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We present a theoretical study of two-directional superradiance of extended layers of quantum 
and nonresonant classical oscillators. We find the spatial structures and growth rates of the "hot" 
eigenmodes of the system which are produced in the linear stage of the superradiance process. The 
structure of the excited fields becomes complex (stochastization) in the nonlinear stage. We 
determine the time-dependence of the power of the radiation. We show that the behavior of the 
macroscopic characteristics (field, polarization, inversion) of the superradiance processes is 
similar in the quantum and the classical oscillator systems. We give estimates of the power of 
cyclotron superradiance. 

r+e t  
1. INTRODUCTION 

Great interest has recently been shown in studies of sti- E=-2 z-,t ~ ~ ( ~ ~ , t - ~ a - z ' ~ / c ) d z ' .  at 

mulated radiation in spatially bounded active media under 
conditions where such a medium is completely responsible 
for the formation of the structure of the emitted field. 
Amongst such studies we can refer to research on the chan- 
neling of radiation in free electron lasers,'-" and also to pa- 
pers about the Dicke superradiance effecL6 In its original 
version Dicke superradiance was studied for samples con- 
sisting of inverted quantum o s c i l l a t ~ r s . ~ ~ ~  It was shown in a 
number of that one can observe similar effects 
also in ensembles of excited classical oscillators with a life- 
time which is infinite (on the emission time scale). The aim 
of the present paper is to consider this analogy using the 
example of stimulated emission of an extended layer of excit- 
ed quantum and classical oscillators. ' 
2. SUPERRADIANCE OF A LAYER OF QUANTUM 
OSCILLATORS 

We assume that the oscillators form a layer, unbounded 
in thex and y directions and with a width b in thez direction. 
The emission of plane TEM waves takes place in the + z 
directions. There are no external electrodynamic systems. 
We start with an investigation of the superradiance of excit- 
ed two-level quantum oscillators. In the semiclassical ap- 
proximation we can use as the initial set of equations the set 
consisting of the wave equation for the emitted field and the 
equations for the average polarization P and the population 
difference AN = N, - N, per unit volume of the active me- 
dium (we assume PT Td t t xo ) :' 

It is natural to assume that the emission takes place in a 
spectral range concentrated near the transition frequency 
w,. This enables us to write the emitted field and the polar- 
ization of the medium in the form 

Here A(z,t) and P(z,t) are slowly varying amplitudes for 
which we get, after averaging Eqs. (2)- (4) ,  

aAN -- 
d t - AT,-' AN + Im (A'P)  / A ,  

In what follows we consider the case when the relaxa- 
tion times are long on the time scale for the evolution of the 
superradiance instability: 

where w,  = (8nd 'w,,AN,,/fi) "' is the cooperative frequen- 
cy. In this case we can neglect the relaxation processes and 
reduce the set of Eqs. (6 )  to ( 8 )  to the form 

2-1 
Here o, is the transition frequency, T,,, are the longitudinal 
and transverse relaxation times, d is the dipole moment of (12) 

the molecules, and AN, is the initial inversion. In what fol- 
A 

lows we use the forced solution of the wave equation (1 )  where we have r = mot, Z = (wo/c)z, P = P/dAN,, 
which can be written in the form a =A /dAN02n, n = AN/ANo, I = wf/4wi, and f(Z) is a 
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function describing the density distribution of the oscilla- 
tors. The initial conditions for Eqs. ( 10) to ( 12) can be writ- 
ten in the form 

We first consider superradiance of a layer which is thin 
on the scale of the wavelength of the layer: f ( Z )  = BS(Z), 
where we have B = ( w , / c ) b  and S ( Z )  is a delta-function. 
For such a layer we have from ( 12) 

Taking into account the integral of Eqs. ( 10) and ( 1 1 ), 

and uzing (14) we easily find a solution of these equations. 
For IP,, ( 4 1 we have (compare Ref. 8 )  

h 

where T,, = (1/2r)ln(4/IP0 1 2 )  is the delay time, and 
r = IB is the instability growth rate. According to ( 16) and 
( 17) the emission has the shape of a pulse; the maximum of 
its power is reached for T = T,. After the passage of the pulse 
the population difference has changed its sign: 
n ( r +  W )  - - 1. 

We start the study of the emission from an extended 
layer, f ( Z )  = I ,ZE[ - B/2,B/2] withananalysisofthelin- 
ear stage. Assuming that the population inversion is given: 
n = 1, we linearize the set of Eqs. (10) to (12). Writing the 
solution of the linearized set in the form a = ii(Z)eii", 
h 

P = i?(~)e"",  we obtain a characteristic equation which de- 
termines the frequency R and the spatial structure of the 
eigenmodes: 

where k ,  = - ( 1 + R ) ,  k, = ( k  - 2Ik, / f l )  "' are the 
wavenumbers outside and inside the layer, respectively. In 

FIG. 2. Spatial structures of the modes in a layer of quantum oscillators; 
I = O . l ; B = 6 .  

Fig. 1 we show the growth rates r = / ImR I ofthe symmetric 
S, (q = 1,2, ...) and antisymmetric A, modes as functions of 
the width of the layer, found through a numerical solution of 
Eq. (18).  It is clear that as the width of the layer increases 
there is a successive increase in the number of the mode cor- 
responding to the maximum growth rate. In Fig. 2 we show 
the spatial structures of the first four modes. 

Figures 3 and 4 illustrate the results of a numerical sim- 
ulation of the nonlinear stage of an extended layer of quan- 
tum oscillators, using Eqs. ( 10) to ( 12). We show in Fig. 3 
the time-dependence of the emission power 
W = la1 'I,, * .,, . In contrast to  the single-pulse superra- 
diance regime, which occurs in the case of a thin layer [see 
Eq. (17)],  one observes for an extended layer a number of 
additional power peaks after the main pulse has passed. The 
length of the train of pulses which are being emitted in a 
random sequence increases as the thickness of the layer in- 
creases. We show in Fig. 4 the evolution of the amplitude of 
the field and of the population difference along the layer. In 
the initial linear region, T < 15, we see the formation of the 
spatial structure of the main symmetric mode which is the 
same as the one shown in Fig. 2. Afterwards in the nonlinear 
interaction stage the structure of the field becomes complex 
and ultimately has become stochastic. In contrast to a thin 
layer the evolution of the amplitude of the polarization and 
of the population difference is oscillatory in nature. How- 
ever, as i5 the  case of a thin layer, asymptotically we have 
n-. - 1, P+O for T- W .  

FIG. I .  The growth rates of the symmetric S, and antisymmetric A, 
modes as functions of the width of a layer of quantum oscillators; I = 0.1. 

FIG. 3. Time-dependence of the radiation power of a layer of quantum 
oscillators; I = 0.1; B = 6. 
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FIG. 4. Evolution of the distributions along a layer of 
quantum oscillators ( a )  of the electric field amplitude 
and (b)  of the population difference; I = 0.1; B = 6. 

3. SUPERRADIANCE OF A LAYER OF CLASSICAL 
OSCILLATORS 

For the study of superradiance of a layer of encited clas- 
sical oscillators we assume for the sake of definiteness that 
such oscillators are electrons gyrating in a uniform magnetic 
field: H = H,z,.~' Let the electrons have the same initial 
transverse momentum, p,, = m yv,, , and (apart from small 
fluctuations) be uniformly distributed in the phases of the 
cyclotron rotation. We assume that the electrons have no 
translational velocity. 

The layer considered will emit circularly polarized 
waves in the + z directions. The motion of the particles will 
be described by the equations 
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dp+ -- imHp+=-eE+ (2, t )  , (19) 
at 

where we have p +  = p x + i f i ,  E ,  = E x + i E y ,  
w, = eHo/mcy is the relativistic gyrofrequency, and 
y = (1 + Ip + 12/m2c2)'12 is the relativistic mass factor. 

For the radiation field we have an equation analogous 
to (4): 

r+e t  

E+ = -- 2n j+ (z',  t- 1 z-zf 1 / c )  dz', (20) 
Z-cr 

where j+  = - epo ( v +  )is theelectron current density, we 
have v  + = v, + ivy, p, is the unperturbed electron density 
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in the layer, and (...) indicates averaging over the initial r.10' 
phases of the cyclotron rotation. In what follows we assume 
that the electrons are weakly relativistic, 
y=: 1 + lp + 12/2m2c2, and that the emission is concentrated 
near the nonrelativistic gyrofrequency a,,, = eH,,/mc. Cor- 
respondingly writing E + and p + in the form 

E+=A(z ,  t )  erp ( ioH, t ) ,  p+=p exp ( i o ~ , t ) ,  

we reduce the set of Eqs. ( 19) and (20) to the form3' [corn- I I I I I 

pare (10) to (12)] 0 2 4 5 8 1 0 1 2 B  

(21 ) FIG. 5. Thegrowth ratesofthe first symmetric (S, ) and the first antisym- 
metric ( A ,  ) modes as functions of the width of a layer of classical oscilla- 
tors; I = O . l ; p  =0.1. 

~ l ~ - ~ = e ~ p [ i ( 0 ~ + r c o s 0 ~ ) ] ,  8 0 ~ [ 0 , 2 n ] ,  

We have used here the following dimensionless variables: 
T = WH,,~,  Z = (wH,~/c)z, j =pipLO,  a = eA /mwH,,~,o, 
I =  wi/2wi,,, and w, = ( 4 ~ e ~ p , / m ) " ~  is the plasma fre- 
quency, p = v:,/2cZ is the desynchronization parameter, 
and r<  1 is a parameter characterizing the initial modulation 
of the electrons with respect to the phases of the cyclotron 
rotation. 

In the limiting case of a layer which is thin compared 
with the wavelength of the radiation, f ( Z )  = BS(Z),  from 
(22) we get a = IB @). This relation together with the equa- 
tions of motion (2  l ) describes the superradiance of a thin 
layer which has been studied earlier in Refs. 12 to 14. We 
note merely that in contrast to the quantum oscillators the 
superradiance process of a layer of classical oscillators has a 
complex many-peak nature even in the case of a thin layer. 
Below we shall pay most attention to the study of the emis- 
sion of extended layers with a uniform particle density distri- 
bution along the layer: f ( Z )  = const. 

In the small signal approximation, a - 0, we can linear- 
ize the equations of motion and we can reduce the set of Eqs. 
(21 ) and (22) to the form 

d2<p> da -=-- f iya, 
d z2 d z 

Z-T 

(24) 

Writing the solution of (23) and (24) in the form 
a = Si(Z)eii", @) = (j5(Z))eiR', we find a characteristic 
equation which has the same form as ( 18), where thc nor- 
malized wavenumbers outside and inside the layer are given 
by the relations 

here we have written a = I ( R  - p) /R2 .  
In the case of a thin layer, B 4 1, we find from ( 18) and 

( 2 5 )  

For a small layer density, I< 1, we find, for the instability 
growth rate, neglecting the second term on the left-hand side 
of (26) (responsible for cyclotron absorption) 

We show in Fig. 5 the growth rates of the symmetric and the 
antisymmetric modes as functions of the layer width for ar- 
bitrary layer thicknesses. In the present case the first (main) 
symmetric mode S ,  has the maximum growth rate [the 
growth rate is for B 4  1 determined by Eq. (27)] .  However, 
as the width of the layer increases the growth rates of the 
other modes approach the growth rate of the main mode. 
Figure 6 illustrates the spatial structure of the first symmet- 
ric S,  and the first antisymmetric A ,  modes. 

We show in Fig. 7 the time-dependence of the radiation 
power and of the total electron efficiency, 

for different layer thicknesses. A comparison of Figs. 7a and 
7b shows that the peak power and the superradiance pulse 
length increase as the layer thickness increases. 

FIG. 6. Spatial structures of the modes in a layer of classical oscillators; 
I = O . l ; p = O . l ; B = 6 .  
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w 10' 

q~ FIG. 7. Time-dependence of the radiation power (full-drawn 
line) and the electron efficiency (dashed line); B = 6 (a)  and 

0,4 B = 1 2 ( b ) ; I = O . l ; / L = O . l .  
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We show in Fig. 8a the process of the formation of the 
spatial structure of the main symmetric mode in the initial 
linear stage of the emission for T < 60 and the complication 
(randomization) of that structure in the nonlinear stage for 
T >  60. Figure 8b characterizes the change in the mean 
square transverse electron momentum ( 1 j 2 ( Z , ~ )  1 ) along 
the layer, i.e., the amount by which the inversion is reduced, 
which on average is larger at the edges of the layer than in the 

center. On the whole this behavior is completely analogous 
to the corresponding behavior for quantum oscillator layers 
(compare Figs. 3 and 4).  

In conclusion we give a numerical estimate of the peak 
power of the cyclotron superradiance and the pulse length. 
Let the magnetic field strength be H,, = 100 kOe, the radi- 
ation frequency be w = 1.9 x lo1* s -  ' (the wavelength be 
A z 1 mm), the electron density be p, = 2 X lOI4 cm - 3  

FIG. 8. Evolution of the distributions along a layer of 
classical oscillators ( a )  of the electric field amplitude 
and (b)  of the mean square transverse electron mo- 
mentum; I = O . l ; p = O . l ;  B = 6 .  
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(w, = 8 x 10" s - I), and the electron rotational velocity be 
u, = 0.45~. These system parameters correspond to the val- 
ues I = 0.1, p = 0.1. From Fig. 7 we get for the reduced 
radiation peak power W =  2.8X lo - '  for a layer width 
b z U ( B  = 12). If we restore the dimensions, the power 
emitted from one square centimeter of the layer surface is 1.4 
GW. The length of the pulse one e-fold down from the peak 
power is of the order of 1.5 x 10 - ' I  cm - I .  We note that the 
superradiance power can be appreciably increased and the 
frequency be shifted to the short-wave range of the spectrum 
if we give the electron layer a translational velocity close to 
the light velocity.13 

"We note for comparison that if in an FEL the electron-oscillator layer 
plays the r81e of an active waveguide along which the radiation can be 
channeled and amplified, superradiance effects develop for wave propa- 
gation transverse to the layer, when this layer plays the role of an active 
resonator in which self-excitation of waves takes place. 

> 'The  superradiance instability was studied in Refs. 9, 11, and 14 for 
layers formed when electrons move in the field of an undulator or when 
a strong electromagnetic pump wave acts on them. 

"In this form Eqs. (21 ) and (22) have a universal character and describe 
superradiance in oscillator layers of various physical nature, among 
them also acoustic oscillators (compare Ref. 15). 
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