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Theoretical and experimental investigations were made of the effect of a stimulated light pressure 
on a beam of Na atoms. Expressions were obtained for the force exerted by this pressure on a two- 
level atom in the field of counterpropagating short light pulses of arbitrary area and also for the 
coefficient of pulsed diffusion of atoms in the case of square-wave light pulses. It was found that 
the value of this force close to the ideal case of square-wave pulses can be achieved in the case of 
counterpropagating amplitude-modulated waves, i.e., two standing waves of different 
frequencies, which is more convenient from the point of view of experimental implementation. An 
experimental study was made of the effects of a light pressure force in the field of two standing 
waves exerted on Na atoms in a beam. 

1. INTRODUCTION 

There is considerable interest in the problem of the light 
pressure exerted on atoms because this provides an effective 
means for controlling their motion, particularly in connec- 
tion with the feasibility of cooling to sub-Kelvin tempera- 
tures and formation of traps that can confine cold atoms for 
a long time.' The light pressure force exerted on atoms in the 
field of one traveling wave is limited to fiky, where (2y) - ' is 
the radiative lifetime and fik is the photon m ~ m e n t u m . ~  This 
is because a directional change in the momentum of an atom 
occurs only when the absorption of a photon is followed by 
its spontaneous emission. 

It would undoubtedly be of interest to develop such sys- 
tems for the excitation of atoms in which the rate of transfer 
of the momentum from an electromagnetic field to an atom 
would not be related directly to y. Obviously, this requires 
the presence of at least two waves propagating along differ- 
ent directions. We can then induce a directional change in 
the momentum of an atom mainly because of stimulated 
transitions (when photons are absorbed preferentially from 
one wave and emitted in a stimulated manner in the other 
wave) at a rate which is governed by the radiation intensity. 
The resultant forcedue to a stimulated light pressure (SLP) 

In Sec. 2 we shall obtain an expression for the force 
acting on a two-level atom subjected to a train of short pulses 
of arbitrary area. Pulsed diffusion of atoms in the special 
case of square light pulses is analyzed in Sec. 3. The force 
acting on a two-level atom in the field of two standing waves 
of the same intensity is discussed in Sec. 4. The results of an 
experimental study of deflection of a beam of Na atoms in 
the field of two standing waves are reported in Sec. 5. 

2. LIGHT PRESSURE ON ATOMS IN THE FIELD OF PERIODIC 
TRAINS OF SHORT LIGHT PULSES 

The equations for the density matrix of a two-level atom 
with a dipole moment d of a transition and an energy differ- 
ence between the levels &o, in the field of waves of the same 
frequency counterpropagating along the z axis are 

is not restricted by the rate of spontaneous emission and can and they will be solved on the assumption that these counter- 
exceed greatly the value fiky. propagating waves are trains of short light pulses with a re- 

The possibility appearance an SLP as a petition period Tand durations r ,  and r, such that 
ordering of the absorption and stimulated emission events is 
illustrated by the ideal case ofthe interaction ofan atom with 
two trains of counterpropagating square-wave pulses."b- 
viously, implementation of the proposal made in Ref. 3 
would be a difficult experimental task. It was shown in Ref. 4 
that SLP may be induced in a field of two standing waves 
which essentially represent counterpropagating ampli~ude- 
modulated waves and represent the simplest analog of pulse 
trains. This relatively simple experimental configuration 
was used in the first observations of an SLP.' The force 
which acts on an atom in the field of two standing waves was 
considered also independently in Refs. 6 and 7 on the basis of 
perturbation theory applied to the ratio of the Rabi frequen- 
cy of a strong wave and its frequency offset from the center of 
an atomic transition line, but the problem of the maximum 
attainable force was not discussed. 

where v is the component of the velocity of the atom in thez 
direction. In this case we can ignore relaxation and evolu- 
tion, during a pulse, of elements of the density matrix be- 
cause of the Doppler frequency shift and offset of the field 
frequency w from the frequency of the atomic transition w,. 

We assume that a wave propagating in the positive di- 
rection of the z axis interacts with an atom at time intervals 
mT and m~ + T ,  , whereas the opposite wave interacts at 
time intervals m T + T and m T + r  + r2 ,  where m is an in- 
teger. Then, introducing N = p 2 ,  - p , ,  and 
a = p12 exp ( - i d ) ,  we find from Eq. ( 1 ) the relationship 
between the values of N, a, and a* after a pulse and the 
values before a pulse: 
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N(mT+t,)=N(mT) cos q,+i sin cpl [ o ( m ~ ) e " ' ~ - o ' ( r n T ) e - ' ~ ~ ,  
"a(mT+T,)e 'L-=i  sin c L ' , l V ( ~ ~ ~ T ) + o ( m T ) e ' k ' ( l  

+CO- (4 , ) + a *  ( m T )  e-Ikz ( I - c o s  vi ) ,  (2)  

where the area under a pulse is 

Ttr, 

I [ I  = -- j R, ( t ) d t .  ( 3 )  
'/ , T  

and the values a and N at the moment of arrival of the next 
pulse (propagating in the negative direction of thez axis) are 
related to the values at the moment m T + r, at the end of the 
previous pulse: 

The equations relating N and a at the times 
m T +  r +  r2 and m T +  r,  and also the times m T +  Tand 
mT + r + r, can be obtained from Eqs. (2)  and (4)  by the 
substitutions q,, -p,, k -  - k, and T- T - r. 

In the case under discussion here (when the field inten- 
sity is a function only of the coordinatez) the force acting on 
an atom isX 

d E  
F ( l ) = d ( ~ , ~ - l - p ~ ~ ) - - .  

d z ( 5 )  

Averaging this force over one pulse repetition period, we 
find that 

In general, the average force depends on m. We are in- 
terested in long durations of the interaction of an atom with 
the field, t >  l/y, when completion of the initial transient 
process is followed by the establishment of a quasisteady 
value of the population inversion during the time occurring 
in Eq. ( 6 ) .  These quasisteady values can be found from the 
requirement of the periodicity of N and o. 

The procedure for the determination of N and o is as 
follows. Expressing first N, a ,  and a*  at the moments 
m T +  T in terms of their values at the moments 
rnT + T + r 2 ,  and then the latter in terms of the values at 
m T + r and so on, and applying the requirement of periodic- 
ity with a period T, we obtain a system oflinear equations for 
N(mT), o(rnT), and a*(rnT). Solving this system and find- 
ing the values of the inversion at the times needed for the 
calculation of the force using Eq. (6)  we obtain the average 
force acting on the atom. 

We first give the solution for the case when q,, = q, and 
q,, = 0 (when there is only one wave in the positive direction 
of the z axis) and there is no SLP force: 

We note the periodic dependence of the force on w. Since in 
this case the frequency w describes the field in a reference 

system linked to the investigated atom, the Doppler shift 
should also result in a periodic dependence of the force on 
the velocity. As expected, in the case of a single traveling 
wave the force is less than fiky. It is maximal at the frequency 

where j is an integer, i.e., in the case when one of the frequen- 
cies in the spectrum is in resonance with an atomic transi- 
tion. Such behavior was observed experimentally and re- 
ported in Ref. 9. 

It is of interest to compare the force of Eq. (7)  with the 
force that appears in the field of a traveling monochromatic 
wave. According to Ref. 2, when the frequency w of the wave 
coincides with w,, we have 

where G = Ri/2y2 and R, is the Rabi frequency for a travel- 
ing wave. At low values of 0, and q, it follows from Eqs. (7)  
and (8 )  that in the most interesting case when w = w, and 
y T g  1, we have 

Since q, = ~ f i , ,  where 6, is the Rabi frequency for the 
central component of the spectrum of a train of light pulses, 
the expression for F = fikyfi$/2yZ is completely identical, as 
expected, with F, (at low values ofq, only the central compo- 
nent of the spectrum interacts effectively with an atom). For 
arbitrary values of 6, = R, the forces F and F, are close, 
with a high degree of precision, for practically all the values 
offl, with the exception of narrow intervals in the vicinity of 
the points 6, = 2 m / T  (i.e., when the Rabi frequency 6, is 
a multiple of the pulse repetition frequency R,,, ) . Accord- 
ing to Eq. (7) ,  the value of F falls to zero in these intervals 
and the width of a resonance is h6, cc y. Rigorous periodic- 
ity in q, and the fall of F to zero at q, = 2rrn are no longer 
observed if we allow for relaxation of the density matrix of an 
atom during the action of a pulse. In particular, for 
fi, = 2nn/T, then apart from terms linear in yr ,  , we have 
F = 7fiky7, /4T. 

We now consider two counterpropagating waves con- 
sisting of trains of pulses of the same area p,,, = p. We dis- 
cuss only the most interesting special cases. In the case of 
two trains of counterpropagating square pulses, such that 
q, = rr, the force F is maximal and is governed by 

The force (9) vanishes at T = T/2 and is maximal at r = 0 
and r = T. Its maximal value 

corresponding to y T g  1 is much greater than the maximum 
force F, = fiky in the field of one traveling wave. 

The force acting on an atom in the case of an arbitrary q, 
will be now considered for the case of large and small values 
of yT. At a low pulse repetition frequency (exp( yT) % 1 ) the 
SLP force may be observed if the delay r between the pulses 
is not too long. Assuming that exp(y7) gexp( yT), we find 
that 
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Since the force F is independent of the coordinate z, the 
above expression is valid at low velocities u along the z direc- 
tion. In fact, Eq. ( 10) is derived on the assumption of quasi- 
steady conditions. This means that the value of kz should 
change little in the time l / y ,  i.e., we should have kv < y, 
when the force "tracks" the coordinate and the average SLP 
force per atom can be obtained by averaging Eq. ( 10) over z. 
In  order to remain within the quasisteady approximation we 
must assume that the momentum acquired by an atom in a 
time l / y  does not change the velocity too much, which is 
generally true for atoms of mass M >  fik ' / y2T.  It should be 
mentioned here that, since in the case of square pulses the 
system of equations ( 2 )  is independent of z, a quasisteady 
state can be reached also at  much higher values of the veloc- 
ity v > y/k.  

In the other limiting case when y T 4  1 ,  which is of the 
greatest interest, the average force acting on an atom along 
the z direction is 

where 
x [  (1-z)'"+ (l+x)"] 

a, (z) = 
(1+x)"(1+(1-x")" 

We can see that the condition q, = P is not essential for 
the existence of a large SLP force. When q, differs little from 
P, the SLP force decreases linearly on increase in I P  - q, / : 

We must stress once again that the expression for the 
SLP force is valid when the duration of interaction with the 
field exceeds the spontaneous relaxation time l / y .  If the du- 
ration of the interaction with the field is shorter, so that 
t  < l / y ,  the force acting on an atom is governed by the initial 
conditions. The inflaence of relaxation on the force experi- 
enced by an atom can be followed most clearly in the case of 
counterpropagating square pulses. In this case the momen- 
tum of an atom changes by fik on absorption of light from 
one wave and by a further amount fik as a result of stimulat- 
ed emission to the other wave. The force which acts then is 
2?rfik/T and its direction is governed by the direction of 
propagation of the first square pulse interacting with an 
atom. 

It therefore follows that in the case of short durations of 
the interaction with the field an atomic beam should split 
into two and the fraction of the atoms in the two beams is 
naturally governed by the time interval r  between the arrival 
of the counterpropagating square pulses. At r = + 0 or 
T = T - 0 an atom interacting with short pulses of the kind 
considered here is practically all the time in the ground state 
and the relaxation can be ignored even after a time t > l/y, so 
that the force acting on an atom is + 2fik /Tor - 2fik / T .  At 
r = T / 2  the numbers of atoms accelerated in the positive 
and negative directions of the z axis are equal. "Activation" 
of relaxation for interaction times longer than l / y  has the 
effect that the force 2fik /T acting on an atom changes its 

direction randomly. Since the probability that the force acts 
in the positive and negative directions at r  = T / 2  is the 
same, the average force acting on an atom in a time interval 
which is long compared with l / y  naturally vanishes. In the 
general case of arbitrary values of r the dependence of the 
force on r is described in Eqs. ( 1 1 ) and ( 13) by a factor 
( 1  - 2 r / T ) ,  which is equal to the difference between the 
probabilities that an atom is accelerated at a given moment 
in the positive direction of the z axis and the probability that 
it is accelerated in the negative direction of z. 

3. PULSED DIFFUSION OF ATOMS IN THE FIELD OF SQUARE 
PULSE TRAINS 

When a field of square pulses resonant with an atomic 
transition is applied, the off-diagonal elements of the density 
matrix vanish and the interaction of an atom with the optical 
field can be described in terms of populations. 

We introduce the distribution of the population densi- 
ties of atoms in the ground and excited states n ,  (p ,  t )  and 
n, (p ,  t )  in terms of the momentum p normalized to that 
fraction of the atoms which are in these states: 

Bearing in mind that the interaction of an atom in the ground 
state with a square pulse transfers the atom to an excited 
state, whereas an atom in an excited state drops to the 
ground state, and allowing for the change in the momentum 
of an atom as a result of such a transition, we can write down 

n, (p, jT+t,) =n,(p+hk, j T ) ,  (15) 

n,(p, jT+.rz)=n,(p-Tlk, jT).  

Hence, we can derive equations describing the change in the 
zeroth-first- and second-order moments of the functions 
representing the distribution of atoms in the ground and ex- 
cited states when these changes occur during the interaction 
of an atom with a square pulse propagating in the positive 
direction of the z axis. 

After the interaction with the field there is a relaxation 
period during which thechanges n ,  (p, t )  and n2 (p, t )  with 
time are described by 

where the even function p(q) describes the probabilistic na- 
ture of spontaneous emission. 

We first consider the interaction of an atom only with 
one traveling wave, which is a train of square pulses propa- 
gating in the positive direction of thez axis. The force acting 
on an atom and the coefficient of pulsed diffusion of atoms 
can be found, provided we know the momentum of an atom 

and the average square of the momentum 
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in the case when y t )  1, i.e., after the transient processes 
cease. Obviously, in this case the initial value of the popula- 
tion inversion 

l N ( O ) =  .! (n2(p.0)-n,(p,  0))dp 

is of no significance. We shall assume that an atomic beam is 
perpendicular to the direction of propagation of the pulses 
and select A N ( 0 )  = - tanh( yT). Then, for even values ofj, 
we obtain 

where the mean-square value of the projection along the z 
axis of the wave vector of a spontaneously emitted photon is 

It therefore follows that the pulsed-diffusion coefficient is 

( 1 8 )  

The first term in the parentheses is responsible for the 
diffusion in momentum space because of the random direc- 
tion of a spontaneously emitted photon, while the other is 
related to the random number of spontaneous transitions 
which are, in the final analysis, responsible for the change in 
the momentum of an atom in the case when only one travel- 
ing wave is present. For exp( yT) % 1, the number of sponta- 
neous emission events is fixed: it is equal to the number of the 
square pulses and the term containing k tends to zero. The 
change in the momentum of an atom at right-angles to the z 
axis involves only spontaneous emission and the average 
force acting on an atom is then zero, whereas the diffusion 
coefficient is given by Eq. ( 18) subject to k = 0. 

We now consider the case of two counterpropagating 
waves in the form of trains of square pulses. The equations 
describing the change in the distribution of the population 
densities during the interaction with the field from j T  + T to 
jT + T + r2 (i.e., during the interaction with a wave travel- 
ing in the negative direction of the z axis) can be derived 
from Eq. ( 15) by the substitutions k - - k, jT-jT + T, and 
T,  + r 2 ,  and the relaxation process is then described by the 
system ( 16). 

As in the preceding case, we assume that an atomic 
beam is perpendicular to the direction of propagation of the 
pulses and we postulate that 

A N ( O )  =- ( l+e '~ ' -2e~~ ' )  /(eZTT- 1). 

We then obtain 

R ( j T )  =]'"(iT) +2A2e-+T' ( e 2 ~ 7 -  1) ( e Z T T - e 2 T r )  (e21T- 1 ) - '  

where 

Hence, we find that the expression for the pulsed-diffusion 
coefficient is 

As expected, the expression for D is symmetric in the 
deviation of r from T/2. The diffusion coefficient peaks at 
r = T /2 when the forcevanishes, but is equal to zero at T = 0 
and T = T, when the force is maximal. In the case of interest 
to us when yTg 1 and the force is maximal, the diffusion 
coefficient is given by 

and we can ignore pulsed diffusion due to the change in the 
momentum of an atom in the course of spontaneous emis- 
sion. Comparing in this case the average value of the direc- 
tional change in the momentum P = Ft and the scatter of the 
momentum of atoms around this value A P  = (2Dt)  "', we 
can see that the process of diffusion has practically no influ- 
ence on the motion of atoms at times 

4. LIGHT PRESSURE ON ATOMS IN THE FIELD OF TWO 
STANDING WAVES 

The condition for the action of SLP on atoms is the 
presence of at least two amplitude-modulated waves differ- 
ing in the direction of propagation, but the simplest to inter- 
pret is the case of two counterpropagating square pulses dis- 
cussed here. It is shown in Ref. 4 that results close to the 
ideal case of square pulses can be obtained even in the sim- 
plest case of counterpropagating amplitude-modulated 
waves, in the form of a superposition of two standing waves 
of frequencies w + SL/2 and w - W 2 :  

where 

8 
E'+' = -[e'"'lZ cos (k~+t@/2)+e-'" ' /~ cos (kz-$/2) 1, 

2 
E(- )=E(+)* .  (23) 

Here, $ describes the spatial shift of these waves and $/k  is 
the distance between their nodes. We shall assume that 
R<w,  so that the difference between the wave vectors of the 
counterpropagating waves can be ignored. Then, in the ap- 
proximation of a rotating wave, we find from the system ( 1 ) 
subject to the field of Eq. ( 2 2 )  that the following equations 
apply to Nand a: 
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ered by us earlier.4 The expression obtained in Ref. 4 for the 
average force is 

where the offset of the atomic transition frequency from the 
field frequency is S = w, - w .  In the same approximation 
the expression for the force is 

The expression (25) represents the force acting on an atom 
at a point whose coordinate is z. When the atom is traveling 
at a velocity v, this coordinate is z = z, + vt. We are interest- 
ed in the average force during the time which is long com- 
pared with l/kv and 1/R, and which determines the mo- 
mentum transferred to the atom as a result of its prolonged 
interaction with the field. 

In the case of weak saturation [Eq. (24) ] we can obtain 
the solution by expanding in the small parameter R,/y, 
where 0, = d%'/fi is the Rabi frequency. In the general case 
v # O  and S # 0, the force acting on an atom is a quadratic 
function of the Rabi frequency and appears even in the first 
order of expansion of the density matrix: 

The first two terms describe the interaction of an atom with a 
standing wave of frequency w - R/2, whereas the third and 
fourth terms describe the interaction with a wave of frequen- 
cy w + R/2. If S = 0 or v = 0, Eq. (26) vanishes and the 
force must be calculated including third-order terms, Obvi- 
ously, in this case the force is due to the simultaneous inter- 
action of an atom with both standing waves (in the case of 
one standing wave if v = 0 or 6 = 0 the force vanishes in any 
order of an expansion in Cl,/y--see Ref. 10) and, in general, 
it should depend on the phase shift 4 between the standing 
waves. 

We now give the expressions for the force when v = 0 
and S = 0. If S#O and v = 0, we obtain 

F=-  f i k y q ~ . '  sin 2+ y" (sr /2) '+s2 
8 (y2+ ($2/2+6)  ')' ( y 2 +  ( ~ / 2 - 6 ) ~ ) 2  ' 

At low values of In the force is a maximum for the "symmet- 
ric" ( 6  = 0 )  tuning. An increase in the difference between 
the frequencies of the standing waves R shifts the maximum 
to the region where IS1 - R/2. In this case the frequency of 
one of the standing waves is close to the frequency of an 
atomic transition and the magnitude of the maximum is pro- 
portional to R -  ' if R is large. The optimum frequency dif- 
ference ensuring that the force of Eq. (27) is maximal 
amounts to = 2 x 5 ~  10-'"y. 

The other case (8 = 0, u # 0) ,  when the force is propor- 
tional to the fourth power of the Rabi frequency, was consid- 

[ yZ+ (52/2)2- ( k v )  ' ] s i n  21$ 
X [ ( y 2 +  (52/2)') '+ (ku)'+2yZ'(kv)  2 - ' / 2 ~ 2 ( k ~ ) 2 ] 2  ' 

At low values of R the force reaches its maximum at v = 0 
and an increase in the frequency difference between the 
standing waves shifts this maximum to Ikv( -R/2. 

The average force acting on an atom in the case of arbi- 
trary values of Cl,/y can be considered at low velocities, as- 
suming however that during the time that an atom crosses a 
light beam it travels more than one wavelength, so that in the 
calculation of the force we can assume v = 0 and then aver- 
age the results obtained over z. Strictly speaking, this ap- 
proach is valid if kv 5 y, but using the above analysis based 
on perturbation theory (according to which the characteris- 
tic velocity scale is v-R/k), we can expect the results ob- 
tained to be valid (at least to the nearest order of magnitude) 
also when kv> y. This is supported also by the results of 
numerical integration of the system (24) when z = I,, + vr' 
and S = 0 (Ref. 4 ) .  

If we represent N, (T, and a* in Eq. (24) by Fourier 
series 

we obtain a recurrence relation between the Fourier compo- 
nents N,, : 

4iy An+2Nn+2+BnNn+An-2N,-,=- - 6no, 
S2,' (30) 

where 

' )cos ( k r  + +) cos ( kz - %), 

+(+--- I ) oos2 ( k z  - t) , 
Y I 7.-' 

Assuming that N,, +, = N,q,,, we obtain 

for even values of n and q, = 0 for odd values. If n = 0, it 
follows from Eq. (30) that 

where q, is given by the continued fraction (32). The force 
acting on an atom is expressed in terms of go and No as 
follows: 
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As in the weak saturation case, the force F is an odd 
function of $ with a period T,  but at high values of the ratio 
R,/y the dependence F($) is very different from sinusoidal, 
as demonstrated in Fig. 1 (this figure gives the values of 
F/fiky averaged over 2). The maximal force corresponds to 
$=: ~ / 4 ,  R -- R,, and 6 = 0. Figure 2 gives the dependence of 
the force, averaged overz, on the square of the Rabi frequen- 
cy calculated for different values of R and 6. In the range 
R, < y, which corresponds to perturbation theory, the force 
is proportional to R:, i.e., it is proportional to the product of 
the intensities of the standing waves. An increase in R, in the 
range y < R, < R shows that for 6 = R/2 (which corre- 
sponds to the conditions in our experiments) the force is 
proportional to R f ,  which is the intensity of laser radiation. 
A change in the nature of the dependence on R, is due to 
saturation of an atomic transition by one of the standing 
waves, whereas because of a large offset the field of the other 
wave represents a small perturbation. In this case an expres- 
sion for the force can be obtained from Eqs. (31)-(34) on 
the assumption that q, = 0 and this can be done by averag- 
ing over z: 

F=- SZ," 
/~/i  --- sin 211. 

'I!? (35 

In the symmetric tuning case when S = 0 the dependence of 

FIG. 2. Dependence of the SLP force on the saturation parameter 
(R, . /2y) ' :6  = 0 (curves 1-3), f2/2 (curves 4-6); 6V2y = 15 (curves 1 
and 4 ) ,  20 (curves 2 and 5 ) ,  and 25 (curves 3 and 6 ) .  

the force on flf is nonlinear, because an atomic transition is 
far from saturation (Fig. 3) .  

5. EXPERIMENTAL RESULTS 

The first observation of SLP was reported by us in Ref. 
5. We shall now give the results of a more detailed investiga- 
tion of the SLP characteristics. 

FIG. 3. Dependence of the SLP force on the saturation parameter 
FIG. 1 .  Dependence of the SLP force on the phase difference $ between ( R , / ~ Y ) ~  at low values of R,; R /2y  = 20; 6  = 0 (curve 1) , 'R/2  (curve 
the standing waves: 6 = 0 (curves 1 - 3 ) ,  0 / 2  (curves 4-6); 51 = 0.750 2 ) .  In thecaseofcurve 2 thevalueson the ordinateshould bemultiplied by 
(curves 1 and 4 ) ,  1.250, (curves 3 and 6) ,  and Q, (curves 2 and 5 ) .  0.01. 

224 Sov. Phys. JETP 72 (2),  February 1991 Voltsekhovich etal. 224 



FIG. 4. Block diagram of the apparatus: I ) ,  4) pump lasers; 2 )  two- 
frequency deflecting laser; 3 )  probing laser; 5 ) ,  6 )  optical radiation detec- 
tors; 7 )  spectrograph; 8 )  cell containing Na vapor; 9 )  source of the beam 
of Na atoms; 10) system for scanning the beam of the probing laser; 1 1 )  
unit for control of the scanning system; 12) photomultiplier. 

Figure 4 is a block diagram of the apparatus used to 
study the SLP produced by the field of two standing waves 
interacting with a beam of sodium atoms traveling at right- 
angles to the wave vectors of the field. 

The necessary high intensity and the required spectral 
and spatial characteristics were ensured by the interaction of 
the atomic beam with an intracavity field of a two-frequency 
cw dye laser. The resonator of this laser included a scheme 
for compensation of the astigmatism. The longitudinal 
modes were selected and the frequency was tuned to the ab- 
sorption line of sodium by a three-component Lyot filter and 
a Fabry-Perot etalon which was 2 mm thick. The laser radi- 
ation wavelength was monitored using a spectrograph, scan- 
ning Fabry-Perot interferometers, and a comparison cell 
containing sodium vapor; precise tuning to the D, line of 
sodium was made using a fluorescence signal emitted by the 
atomic beam. 

A spatially inhomogeneous depletion of the population 
inversion in the adopted selectors ensured stable two-fre- 
quency lasing throughout the investigated range of pump 
powers (the maximum pump power was P,,, = 2 W and it 
represented all the lines of an ILA-120 argon ion laser). The 
frequency interval Av between the modes was 
Av = v, - vZ = c/410, where I, is the distance from the dye 
jet to the nearest mirror. In our experiments this distance 
was I, = 4.5 cm, corresponding to Av = 1.67 GHz. For a 
given value of R = 2rAv a change in the distance between 
the standing-wave nodes by 11 /2 (or, which was equivalent, a 
change in the difference between the phases t,h of the ampli- 

tude-modulated counterpropagating waves by T )  resulted 
from a displacement by Az = 9 cm along the resonator axis. 

The spatial distribution of the atoms in the beam was 
deduced from a fluorescence signal excited by a second 
(probing) dye laser. The radiation from this laser was di- 
rected at right-angles to the atomic beam and to the resona- 
tor axis of the "deflecting" laser, reaching a point separated 
by L = 35 cm from the region of interaction between the 
atomic beam and the deflecting laser beam. The necessary 
spatial resolution was ensured by focusing the laser radi- 
ation, so that in the region of intersection of the probing 
beam with the atomic beam the radius of a spot did not ex- 
ceed 80 pm.  The probing beam could be shifted parallel to 
itself in a plane perpendicular to the atomic beam axis. The 
phosphorescence signal was recorded with a photomulti- 
plier and the lowest detectable density of the sodium atoms 
was about 3 X lo5 cm ' when the signal/noise ratio was 2. 

The sodium atomic beam was created in a two-section 
vacuum chamber (residual pressure 5 10 torr). The first 
section contained the atomic beam source whose tempera- 
ture could be varied from 90 to 400 "C and could be kept 
constant at the selected value to within 0.5 "C. The second 
(transit) section had windows (oriented at the Brewster an- 
gle) for injection of the deflecting laser radiation, windows 
for injection of the probing laser radiation and for detection 
of fluorescence of the atomic beam excited by both the prob- 
ing and deflecting lasers. The atomic beam divergence was 
less than 5 x 10 ' rad, the density of atoms in the beam in 
the region of interaction with the field of the two standing 
waves was 2X lo7 cm ' at the working frequencies, and the 
beam diameter was 0.5 mm. Under these conditions the 
change in the phase difference t,h across the beam diameter 
was less than 2 x  10 * rad. 

In the course of our experiments the vacuum chamber 
was inside the deflecting laser resonator. The distance from 
the exit mirror of the resonator to the atomic beam could be 
varied within a fairly wide range and this made it possible to 
set in a controlled manner the phase difference t,h to within 
2 x 10 rad. In the course of our experiments the orthogo- 
nal orientation of the wave vector of the deflecting beam to 
the atomic beam axis was maintained to within 2 X 10 ' rad. 

The SLP altered the radial distribution function f ( r )  of 
the atoms in the beam. This could be described by a shift of 
the center of gravity of this beam [by the first moment of the 
experimentally determined distribution functionf,, ( r )  ] and 
by an rms deviation from the center of gravity [the square 
root of the difference between the second and square of the 
first moments off,. ( r )  1, representing the broadening of the 
atomic beam. 

Note that a comparison of the experimental and theo- 
retical results was difficult under the selected conditions for 
a number of reasons. Since the atomic beam was not mono- 
chromatic and the distribution of the velocities of the atoms 
obeyed a function" 

whereu, is the thermal velocity, theaction ofa constant SLP 
force F not only shifted the center of gravity of the atomic 
beam, but also broadened it even in the absence of diffusion. 
In the case of low-divergence beams the distribution func- 
tionf(r) in the plane of observation was 
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wherex, = bFL /mu,: is the displacement of an atom travel- 
ing at the thermal velocity, m is the mass of this atom, b is the 
length of the region of interaction of the atoms with the field, 
L is the distance from the interaction region to the plane of 
observation obeying the inequality L >  b,h) (y) is the distri- 
bution function of the unperturbed beam along t h e y  axis. 
Equation (37) was derived on the assumption x, >LO, 
where 6 is the divergence of the atomic beam and thex axis is 
parallel to the wave vector of the field. Using Eq. ( 3 7 ) ,  we 
found that xo was equal to deflection of the center of gravity 
of the beam. One could readily see that under the assumption 
that the force F was constant throughout the length of the 
interaction region b, this was true also of a beam with a diver- 
gence O>N x0/L. Therefore, we could assume that the dis- 
placement of the center of gravity of the atomic beam was 
proportional to the force acting on the atoms and equal to 
the displacement of the atoms at the thermal velocity u,. 

However, as demonstrated by Eq. (37), the second mo- 
ment 

m> 

M :  = j x 2 , ( x ,  y ) d z  d!, 
, 

should not exist ( M 2  = co ). Since the experimental distri- 
bution function f, (x )  was recorded only for x < L o  and 
x,, < L,, , the experimental second moment was 

An analysis of the broadening of the beam character- 
ized by M, ,  #O should allow not only for the contribution 
associated with the nonmonochromaticity of the atomic ve- 
locity distribution, but also for the role of the diffusion of 
atoms that accompanied the SLP effects and for the initial 
divergence of the beam. Therefore, the manifestation of the 
pulsed diffusion effects when the SLP acted on atoms under 
our experimental conditions was masked by these secondary 
effects, so that the experimental value Ax = ( M , ,  - x i  ) ' I2  

could not be related directly to the pulsed diffusion. 
On the other hand, it is known that because of the pres- 

ence of the hyperfine structure the D, line of sodium cannot 
be described by the two-level approximation. Therefore, in 
comparing the experimental results with the theoretical con- 
clusions we could expect only qualitative agreement. 

A theoretical analysis indicated that an important fea- 
ture of the SLP effect was the dependence of the displace- 
ment x ,  of the center of gravity of the atomic beam on the 
phase difference $. The experimental dependence x, ($) 
plotted in Fig. 5 was in qualitative agreement with the theo- 
retical predictions [see Eq. (35) ] : the value of x, exhibited 
reversal of the sign when the difference between the phases $ 
was altered by a/2; the dependence x, (11) was nonmono- 
tonic and the maximum value of x, corresponded to 
$ = +_ ~ / 4 .  The existence of a characteristic dependence 
x, ($) led us to the conclusion that we did indeed encounter 
the SLP effects and the observation that x, # 0 was unrelated 
to a possible difference between the amplitudes of the coun- 
terpropagating waves in the resonator (due to, for example, 
transmission by the mirrors) and it was also unrelated to 

FIG. 5. Dependence of the displacement of the center of gravity x,, (curve 
1 ) and of the broadening Ax (curve 2 )  of the atomic beam on the differ- 
ence between the phases 11 of amplitude modulation of the counterpropa- 
gating waves. The dashed curve shows the beam broadening without 
allowance for the pulsed diffusion. 

nonorthogonality of the atomic beam relative to the resona- 
tor axis. These two factors could give rise to x, #O, but the 
magnitude and the sign of xo should then be independent of 
$, i.e., they should be independent of the distance between 
the resonator mirror and the atomic beam. 

The beam broadening Ax also depended on $ and, as 
demonstrated in Fig. 5, the nature of this dependence Ax($) 
was in qualitative agreement with the dependence x, ($). 
Consequently, under our experimental conditions the main 
contribution to Ax came from the beam divergence and its 
nonmonochromaticity. We plotted in Fig. 5 (dashed curve) 
a quantity Ax, = (Ax: + ~ ~ l n L , / x , ) " ~ ,  where A, is the 
beam broadening in the absence of the deflecting laser field; 
Ax, = 0.56 mm; L, = 5 mm, which was calculated for the 
experimental values of x,. The quantity Ax, was the expect- 
ed beam broadening in the absence of pulsed diffusion. This 
diffusion clearly made a significant contribution to the beam 
broadening and the contribution was maximal at $ = 0 
when F = 0 and minimal at  $ = f a / 4  and the SLP force 
was then maximal. Note also that for 3 = f_ a / 4  the dis- 
placement x, of the center of gravity of the atomic beam was 
much greater than the contribution of the diffusion process 
to the atomic beam broadening. Therefore, the diffusion in 
the presence of SLP in the field of two standing waves was on 
the whole similar to the properties of diffusion in the field of 
two counterpropagating pulse trains discussed above if we 
allow for the correspondence between the phase $ and the 
delay T between the counterpropagating pulses. 

The dependences of x, and Ax on the frequency of the 
deflecting laser radiation were also determined (Fig. 6). The 
value of x, attained a maximum when the frequencies of the 
laser modes coincided with the frequencies of the two main 
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FIG. 6. Dependence of the displacement of the center of gravity x,, (curve 
1) and of the broadening Ax (curve 2) of the atomic beam on the laser 
radiation frequency Am: *) intracavity laser power P = 0.6 W; 0) intra- 
cavity laser power P = 0.4 W .  

components of the hyperfine structure of the D, line of sodi- 
um. Such a tuning was possible because of the proximity of 
the intermode spacing A v  = 1.67 GHz to the hyperfine split- 
ting of the ground state Av,/, = 1.77 GHz. The second and 
weaker maximum corresponded to tuning of one of the laser 
modes to the stronger hyperfine-structure component, 
whereas the second mode was separated by A v  from this 
component and by Av + Av,/, from the second component. 
The tuning of one of the modes to the weaker component was 
not investigated because the signal/noise ratio was then too 
low. 

The relatively high value of x, in the case of exact tun- 
ing of the modes was due to an increase in the duration of 
interaction of atoms in the beam with the field since the un- 
desirable effects of the optical pumping were avoided under 
these conditions. It should be stressed that the existence of 
the second maximum also supported the stimulated nature 
of the observed optical effects. When a similar tuning was 
studied in the case of traveling waves, the force due to the 
spontaneous light pressure was practically undetectable, be- 
cause in the case of spontaneous reemission of even one or 
two photons, the atom ceased to interact with the field due to 
the optical pumping. This was a demonstration of the likely 
usefulness of the SLP in deflection of molecules, because 
under such tuning conditions an atom of sodium was essen- 
tially similar to a molecule in which spontaneous relaxation 
is accompanied by a transition to levels not coupled to the 
laser field. 

The dependence of x, and Ax on the intracavity power 
is plotted in Fig. 7. The tuning of the mode frequencies corre- 
sponded to the maximum force. The observed linear depen- 

FIG. 7. Dependence of the displacement of the center of gravity x, ,  (curve 
1) and of the beam broadening Ax (curve 2) on the intracavity laser 
power P. The dashed curve represents the beam broadening without 
allowance for pulsed diffusion. 

dence of x, on the power was in agreement with the theory 
(Fig. 3) ,  because in this range of powers we had y < R, < R. 
The dependence of the broadening Ax, in the absence of 
diffusion was also included in Fig. 7 (dashed curve). Clear- 
ly, the relative contribution of the diffusion process de- 
creased on increase in the power and, consequently, on in- 
crease in the SLP force. The maximum SLP force was 
F- 1.2tiky, which was comparable with the maximum force 
acting on an atom in the field of just one traveling wave. An 
increase in the power of the pump laser and selection of the 
optimal value of R (in our case the value of R was governed 
by some technical parameters of the dye laser) should make 
it possible to reach the values of the force F considerably in 
excess of tiky. 

Our experimental investigation confirmed the stimulat- 
ed nature of the observed optical pressure and demonstrated 
that it should be possible to generate an SLP force consider- 
ably greater than fiky acting on both atoms and molecules. 
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