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The electron-vibrational excitation correlator in a two-level molecule is obtained as a functional 
of the vibrational variables in a closed time contour. For deformational, optically active 
vibrations with frequency w and a large Stokes shift wA the values ofthe parameters model a 
number of molecules studied previously, possessing diffuse absorption and luminescence spectra. 
It is shown that the low-frequency vibrations near the separatrix of the phase plane of the 
deformation degree of freedom of the molecule resulting from their resonant nonlinear 
interactionp with oscillations of the heat reservoir may be responsible for the smearing out of the 
spectral bands. The condition for the appearance of these almost aperiodic nuclear motions on the 
optical transitions is that the detuning R of the resonant vibrational exchange be small compared 
to the productph. 

In complex molecules the nonlinearity of the vibration- 
al motion, manifested in its anharmonicity, has a profound 
effect on the nature of the electron-vibrational spectra. The 
anharmonicity of the vibrations not only leads to a broaden- 
ing of the energy levels and spectral lines, but also (as the 
amplitude and energy of the vibrations increase) influences 
the instability of the vibrational motion. 

The role of the interaction of the vibrations in the dy- 
namics of the conversion of the energy of a light quantum 
and the formation of the spectra during electron-vibrational 
transitions in complex molecules was considered in Refs. 1 
and 2. These papers uncovered the existence of a critical 
value of the rate of redistribution of the vibrational energy of 
the molecule and established that this rate grows as a func- 
tion of the energy or of the complexity of the structure of the 
molecule. For a number of aromatic compounds with com- 
plicated structure this effect expresses itself in the disappear- 
ance of the structure of the electron-vibrational absorption 
and luminescence spectra and in the formation of wide con- 
tinuous bands. In Ref. 3 continuous spectra of a new type 
were discovered, whose origin was ascribed4 to the extreme 
instability of the Franck-Condon states, leading to strong 
homogeneous broadening, which distinguishes these sys- 
tems from systems with inhomogeneously broadened spec- 
tra.'** This difference in the nature of the broadening for a 
number of molecules was experimentally confirmed in Ref. 
5. 

The interaction between highly excited vibrations in the 
electronic ground state of complex molecules has been stud- 
ied in connection with laser chemistry  problem^.^.' In recent 
years new experimental and theoretical results were ob- 
tained in this area.'-'' These include a description of the 
randomization of the vibrational motion due to successive 
absorption of quanta in the infrared region of the spectrum. 

In the case of electron-vibrational spectra a similar 
complication of the motion of the nuclei takes place as a 
result of the direct excitation by a light quantum of a high 
vibrational state in the electronic system. Here the interac- 
tion of the electrons with the anharmonic vibrational subsys- 
tem of the molecule plays a major role. This case of random- 
ization of the molecular spectra is distinct from that in Refs. 

6-10, and the distinction has to do with the participation in 
the electron-vibrational transition of a deformational vibra- 
tion which determines the dynamics of the vibrational exci- 
t a t i ~ n . ~  

The redistribution of the excess energy of the light 
quantum above the energy of the electronic transition 
between the vibrational degrees of freedom of the molecule 
was studied theoretically in Ref. 11. In this paper the vibra- 
tional motion characteristic of the molecules investigated in 
Refs. 3 and 4 was explained by the resonant interaction ofthe 
optically active, deformational vibration with the high-fre- 
quency vibrations. It was shown that in the case of a large 
shift of the minimum of the potential energy of the deforma- 
tional vibration the intermode vibrational anharmonicity re- 
sults in an aperiodic motion of the nuclei, manifesting itself 
in the smearing out of the absorption spectrum. The points 
of the spectrum were treated in the spirit of S-matrix theory 
as resonances of the dipole-transition matrix elements of the 
molecule. 

In the present paper we propose to investigate the pecu- 
liarities of the electron-vibrational transitions associated 
with the zero-dimensional "soliton" and "kink" analogs of 
the aperiodic excitations of the vibrational subsystem of the 
molecule for the model of Ref. 11 through nonlinear semi- 
classical mechanics by the method of integrating over a 
closed time contour. The character of the spectrum of the 
temperature-time correlation function of the electron-vibra- 
tional excitations is also delineated. 

1. CORRELATION FUNCTION OFTHE ELECTRON- 
VIBRATIONAL EXCITATION 

We take the Hamiltonian of the molecule with electron 
excitation energy E to be in the form 

The vibrational subsystem with energy operator in the elec- 
tronic ground state 
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is modeled by 2N + 1 Bose oscillators. The optically active, 
deformational vibration with frequency w interacts reson- 
antly with the N vibration pairs of the band of Franck-Con- 
don states with frequencies w, z w ,  + w ; p  is the intervibra- 
tional coupling constant. The minimum of the energy of the 
oscillator with frequency w in the excited electronic state is 
shifted relative to the energy minimum in the ground state by 
A, SO that h, = h I' -' + ,,< , _ <  , + ,. 

The excitation of the molecule by a weak light field in 
the Condon approximation is described by the correlation 
function 

li(t) =(Sp p)-'I ( t ) ,  I ( t )  =Sp (pe-'Hfcs-eiH'o+), 

Evaluating the trace in terms of the electronic variables, we 
obtain 

With the goal ofan approximate description ofthe vibration- 
al subsystem, we avail ourselves of the functional representa- 
tion ( 1 ) in the limit N -  W .  Toward this end, we write Eq. 
( 1) in the basis of coherent states of the Bose oscillators, the 
set of whose indices we denote by the symbol z: 

dx' d x  
c / ! : = c ~ z ~  n ( d z z a  dzz,,] g, d2z,, = exp( -  1 x 1 ' )  - , 

1 n 
g- 1 

Each of the matrix elements in Eq. (2) can be represented in 
the form of an integral over trajectories: 

/ = 1 d'.~ d'z' (Fz" 1 D'$- D2$ DY+ ps (@-iEt) 

@=iS+( t ,  O)+S($ ,  0 ) - iSa- ( t ,  0 ) ,  (3)  

The actions S, S + , and S ,  are functionals of the usual sort, 
which depend on the trajectories of all the oscillators on the 
corresponding segments of the integrations. The boundary 
conditions on the trajectories of each oscillator with fre- 
quency w, have the form 

and analogously for the trajectories b, b , c, and c + . 
Formula (3) allows one to represent the evolution of 

the vibrational subsystem from the state of thermodynamic 

equilibrium at the time 0 to the time t as a motion "forward" 
with Hamiltonian h, and from the time t to the time 0 as 
motion "backward" with Hamiltonian h,  . This mode of de- 
scription, well known by the name "integration over a closed 
time contour," was developed in the quantum statistical 
physics of irreversible processes.'2+" Such an approach is 
convenient for electron-vibrational transitions in molecules 
since the motions forward and backward take place from 
different electronic states and the difference between them 
can be understood as a difference between the vibrational 
dynamics during absorption and during luminescence. 

2. VARIATIONAL PRINCIPLE FOR VIBRATIONAL 
SUBSYSTEMS 

Let us calculate in Eq. (3)  the Gaussian integrals over 
the trajectories c and c and over the coherent states z,, z;, 
and z:.': 

I I1 ~ = n e ~ ~ - ' "  1 d 2 z , ,  8 z a ,  #is,, I ~ ' & , a  D2$.,b D2& exp S ,  , 

+nieiat P d~  1 (P-*-P+*) dr' 

-pA 1 ( K + K e ) d r - i p A  1 (K-+K-*-PoA)  d r  
0 0 

The rows of the formula for F which are bilinear in P and 
P ,  coincide with the phase of the transformation function 
of the oscillator with equilibrium boundary conditions in the 
field of prescribed P, forces calculated by Schwinger.12 In 
the present case these forces arise thanks to the intervibra- 
tional interaction and the electronic transition, and they de- 
scribe the motion forward (superscript "plus") and back- 
ward (superscript "minus") and are equal to 
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From Eq. (4)  one can obtain an expression for Z ( t )  by 
using the stationary phase method at largeN. In this case the 
equations obtained by varying S,, over the trajectories b, 
b * , a, a + , and their conjugates form a closed system of 
Euler-Lagrange equations for the extremals which in the 
limit N-.  CQ describe the semiclassical motion of the nuclei. 
For example, for each of the oscillators with frequencies w, 
and w ,  the equations for a*_ , a - , b T , and b - are integro- 
differential equations of the form 

d 
--L - - o.) a-'Cib-*peim'v--0, ( ' d r  

For the trajectories with the index "plus" the equations have 
the same form, but the functions u + and u + are equal to 

Equations analogous to Eqs. (5 )  can also be written for the 
trajectories a, a*, b, and b *; however, the entire system of 
coupled equations as a whole is too complicated, and in or- 
der to study it we will make some simplifying assumptions 
below. 

We remark that the variables a and a*, b and b * in the 
latter formulas are not canonically conjugate, since the 
equations that can be obtained from the conjugate of Eqs. 
(5)  differ from them and define a different set of variables 
(which do not follow from the variational principle). This 
circumstance is due to the non-Hamiltonian character for 
A#O of the vibrational subsystem described by the function 
( 1) after averaging in the correlator K ( t )  over the electronic 
degrees of freedom. The noncoincidence of the levels of mo- 
tion for the 4 + , and 4 - ,-trajectories means that the 
evolution of the vibrational subsystem of the molecule before 

and after the electronic transition proceeds differently. This 
difference increases with the growth of the shift A of the 
minimum of the potential energy of the vibrations of the 
nuclei with frequency w in the excited state, but, as will be 
shown below, disappears at temperatures near the thermo- 
dissociation temperature. 

3. APERIODIC MOTION OFTHE NUCLEI 

In the case of a large shift A and not too high tempera- 
tures we can write the inequality 

according to which the density of the low-frequency phon- 
ons formed during the electron transition exceeds their equi- 
librium occupation number. Inequality (6)  allows one to 
neglect the vibrational interaction on the temperature seg- 
ment of the integration contour. In this case the calculation 
of the integral (2 )  reduces to the calculation of the trace with 
the initial distribution p-p( , ,  : ,,, and the equations for the 
bilinear combinations of the < + - and < - ,-trajector- 
ies simplify: 

Here m + is the initial difference between the numbers of 
excitations of the oscillators n ,  and n, with frequencies o, 
and a,, and the boundary values are connected by the rela- 
tions 

11- (0) =-~+(O)e-~~+ih, u-(1)  =--u+ (t) +iA .  

Analogous inequalities hold for u + . 
If condition (6)  is satisfied, the function I ( t )  can be 

conveniently represented in the form 

OO=iSO+ ( t ,  0) -is.-(t, 0) - i j  r d r ,  
0 

where the difference of the terms S,: and S, ,  is nonzero 
only because the 4 + ,- and < - %-trajectories do not 
coincide, and the uncanceled contribution to the phase due 
to the shift A comes only from the single term with the kernel 
r ( r ) .  This kernel is found from the formula 

which follows from the equations of motion for the trajector- 
ies of the deformational vibration 

the solution of which is equivalent to the calculation of the 
functional Gaussian integral in transforming from Eq. (3 )  
to Eq. (4).  

The implication of the above equalities is that to calcu- 
late I ( t )  from formula (8)  it is necessary to find the solution 
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of Eq. (7 )  and the analogous equation for u * coupled with 
it. The analysis of the problem simplifies if the conjugation 
relations for the functions u + and u * are found. With this 
aim, let us turn to the particular case L . = 0, in which the 
solutions of Eq. (7)  are constants (independent of 7). This 
case corresponds to short interaction times wt < 1. Then at 
low temperatures (n 4 1 ) the equalities u + z u + z O  and 
u - = - u* follow from the formulas for u * and u.  , and 
at high temperatures (n % I ) ,  the equalities u + z u: and 
u -  = v * .  

Conjugation relations at low temperatures for the 
4 - $-trajectories, as can be seen from system of equations 
(5), corresponds to the usual canonical conjugation of vari- 
ables (a*)* = a and ( b  * ) *  = b in Hamiltonian dynamics. 
The conjugation relations at high temperatures correspond 
to non-Hamiltonian motion of the vibrational subsystem 
due to pre-averaging over the electronic variables in Eq. ( 1 ). 
Both types of motion were described previouslyI4 in the me- 
chanics of three coupled oscillators for A = 0 and arbitrary 
values of the parametersp, w, and t. In the case under consi- 
deration the classification of types of the motion is expressed 
by the formula 

Equation (7)  here has real coefficients and takes the closed 
form 

Equation ( 10) determines the trajectoriesof the vibrational 
subsystem of the molecule, and its form for each value of x 
depends on the sign of the coefficient &t2 and the magnitude 
of the integral of the energy 8 of the nonlinear equation 
( 10). The self-similar solutions of Eq. ( 10) for x = - 1 and 
x = 1 were investigated in detail in Ref. 15. We will make use 
of the results of this work, and in order to compensate for the 
shift term in the boundary conditions on Eq. (7 )  we will 
transform to the variable u + xu. The potential energy of the 
oscillator ( 10) as a function of the coordinate c - , also in- 
vestigated in Ref. 15, in the problem under consideration is a 
result of averaging ( 1 ) of the vibrational energy of the mole- 
cule over both electronic states, taking into account the tran- 
sitions between them. 

First let us remark that cases (9.1) and (9.2) describe 
nonlinear vibrational regimes of fundamentally different 
character. In case (9.1) if the sign of the coefficient E: is 
negative the potential energy of the oscillator is represented 
by a double well, which ensures bounded motion of the nu- 
clei for all values of the parameters. The particular solution 
( E :  ( " 2 ~ ~ ~ h ( ~ p ~ ~ ~  obtains for zero value of the energy 
t9 = 8, = 0. This aperiodic solution is the separatrix of the 
phase plane of the vibrations of the nuclei with three turning 
points. It describes resonant energy exchange w e m ,  - w, 
of soliton type in the vibrational subsystem and separates 
regions of periodic motion with different parameters. 

In case (9.2) if the sign of the coefficient E: is negative 
and the energy t9 = t9,,, >0, the potential energy of the 
oscillator ( 10) is represented by a curve with two maxima 

which are the turning points in the motion along the separa- 
trix )E: 1 '"tanh ( T , )  E: ) 'I2). This aperiodic solution de- 
scribes the kinklike resonant decays w, - w , - . ~  and 
a, - a,-o and separates the region of stable motion 
8 < Om,, from the region 8 > 8,,, of unbounded motion. 
I fx = - 1 holds and the sign of e: is positive, the motion is 
always stable and periodic; if x = 1 holds and the sign of E: 

is positive, it is always unstable. 
The influence of the relation between the anharmoni- 

cityp, the detuning of the Fermi resonance 0, and the shift A 
on the appearance of the aperiodic regimes of motion of the 
nuclei that cause the greatest distortion of the electron-vi- 
brational spectrum of the molecule is of interest. 

In the molecules modeled in the present work the defor- 
mational vibration with frequency 0 - 200 cm - ' interacts 
with the valence vibrations with frequency w,,  - 1000 
cm - I, so that m < n. For typical parameters in the molecules 
under con~iderat ion~.~ we have p - 10 cm - I, 0 - 5 cm - I, 
and the shift A is estimated from the magnitude of the Stokes 
shift wA2- 1500 cm - ' to be equal to 2-3. At temperatures 
defined by the inequalities n < 1 and wp, > 1 (for the fre- 
quency w chosen here, P ; ' - 300 K ) ,  the necessary condi- 
tion for the appearance of the aperiodic regime E: <O is 
satisfied as a result of the presence of the shift term ( - A') 
in E ;  faster for luminescence than for absorption, and in 
both cases this condition is independent of the occupation 
number n. At temperatures at or above room temperature, 
but not so high that inequality (6 )  is violated, n 2 1 and 
E: < 0 give the condition npA > 0 of aperiodicity of the mo- 
tion of the nuclei during absorption and luminescence pre- 
viously established in Ref. 1 1 for room temperatures n - 1. 
At high temperatures (n > A2, w/3 < A - 2, the equation for 
the collective vibrations differs from ( 10) and does not have 
stable solutions, which corresponds to dissociation of the 
molecule. 

4. SPECTRUM OF ELECTRON-VIBRATIONAL EXCITATIONS 

Let us elucidate the nature of the excitational spectrum 
of the molecule for the cases of periodic and aperiodic mo- 
tion of the nuclei. The spectrum is characterized by singular- 
ities in the spectral density I,, which is defined as the La- 
place transform of the correlation function (8) :  

In the absence of the vibrational interaction ( p  = 0 )  the fol- 
lowing relation holds 

and the excitation spectrum corresponds to a well-known 
result in the theory of multiphonon transitions.I6 In the 
presence of the nonlinear vibrational interaction ( p  #0) for 
the case of motion of the vibrational subsystem along the 
separatrix corresponding to the case (9.1 ) , the spectrum is 
determined by its asymptotic behavior at late times 

and has the character of a pole: 
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ti on^"^^^ in the light-excited vibrational subsystem of the 

Ip=Z"" 1 
k = ~  k! p - i [ ~ b f  ( W - ~ ~ A )  k]' 

The trajectories near u 0  correspond to vibrations with long 
period Y ' .  In  the general case they are described by the 
elliptic functions cn, which satisfy Eq. ( lo), and the points 
of the spectrum are determined by combinations of the fre- 
quencies w and v. In this case broadening due to the anhar- 
monicity of the interaction between the vibrations Ap, ac- 
cording to the condition for motion in the vicinity of the 
separatrixph > S1, significantly exceeds the frequency v, i.e., 
the minimal distance between the points of the spectrum. 
This fact can serve as an explanation for the smearing out of 
the spectra of complex  molecule^'^^ in the limit v-0. 

At high temperatures, in the vicinity f? > g,,,, of the 
separatrix corresponding to the case (9.2), the instability of 
the motion is manifested in rapid relaxations leading the 
phase point of the vibrational subsystem out of the region [O, 
A] of the coordinate c -  . This corresponds to the initial 
stage of the decay of the state of the molecule, which in the 
real situation is complicated by the fact that the lower 
branches of the curve (9.2) have inflection points. A de- 
scription of such a process goes beyond the model of effective 
one-dimensional motion considered here. 

5. CONCLUSION 

Thus, the nonlinear interaction of the vibrational de- 
grees of freedom (intermode anharmonicity p )  can be a rea- 
son for the appearance of diffuse bands in the electron-vibra- 
tional spectra. The appearance of such an effect requires 
only moderate values of the anharmonicity p and the tem- 
perature in the presence of a significant shift A of the mini- 
mum of the energy of the optically active vibration with fre- 
quency o and a sufficient density of levels in the 
Franck-Condon electron-vibrational states. The frequencies 
w can correspond to librational motion of large parts of mol- 
ecules possessing complicated structural asymmetry. The 
large magnitude of A is connected with the smallness of the 
frequency of deformational vibration w compared to that 
part of the quantum of light energy transferred to the vibra- 
tional subsystem. 

Since the constant p is small in comparison with the 
frequency w ,  the approximation of weak a n h a r m o n i ~ i t y ~ - ' ~  
in the vibrational transitions in the absence of electronic ex- 
citation is justified. For an electron-vibrational transition 
with a large shift A the vibrational subsystem can fall in the 
region of the separatrix of its phase space, which requires 
that the nonlinear dynamics of the nuclei be treated here 
outside the framework of the theory of perturbations in p/w. 
The motion of the nuclei is described by Eq. ( lo), and the 
condition for the appearance of the aperiodic regime at room 
temperature is expressed by the inequalitypb > SZ. iJote that 
in the second of the two temperature regions [ (9.1) and 
(9.2) ] the conditions for the appearance of aperiodic motion 
depend on the occupation number n. The presence of a 
boundary temperature region corresponding in the given 
model to room temperatures n - 1 can serve as an analog for 
the electron-vibrational transitions in the previously devel- 
oped notions of "thermal explosions"' or "phase transi- 

molecule. 
The Landau-Singer theory for a diatomic ( N  = 1 ) mol- 

ecule follows from Eq. ( l )  if the commutator [h ,  h, ] is 
small. The latter is the case for A 1, and the corresponding 
result for the model considered here is described by the first 
terms of series (12).  This approximation implies that the 
electron-vibrational interaction is small, and is valid for the 
valence vibrations, and, in particular, it is always valid for 
diatomic molecules. For the deformational and librational 
vibrations considered here for the case of complex mole- 
cules. A > 1 holds and the electron-vibrational interaction is . - 

not small. Just this circumstance leads to the participation of 
a large number of degrees of freedom ( N $ 1 )  of the vibra- 
tional heat sink in the interaction and because of its anhar- 
monicity [i.e., of the vibrational motion] leads to the spec- 
troscopic manifestation of the randomization of the 
vibrations during an electron-vibrational transition in a 
weak field. 

The large value of A implies a substantial change in the 
"landscape" for the point of the vibrational phase space dur- 
ing the electronic transition. This change is assumed to take 
place instantaneously since the condition of the semiclassi- 
cal character of the motion is assumed to be fulfilled, but the 
nuclear shift is negligibly small. Note that a strong electron- 
vibrational interaction makes it necessary to depart from the 
Born-Oppenheimer approximation, used in the present 
work. 1; connection with this, one might expect a complica- 
tion of the vibrational dynamics described here, first of all 
for the trajectories of the highly excited vibrations (9.2). As 
to the spectrum, it is doubtful that an account of the depar- 
tures from this approximation would cause a narrowing of 
the spectrum and the disappearance of its diffuse character, 
but should rather open up new possibilities for introducing 
new interaction parameters and describing other features of 
the spectrum. 
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