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We investigate analytically the process of autophasing of classical oscillators coupled by a 
radiation field in its nonlinear stage. The equations of motion (coupled Duffing equations) are 
first written in terms of amplitudes of oscillation for the individual oscillators; rewriting these 
equations in terms of collective variables (i.e., modes) that characterize the phase distribution of 
the oscillators allows us to decrease the number of these equations. When the nonlinear processes 
are ineffective compared to the radiative processes, we also can obtain the time dependence of the 
amplitude of the radiated wave. A model from acoustics is proposed that exhibits this 
autophasing effect. 

An interesting example of a "transition from chaos to 
order" is the autophasing of nonlinear oscillators that inter- 
act with each other through a self-generated radiation field. 
An example of this process is "Dicke superradiance",' in 
which initially excited atoms come into phase with one an- 
other in the process of radiating and emit short and powerful 
electromagnetic wave trains. Another example is the radi- 
ation of spatially localized ensembles of electrons moving in 
a magnetic field, a phenomenon investigated in Refs. 2 and 3. 
Using a semiclassical description of the autophasing, in 
which the individual oscillators obey quantum (usually two- 
level) equations while their ensemble obeys a balance equa- 
tion, it is possible to carry the analysis of this phenomenon 
quite far, up to the point where the nonlinear stages must be 
dealt with.Is4 

The investigation of autophasing of classical oscillators 
is a topic of interest in its own right. Under this heading we 
note the "classical maser" effect5 and its acoustic analogue 
discussed in Ref. 6. However, despite the almost 30-year his- 
tory of this question, only the linear stage of the autophasing 
process has been successfully treated analytically, while the 
process of evolution of the radiation pulse and its parameters 
have been studied only n u m e r i ~ a l l ~ . ~ ~ ~  

In this paper we will attempt to describe the nonlinear 
stage of the autophasing ofclassical oscillators and propose a 
model which exhibits mechanical "superradiance". 

It is clear from ( 3 )  that the field 9 (which we will refer to as 
"macroscopic") supplies an additional mechanism for the 
dissipation of energy. 

Let us further clarify what we mean by the effect of 
oscillator autophasing. We first set a = 0, so that Eq. ( 1 ) 
becomes linear, and assume that at time 7 = 0 all of the oscil- 
lators are excited in such a way that 9 (7 = 0) = 0; then by 
virtue of the linearity of Eq. ( 1 ) and the fact that all the 
oscillators are identical, we have 9 =O for all 7 > 0 as well. 
In this case the energy of the system decreases according to 
an exponential law with damping coefficient S. If at r = 0 all 
the oscillators are excited with identical phases and ampli- 
tudes, it follows from ( 1 ) and ( 3 )  that the energy will again 
decrease exponentially now, however, the damping coeffi- 
cient is 6 + Nx.  Usually the condition Nx 9 S is satisfied. For 
a # O  the phenomenon of autophasing becomes possible, in 
which oscillators initially excited with random phases at 
7 = 0 (9 (r  = 0)  = 0) come into phase with one another 
during the oscillation process, and then rapidly "burn out" 
their energy with a damping coefficient close to Nx.  In dis- 
cussing processes of this kind we will assume the nonlinear- 
ity is small, i.e., ax, * < 1. This allows us to write the variables 
x, and 9 in the form 

1. THEORETICAL MODEL x,= (Y,ei'S c.C.) 12, 9 = i  (Zeir+ c.c.) 12, ( 5  
Without specifying the physical nature of the system, where Y, is the complex amplitude of oscillation of the k th 

let us consider an ensemble of N oscillators with cubic non- 
oscillator. By virtue of the additional condition linearities interacting with each other through a field 9 that 

is proportional to the sum of their velocities: g=i(y,eir-c.c.)/2 ( 6 )  

( 1 ) we obtain from ( 1 ) and (2)  an equation for Yk and Z: 

here 6 is the attenuation coefficient, a is the nonlinearity 
coefficient, and x is the coupling coefficient of the oscilla- 
tors. Multiplying ( 1 ) by x,, integrating with respect to time, 
and summing over k, we obtain an equation for the time 
variation of the total energy E of the oscillators: 

where we have introduced a new nonlinearity coefficient 
a = 3a/8. In what follows we will attempt to reduce the sys- 
tem (7) to a certain set of equations that in the simplest cases 
admits analytic solutions. To do this we first change from the 
variables Y, to new variables (modes) according to the for- 
mula 
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N-1 

Y, = A ,  exp ( i2nkl lN).  
1-0 

Substituting ( 9 )  into ( 7 ) ,  we then multiply the right and left 
sides of Eq. ( 7 )  by exp( - i2rrlk / N )  and sum over all k, 
after which we can make use of the equation9 

x e x p  ( i2nkndN) = { N for m=O; *N;  *2N. .  . , 
0 for m+O; * N ;  r t2N. .  . , ( 1 0 )  

k-0 

where m  is an integer, to obtain the following equations for 
A, : 

1 
A, + -[6+Nx6 ( n )  ] A ,  

2 

where 6 ( n )  is the Kronecker symbol. The subscripts j at- 
tached to the quantities A, on the right side of Eq. ( 1 1  ) lie 
between 0  and N  - 1 ;  forj outside this range we have Aj = 0 .  
For the amplitude of the macroscopic field Z we have from 
Eqs. ( 8 )  and ( 9 )  

In an analogous fashion we obtain an expression for the total 
energy of the system: 

Let us perform still another change of variables that will 
allow us to sum a portion of the terms in ( 1 1 ) . We transform 
from A, to b, according to the expression 

Then from ( 1 1 ) and ( 14) we obtain the following equation 
for 6, 

Of course the transformation to Eqs. ( 15) in itself does 
not simplify the problem; however, an approximation is now 
feasible that will leave us with only three equations We will 
demonstrate this first for the linearized problem. 

2. LINEAR THEORY 

Let us first discuss the problem of the evolution of small 
perturbations superposed on a single given mode b,, E # O ,  
with Z(T = 0 )  = 0 .  We will linearize Eqs. ( 15) with respect 
to all the variables 6, with j+ E, which we assume are small 
compared to b,, and neglect the right-hand side in writing 
the equation for the "pump" b, . Then it is not difficult to see 

that for any fixed n we can separate out two equations 

1 
6 ,  + -[G+Nx6 (n )  ] bn=iakZbm', 

2 ( 1 6 )  
1 

6,. + - [8+NxG(m) ] bm*=-ia(&)2b,, 
2 

while 6, satisfies the equation 

In Eq. ( 1 6 )  m  takes on three values: m  = 2E - n or 
m  = 2E - n + N  (the sign is chosen to ensure the condition 
m>O); recall that m  lies in the range 0  to N  - 1. It is clear 
from ( 1 6 )  that in the linear approximation the modes are 
coupled in pairs by the given pump; in this case the behavior 
of all the pairs is the same, except for the cases n = 0  and 
m = 0 ,  in which the damping coefficient becomes equal to 
S + Nx. The autophasing process is in fact associated with 
this specific pair of modes: the additional damping is due to 
the presence of coupling in Eq. ( 12) between the macroscop- 
ic field Z and the amplitude of the mode 6,. 

We first write the solution to Eq. ( 1 7 )  for the pump 
mode in the form of a nonlinearly decaying amplitude with 
the initial condition b, (7 = 0 )  = b, : 

bii=tbao exp [ -Sz /2+iq  ( l - e - 6 ' ) / 6 ] ,  ( 1 8 )  

where 7 = a1 b, 1'. We seek the solution to Eq. ( 16) in the 
form 

b,=bna csp [ ( A , - 2 i q ) ~ l ,  b,:=b,,,, exp(h, T ) ,  ( 1 9 )  

where the real part A, determines whether the correspond- 
ing pair of modes grow (ReA, > 0 )  or decay ( R d ,  < 0).  We 
will further neglect the damping of the pump for the mo- 
ment, setting S = 0  in ( 1 9 ) .  Then, when we substitute ( 1 9 )  
into ( 16) we obtain the following equation for A, 

(hn+6/2) {A,-2iq+ [6+6 ( n )  N x ] / 2 )  =q2 ,  ( 2 0 )  

from which we find the quantities A, and A, : 

Apparently the expression ( 2 2 )  for ReA, was obtained di- 
rectly from Eqs. ( 7 )  and ( 8 )  for the first time in Ref. 7;  see 
also the later Ref. 8. It follows from ( 2 1 )  that all pairs of 
modes with n  > 0  decay, while the only pair that can grow is 
the pair that contains the zero mode and a mode with index 
m  equal to 2E if 2EGN- 1 or 2E - N  if 2 E > N -  1 .  This 
result is understandable in light of what was said above: an 
instability is possible only when a coherent component is 
excited that is coupled to the zero mode. Thus, for the case 
where the first mode is pumped ( E  = 1 )  the unstable pair 
will be a combination of the zero and second mode. As a 
function of Nx the magnitude of the growth rate Rd, has a 
maximum 

(Re  hO) --0,3 1 q 1-612, ( 2 3 )  

which occurs for 
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This reflects the participation of the macroscopic field in two 
processes: autophasing and the dissipation of energy. For 
small Nx the coupling between the oscillators decreases, 
while for large Nx the energy dissipation increases. Equation 
(23) defines a condition on the quantity 7 that ensures am- 
plification: 171 > 1.76. However, for the case of arbitrary Nx, 
according to (22) the analogous condition has the form 

Let us note one specific limiting case. One possible 
choice among the various values the indices m and n can take 
in ( 16) is m = n = 0 (e.g., N = 10, while ii = 5); after sub- 
stituting (19) into ( 16) we obtain for this choice 

i.e., without the participation of any other mode the zero 
mode does not grow. In the presence of instability the 
growth of a pair of modes must be limited either by the 
damping of the pump mode or by the nonlinearity. Let us 
first investigate the first factor within the framework of the 
linear system ( 16) and ( 17). It is possible to find an analytic 
solution for this case under the additional condition 

then for the magnitude of bo we obtain from ( 16) the equa- 
tion 

I BoI =I bo0l exp [ - 3 6 ~ / 2 + p ' N x  (1-e-2"'] /46] ,  (28) 

where 6, = b,,, is the initial value of b, (within the approx- 
imation (27) it is determined only by the initial value of the 
index of the mode 25); p = 27/Nx is a coefficient that char- 
acterizes the degree of influence of the nonlinearity in com- 
parison with the collective losses. In (28) we also assume 6 
small in comparison to Nx. The following condition for the 
validity of (27) follows from (28): 

i.e., we are discussing the case of a nonlinearity that is rela- 
tively small in comparison with the collective losses. Ac- 
cording to (28), growth in Ib, 1 is possible for p2Nx>6, 
whereas (22) gives the conditionp2Nx < 6 for smallp. From 
this we see that the damping of the pump in the limiting case 
p2 4 1 increases the threshold for the instability with respect 
to intensity by a factor of three. Note that for 

the quantity 16, I is a maximum: 
3 N x p Z  I bo 1 m a =  1 boo 1 ( 3 6 ~ ~ x p ~ ) " ~  eXp [T (? - 1 )] . (30) 

This implies that when 6 is small the quantity 16, I may be 
large enough to cause the linear theory to be inapplicable 
even when condition (29) is satisfied. 

3. NONLINEAR THEORY 

Thus, it follows from the linear theory that when the 
initial excitation involves only a single mode it is possible to 
separate all the modes into two groups: one consisting of a 
pair of modes with exponentially growing amplitudes and 

the other including all the remaining modes, which are ex- 
ponentially decaying. If we normalize the amplitudes of the 
modes by the amplitude of the pump at T = 0, i.e., introduce 
new variables according to the formula 

it is not hard to see that the transition from the linear to the 
nonlinear approximation is signaled by the appearance of 
terms of the form C, C2, C,* on the right sides of ( 16) and 
(17); however, these terms do not play a significant role 
until C2, and Co have increased to values of order unity. This 
makes it possible to use the three-mode model in the nonlin- 
ear regime as well for times prior to this stage. In what fol- 
lows we will complement these general considerations with 
an attempt to compare the results of our model with numeri- 
cal calculations from Ref. 8. 

Let us choose the mode with E = 1 as the pump mode 
and pass to the variable 7 = NXT; doing this, we obtain from 
( 15) the following system of equations for C,: 

1 ip P 
C,' + - C ,  + ,I Co 1 'C0=i - C,'C,*, 

2 2 

where CJ = dCj/d7. Here we have also assumed N >  3, in 
order to exclude additional terms from the right-hand sides 
of the equations that are due to terms in ( 15) that contain 
modes with subscripts 21-n * Nand I + m f N. With an eye 
to further simplification of Eq. (32), let us pass from the 
complex variables C, to real variables, i.e., the intensities Ji 
and phases 6, according to the formula C, = J f '2exp (i$, ), 
after which we obtain 

Jo'+Jo=-pJl (JoJ2)'" sin $, 

l , = ( 1 + 2 J o ) e x p ( - 6 t l N x ) - 2 J 2 ,  

where $ = 2$, - $, - go, and J,, = J, (7 = 0). 
Neglecting the intrinsic attenuation (6  = 0) and the 

small "seed" J,, ( J2, 4 1 ), let us simplify Eq. ( 34) and 
expression (36) as follows: 

These equations should be considered together with Eqs. 
(33) and (35). For arbitrary p this system cannot be inte- 
grated analytically. Therefore, we discuss first the range of 
variation and asymptotic behavior of the solutions to (37) 
and (38). TodothisweweuseEqs. (7),  (9) ,  (12) and (13) 
to write an equation for the change in energy: 
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where 
2 

Since we have Jo > 0, the energy can only decrease with time 
from& = 1 at 7 = 0 to a certainvalueO<~(?- a, ) < 1; there- 
fore, ~'(7- to ) = 0. Then (39) implies Jo (?- w ) = 0. Fur- 
thermore, substituting (38) into (40), we obtain 

Since ~ ( 7 -  co ) < ~ ( 7 - 0 )  = 1 holds when a coherent field is 
generated, while Jo (7- co ) = 0, we have J, (7- co ) #O. 
Let us write (35) in a somewhat different way: 

2 2 + J p = - r J , ~ ; h  sin lp. 
d t? 

Since J:I2 -0, dJ:'2/d?-0, while J, #O, we have Jl sin$-0 
for 7- co. However, J, (7- a, ) #O causes the factor with 
the cosine in the left-hand side of (33) to diverge, which in 
turn leads to d$/d7- co , and, of course, Jo ( 7- co ) # 0 as 
well. Therefore, J, (7- W )  -0, while from (38) and (41), 
we have J, (7- co ) = 1/2 and ~ ( 7 -  co ) = 1/2. From this 
we see that this model gives a total loss of energy equal to half 
the initial value. 

In order to write the analytic solution, let us consider as 
before the case p2(1. This condition allows us to assume 
J; (Jo in (35); then Eq. (33) for the phase becomes 

In Eq. (42) we once again neglect the derivative of cos$ in 
comparison with 3 cos$, which gives 

cos' $=4p2 1  - - J2 sin? $=0 or sin2 9=1. 

Using this fact, we have from (35), (37) and (38) that 

Integrating Eq. (43) we finally obtain 

2 - 0  1  1 
In +---a p z t  . 

J ( I -  1-212 i-2J20 

The expression (44) shows that the variation of J2 has the 
form of a falloff from J,, at ? = 0 to 1/2 for 7- co, while 
Jo (7) has the form of a pulse with a maximum equal to 

At the point where the value of Jo is a maximum we have 
J, = 1/6, and Eq. (44) gives the following expression for 
the time ?,,, : 

from which it follows that the time delay corresponding to 
the appearance of the radiation pulse is determined by the 
initial value of the mode J2, , and that for small values of this 
quantity the delay can be arbitrarily large. At the initial 
stage, (43) and (44) imply exponential growth of Jo ,  which 
for larger values of the time goes over to power-law decay. 
Let us use a level of O.5JOmax to define the length of the pulse; 

FIG. 1 .  Time dependence of the radiation intensity. 

then from (44) we obtain 

where 7, is the time it takes Jo to increase to a value 0.5J0,,, 
and 7, the time for it to decrease to a level 0.5J0,,,; here 
J2, = J2 (7, ) and J,, = J2 (7,). According to (43) and 
(45), the quantities J,,,, are roots of the equation 

The roots of interest to us have the values J,, = 0.045 and 
J2, = 0.333, and the length of the pulse, according to (47), 
is given by the expression 

Figure 1 shows the radiation pulse Jo (T) corresponding to 
the analytic formulas (43) and (44) forp = 1 and Nx = 0.3. 
It is interesting to compare the values of the amplitude J,,,, 
and duration AT (A7 = NxAr) given by Eqs. (45) and (49) 
with the values given in Ref. 8 obtained by numerical inte- 
gration of Eqs. (7)  and (8).  The parameters of the problem 
used in Ref. 8 (in our notation) equal x = 2/N, p = a and 
I b,, 1' = 1. Forp = 1 we have JOma, = 0.07 from (45), while 
Ref. 8 gives the value J,,,, = 0.1, an agreement that is still 
rather good although our results are formally valid only for 
p ( 1. For AT Eq. (49) gives the value AT-2.5, while from 
Ref. 8 we have AT= 5, i.e., here the disagreement is large. 
Unfortunately, no calculations were given in Ref. 8 forp < 1. 

From this we see that we can use expressions (45) and 
(49) for estimates up t o p  - 1, while for p > 1 there are limi- 
tations of a fundamental character. From (35) and (36) it 
follows that Eq. (45) gives the value of the absolute maxi- 
mum, i.e., for increasingp (p > 1) the quantity JomaX can be 
only smaller than 2p2/27. Consequently, Eq. (45) always 
gives an overestimated value. Using (41) and (45) and the 
substitution J2 = 1/6, we can write the variation of the ener- 
gy AE for times after Jo has increased to its maximum value 
in the form 

from which we have for p the condition p < 3/2. 

4. ACOUSTIC MODEL 

In conclusion let us consider a specific physical example 
which, in principle at least, suggests that it is possible for 
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<P)= (pclcos 8) <I)>,, (51) 

FIG. 2. Geometry of the problem under discussion: (q,, q ,  ),where q ,  is 
parallel to the boundary, is a system of coordinates for describing the 
macroscopic field; the angle B shows the direction of the radiated sound 
wave. (q,, q) is a system of coordinates for describing the individual 
wave, (q,, q)  is a system of coordinates for describing the individual 
cavities; the dimensions (R ,  <, h )  of the cavities are the same and the 
distances between them are random. 

mechanical oscillators in acoustics to exhibit the effect of 
superradiance. Consider a set of cylindrical cavities with 
identical radii R and heights h filled with gas and embedded 
in an unbounded planar acoustically-rigid surface. The half- 
space q, > 0 (where q, = 0 is the position of the surface) is 
filled with a liquid that partially occupies the cavities so that 
the height of the air columns is l < h  (Fig. 2). These cavities 
are oscillators with a resonant frequency o, determined by 
the elasticity of air and the effective mass of the neighboring 
liquid.'' If the oscillators are excited at t = 0, they will vi- 
brate at a frequency close to the intrinsic frequency a,. In 
this case it is possible to divide the pressure Pand the veloc- 
ity of liquid motion v into two components: an average com- 
ponent for variation on a scale including many cavities (i.e., 
for macroscopic fields) and a local component that varies 
rapidly in the component space. 

Let us choose an area S on the surface with linear di- 
mensions much smaller than the characteristic size of the 
nonuniformity of the macroscopic fields while still contain- 
ing many cavities. For this area the condition of conserva- 
tion of mass of the liquid gives an equation for (v) ,, i.e., the 
component of the macroscopic velocity of liquid motion nor- 
mal to the surface near the plane q2 = 0: 

Ns 

where a = TR is the area of the cavity and N, the number of 
cavities in the area S. We assume that the cavities are distrib- 
uted uniformly over the entire surface. Taking into account 
that the phase and amplitude of the oscillators can be repeat- 
ed many times across S, we assume that at t = 0 there are 
only N < N, oscillators with differing phases and/or ampli- 
tudes; for clarity we will dividesinto Ksmall elements, each 
of which contains these N different oscillators, and let 
s = S/K. This allows us to reduce the summation to N terms, 
i.e., 

Consider a planar sound wave propagating from the surface 
at an angle 8; then the average sound pressure is related to 
the velocity by the condition 

wherep is the density of the liquid and c the velocity of sound 
in the liquid. At this point we need an equation for the vibra- 
tion of the individual cavities coupled by the overall field 
(5  1 ) [see Appendix, Eq. (AS) 1. If we set the coefficients 
a, = a, = 0 and a, = a in this equation, and pass to the 
dimensionless time variable T = w,t and pressure 
9 = (P)/yP,,thenfrom (50) and(51) weobtainEqs. (1) 
and (2),  with the coefficient x given by the expression 

X = v, pcw,/yso, cos 6 ,  (52) 

where V, is the volume of the gas cavity, y is the adiabatic 
exponent of the gas, and Po is the statistical pressure. If, 
however, a, and a, are not equal to zero, we obtain equa- 
tions with a more complicated nonlinearity; however, the 
equations for the amplitude Y, have the same form as (7 )  
and (8), with a nonlinearity coefficient a equal to" 

In order to obtain an idea of the possible parameters of 
such a system, let us take o, equal to 3. lo3 sec - ' ( - 500 
Hz), and the cavity radius R = 3. 10W3 m; then from the 
expression for o, [see (A6) ] under the condition h = 6, we 
have h = 0.6- l o w 2  m. The other parameters entering into 
(A6) are assumed to have following values: Po = lo5 Pa 
(i.e., atmospheric pressure), y = 1.4, p = lo3 kg/m3. Let us 
also set 171 = 0.15 [see Eq. ( 18) 1, in which case we have 
Re A, = 0.045, and ,u = 1, corresponding to Nx = 0.3. The 
radiation pulse corresponding to the parameters of this mod- 
el is shown in Fig. 1. Let us take N = 20; then from (52) we 
find at 0 = 0 the area s = 0.01 8 m2. From expression (53) 
and (A7) we find the value of the nonlinearity coefficient 
a = 0.6, which gives Y(t = 0)  = 0.5 for the initial value of 
the amplitude. The dimensional energy per unit area To of 
the system at t = 0 can be written in the form 

To = Y P ~  V,  E,Js , (54) 

while (36) implies the following expression for the flux of 
sonic energy @: 

In the case under discussion here we have To = 6.5 
J/m2, and the maximum value is @,,,=o, 
xNT, Jo,,, = 1 kW/m2. 

In conclusion let us note that this value of the energy To 
for the phased linear oscillators would give a sonic flux @, 
exponentially decaying with time, with a maximum value at 
t = 0 equal to @, = oo xNToJo,,, = 13.5 kW/m2. From 
this we see that the quantity Jo,,, = @,,, /@, allows us to 
estimate the effectiveness of the autophasing of the oscilla- 
tors. 

APPENDIX 

Let us choose the nonlinear equations for the oscilla- 
tions in the gas cavities under the assumption that their di- 
mensions are small compared with the wavelength of a 
sound wave of frequency oo in the liquid and in the gas (i.e., 
the approximation of an incompressible liquid) and that the 
boundaries between liquid and gas are rigid during the oscil- 
lations (i.e., the piston approximation). 
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The change in momentum of the liquid column located 
in the cavity between the liquid-gas boundaries and q2 = 0 
can be written in the form 

where P, is the pressure in the gas, P(q, q2 = 0) is the pres- 
sure at an arbitrary point with coordinates q on the cross 
section of the cavity at q, = 0 (see Fig. 2), and q is a vector 
that connects the center of the q, = 0 cross section of the 
cavity with an arbitrary point on this cross section. The inte- 
gration is carried out over the cross section q, = 0. The pres- 
sure P(q, q, = 0) in our approximation is written in the 
formI2 

where p = p(q,  q2 = 0) is the potential in the liquid, 
v2 = I v(q, = 0) 1 2, and r is the distance between the point q 
and a point within the region of integration (which is carried 
out over these points). From (A 1 ) and (A2) we make use of 
the equation', 

to obtain 

For adiabatic vibrations of the gas in the cavity we have 

(A4) we obtain the following equation for x = (6 - lo )/go 
up to cubic nonlinear terms: 

In Eq. (A5) we have added a dissipative term with decay 
rate S that includes various types of losses, i.e., thermal con- 
ductivity. 
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where f o  is the height of the cavity at rest. From (A3) and 
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