i.e., we can treat the case 

sn(x:. k )  =sin(c/2) ,  dn(x5, k ) = l ,  
of a bunch which is centered at the origin of coordinates, 
6,  = 0.  Figure 5 shows the shape of the electron bunches for 4 4 1 2 
various values of the parameter L.  L = Z n + - - h ,  3 k - 2 ,  3 X ~ - ( I + ~ Z ~ ) ,  2  

The general expressions ( 17) and ( 18) simplify in ( 1 9 )  
limiting cases in which the asymptotic forms of the special 

finding 

In the case u = c, expression ( 2 0 )  is the same as that found 
from the integral equation of Ref. 4 under resonant condi- 
tions, such that the beam modulation frequency 
w, = 2?rc/l is close tow,, the plasma frequency of the plas- 
ma." 

Asymptotic expansions of ( 17) and ( 18) can also be 
derived in the case A = 1 - Zo ( 1  (Ref. 8 ) :  

0,- 2 L 4 6  n 2 A ' "  
k 2 - -  3 2 ~ O = T - ( ~ )  , 

A t ( 2 1 )  
FIG. 4. The wave amplitude 4 = e ~ , , p ~ / m c 2 p ,  versus the spatial period 
of the beam. dn(xb, k ) - [ 1 + ~ ( ~ + ~ h ~ ) t h - ] ~ 8 ~ h ( $ ) .  2 
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switch to the new variable ( = go + 5, and use the relations 

The general formula from the theory of elliptic functionss 
can then be put in the form 

Substituting (25) into the first expression in (23). we find 
the potential distribution near the boundary of ~1, bunch: 

At the point J = &, (g, = 0) the function in (26) and its 
derivative are the same as the second expression in (23 ) . 

The maximum value of the potential, found from the 
condition Z, = 1, 

does not contain a resonant factor. It is an asymptotic func- 
tion of $,, (L)  in the limit L - UJ (Fig. 4). 

4. INDUCED CHARGE AND CURRENT OF THE PLASMA 

FIG. 5. Profile of the wave potential $I$,,, at the beam axis (6 = 0) for 
various values of the deviation 6 = L /27r - I .  a-6 = 0.036; b-6 = 0.6; 
c-6 = 2.1. 

Substituting (21 ) into ( 17), we find the period of the oscilla- 
tions: 

12 
~ = n + 2  1 n [ ~ ( 2 - ~ * ) ] .  (22) 

In going from (17) to (22) we made use of the asymptotic 
expression K(k) =: ln(4/k1 ), k, = ( 1 - k *)  '" for the com- 
plete elliptic integral. As the parameter A decreases the mod- 
ulation period L increases, and the longitudinal dimensions 
of the bunches also increase. The distance between bunches, 
on the other hand, remains constant, equal to half the wave- 
length, m / w ,  (Fig. 4).  

In approximation (21) we find the following from 
expression ( 18) : 

I 
I 

1 + 2 ~ ( l - - d n - ' ~ ) ,  li14I0, 
z(I )=zo L (23) 

-3-I13 - I), 2.4111 GUL. 

Restricting the discussion to the first term in the asymptotic 
expression for the function dn(x<,k) in (21), 
dn(xf,k) zdn({/2), we find the potential distribution near 
the origin from (23): 

1 
1 ( 2  s h )  It 1 "to. (24) 

To simplify (23) at the boundary of a bunch, { 5 go, we 

To determine the electron current density j, induced in 
the plasma by the beam,9 we use equations which follow 
from (1)  for the scalar potential q, and the vector potential 
A, : 

Substituting (28) into Maxwell's equations, we find 

where jpz and j,, are the longitudinal and radial projections 
of the vector j. 

To compare jpz with the beam current density 
j, = - ecp, we switch to the dimensionless functions"' 

and we use the relations 

which follow from Eqs. ( 1 1 ) and ( 13 ) . 
Integrating (30) over the cross section, we find the dis- 

tributions of the plasma current and the beam current along 
the length of a bunch: 

(Fig. 6).  The constant = 9.9 was found by numerical inte- 
gration. 
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FIG. 7. Profiles of ( 1 ) the average current density of the plasma, (2) that 
FIG. 6. Profiles of ( 1 ) the beam current and (2) the plasma current over a of the beam, and (3) their sum along the radial variable 5. 
modulation period for the case 6 = 2.1. 

The radial profile of the current density, 

( j p T ) = j o R < Z ) ,  ( j , , )=- joR2<Z) , (33) 

is shown in Fig. 7. The constant ( Z  ) (the area under the 
curve over the integral 16 1 < L /2) reduces to incomplete el- 
liptic integrals:" 

From (29) and the continuity equation for the plasma 
electrons, we find the density of the induced charge to be 

From (30), (35), and (31) we find 

so the plasma with the beam has charge neutrality and also 
current neutrality on the average over a period. 

5. SUMMARY OF RESULTS 

In previous studies14 carried out in the electrostatic 
approximation, it was predicted that an electron beam 
broken up into bunches before entering a dense plasma 
would undergo self-focusing in the plasma. In the present 
study, it has been shown that this self-focusing occurs at 
relativistic energies. The electromagnetic radiation emitted 
by a relativistic beam in a plasma simultaneously creates 
longitudinal and radial potential wells for the electron 
bunches if the longitudinal dimension of these bunches is 
greater than the wavelength A, = 2 1 ~ c / o , .  

The length of a bunch varies from A, / 2  to (L - n ) c / w ,  
as the modulation frequency of the beam is reduced in the 

As the deviation from resonance  increase^,^' for l, IT, 

the potential well becomes shallower, and the temperature of 
the captured electrons does not exceed 

T = e g , = n ~ ~ p ~ n ~ - ~ .  
In contrast with Ref. 9, where the radius of the beam 

injected into the plasma was left as an adjustable parameter, 
and the system was not neutralized in terms of current, in the 
case at hand the parameters of the beam are reconciled with 
the field, and charge neutrality and current neutrality pre- 
vail on the average over a period of the beam. 

We wish to thank P. V. Fomin for assistance in this 
study. 

"The condition under which the plasma is linear, P, ( p # ,  (P, and p,, are 
the perturbed and background components of the electron density of the 
plasma), imposes a restriction on the wave amplitude: $,, (mc2/e .  This 
restriction corresponds to a low-density beam, pO (p, ,6.  

')The steady state, which we have been discussing in this paper, persists 
under the inequality L ( c r ,  where r = < / A  ivis the time scale for diffu- 
sion of the magnetic field,'" v is the rate of electron-ion collisions in the 
plasma, and r,, is the beam radius. 
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region w ,  < a p .  However, the beam radius r, -A, and the 
distance between bunches, SZ' = A p / 2 ,  are not changed. Translated by D. Parsons 
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