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An investigation was made of the light-induced drift of single-component absorbing particles 
with a hyperfine splitting of the ground-state levels. This drift is induced by radiation with a 
constant spectral intensity (white light) incident on an optically dense medium. The drift is 
induced because as the light propagates a dip of a specific shape appears in the spectrum of light in 
the vicinity of an absorption line. In the absence of collisional transitions between the hyperfine 
components the drift velocity can reach - 5% of the maximum possible drift velocity when the 
spectrum of light is established artificially. 

1. INTRODUCTION 

The light-induced drift (LID) of gases'32 is one of the 
strongest effects of radiation on the translational motion of 
gas particles. The drift velocity induced by laser excitation 
may reach thermal values.' Experiments have shown4v5 that 
the LID velocity of atoms can amount to several tens of me- 
ters per second and that atoms may collect and form a layer 
less than 1 mm thick. 

The LID is important in tackling such scientific and 
practical tasks as preparation of chemically pure substances, 
isotope separation and enrichment, detection of microim- 
purities in large volumes of gases, determination of the diffu- 
sion coefficients of particles in excited states (see, for exam- 
ple, the experiments reported in Refs. 5-8). 

Attention has recently been drawn to a possible mani- 
festation of the LID in astrophysical  object^.^ In particular, 
the LID in stellar atmospheres was used in Ref. 9 to explain 
the phenomenon of chemically peculiar stars. The LID ap- 
pears if the radiation is spectrally inhomogeneous in the vi- 
cinity of a Doppler absorption line and if this inhomogeneity 
is asymmetric relative to the center of the absorption line. 
Such conditions are established in a stellar atmosphere when 
it is crossed by thermal radiation from the interior of a star 
and it has an initially smooth spectrum (Fraunhofer absorp- 
tion lines). The asymmetry of the emission spectrum relative 
to the center of a line representing a given element is due to a 
nearby Fraunhofer absorption line of a different element or a 
different isotope of the same element. 

The quantitative solution for the simplest ("laborato- 
ry") variant of the LID due to white light was given in Ref. 
10. It was assumed that a gas mixture consisting of two types 
of absorbing particles with adjacent absorption lines and of 
buffer particles is exposed to low-intensity radiation with a 
constant spectral intensity. The concentration of the parti- 
cles at the entry to the mixture was assumed to be given. The 
case of a medium optically thin at right-angles to the beam 
was considered. Under these conditions the LID may result 
in a large increase of the concentration of one of the compo- 
nents of the absorbing particles and a large reduction in the 
concentration of the other component at the exit (relative to 
the incident radiation) end of the medium.'' This quantita- 
tive result demonstrates that, in principle, it should be possi- 
ble to account for the phenomenon of chemically peculiar 
stars by LID effects. 

It was shown in Ref. 11 that drift induced by white light 
is, in principle, possible also when an absorbing gas consists 
of just one kind of particle with a hyperfine splitting of the 
ground state under conditions when the components of the 
hyperfine structure (HFS) are pumped optically. However, 
a detailed description of the effect was not given in Ref. 1 1. 
Our aim will be to analyze the behavior of this effect as a 
function of the spacing between the HFS components, of the 
ratio of the homogeneous and Doppler absorption line 
widths, of the intensity of the radiation, and ofthe sign of the 
difference between the transport frequencies of collisions in 
the ground and excited states, as well as to analyze the effect 
for large optical thicknesses of the absorbing medium and to 
obtain simple analytic expressions describing the LID in 
some limiting cases. This detailed investigation reveals a 
number of nontrivial aspects of the LID. We also consider 
the possibility of white-light-induced drift of particles with 
hyperfine splitting of the ground state in the absence of opti- 
cal pumping of the HFS components. 

2. LIGHT-INDUCED DRIFT IN A RADIATION FIELD WITH AN 
ARBITRARY SPECTRAL COMPOSITION 

Consider the interaction between radiation with an ar- 
bitrary spectral composition and absorbing particles which 
are mixed with buffer particles. The energy level scheme of 
the absorbing particles is shown in Fig. 1. Here, the levels n 
and I are the components of the hyperfine structure of the 
ground state and g, is a statistical weight of an ith level 
( i  = n, I, m).  The collisions between the absorbing particles 
will be neglected and it will be assumed that the buffer gas 
concentration is much higher than that of the absorbing gas. 

Such a level scheme is suitable for the description of the 
LID of alkali metal atoms. In fact, the ground state of these 
atoms is split into two hyperfine components. The spacing 
between them is comparable to or greater than the Doppler 
width of the absorption lines and, therefore, the ground state 
can be modeled by two levels (n and I).  The level m repre- 
sents a group of levels which are the components of the HFS 
of the excited states P,,, or P,,, . Such a representation of a 
group of levels by one is possible because in the case of alkali 
metal atoms the hyperfine splitting of these excited states is 
usually small compared with the Doppler absorption line 
width. 

The interaction of the particles with radiation can be 
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FIG. 1 .  Energy level scheme. The. straight arrows represent transitions 
under the influence of external radiation and the wavy arrows represent 
spontaneous radiative transitions. 

described by the following equations for the density ma- 
trix:'* 

a (- + vv +r.) p. (v) =s. (v) +N[P. (v) +PI (v) I .  
a t  

(: + v v )  p, (v) =s, (v) +rmlp. (v) -.lip, (v), (2.1) 

Here, r,, = r ,,,, + r,,,; r ,,,, and r,,, are the rates of m + n 
and m + I radiative transitions; N is the concentration of the 
absorbing particles; S, (v) are the collision integrals; and 
P,, ( v )  and P, (v) are the probabilities of absorption of radi- 
ation per unit time as a result of m-n and m-1 transitions in a 
pacticle traveling at a fixed velocity v. We simplify the prob- 
lem by considering only the weak field approximation and 
assuming that the rate of forced transitions is low compared 
with the radiative decay rate T,, of an excited level m and 
compared with the collision frequencies C, [see Eq. (2.7) 
below ] : 

The angular brackets in the above equation and later denote 
integration with respect to the velocity v. 

The condition (2.2) means that the fraction of particles 
in an excited state is small and, moreover, that the popula- 
tions of the HFS levels p,, (v) and p, (v) have velocity distri- 
butions which are nearly Maxwellian. Moreover, we assume 
that the characteristic size I of a spatial inhomogeneity re- 
gion and the characteristic time T over which the parameters 
of the radiation and medium change satisfy the conditions 
I) F i r i  and T> l/Ti ( i  = 1, 2),  where r, and r, are the 
homogeneous half-widths of the absorption lines due to the 
m-n and m-1 transitions, respectively, and ij is the most 
probable thermal velocity. Under these conditions the 
expression for Pi (v) is 

h2 g m  B =  -- I rJ (a') do' 
rm, Y,(V)=- 

4h.o gn+g, 

Here, W(v) is the Maxwellian distribution of the velocities; 
B is the second Einstein coefficient; A, w, and k is the wave- 
length, frequency, and wave vector of the radiation; wmi is 
the frequency of the m-i transition; S(w) is the spectral in- 
tensity of the radiation. In the expression for the Einstein 
coefficient B we took into account the circumstance that the 
ratio of the rates of radiative transitions from the level m to 
the HFS components n and I is governed by the ratio of their 
statistical weights:" r,,/T,, = gl/g,. 

In our LID calculations we now go over from the rate 
equations (2.1) to the gasdynamic equations. We consider a 
one-dimensional problem where the radiation intensity is 
constant in a direction transverse to the z axis. We select thez 
axis along the direction of propagation of radiation. It fol- 
lows from the equations of the system (2.1 ) multiplied by u, 
and integrated with respect to the velocity v that 

where 

J=j.+j,+j~, P,=P,,,+P,,+PZl, 
(2.5 

jt=(vZpi(v)), PZi=(vzZpi(v) ), (i=n, 1, m) .  

The quantity MP,, ( M  is the mass of an absorbing particle) 
represents the pressure exerted along the z axis by absorbing 
gas particles in the state i; j, is the flux of the absorbing 
particles in the state i; J and MP, are the total fluxes and the 
pressure of the absorbing particles. In the case under discus- 
sion when the incident radiation is weak, we have 
MP, = NT, where T is the temperature of the gas in energy 
units. The system of equations (2.4) was derived above us- 
ing the following relationships: 

<vISm (v) ) =-vmjn,, 

< ~ z S ~ ( ~ ) ) = - v l j l + ~ l , j n ,  (2.6) 

(vZSn(v) >=-vnj,,+Vnljl 

Here, v, is the momentum-transfer frequency for elastic 
collisions between a particle in a level m and the buffer gas 
particles; V,, is the rate of "transfer" of the flux ji from the 
level i to the level j by collisions; vi ( i  = n, I) is the rate of 
relaxation of the flux j, at the level i due to elastic ( iL i )  and 
inelastic ( i+ j )  scattering channels. The quantities 

used in the system (2.4) are the frequencies representing 
elastic and inelastic collisions. 

Before we tackle the solution of the system of equations 
(2.4), we note that the characteristic time of the "adjust- 
ment" of the fluxes j, to the changes in the radiation param- 
eters and medium is governed by the collision time v; '. We 
assume that the characteristic times for the parameters of 
the radiation and medium to change are longer than the mi- 
croscopic times v i  '. This allows us to ignore the time de- 
rivatives in the system (2.4). We also assume that 
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Under these conditions we find that the system (2 .4)  yields 
the following equation for the total flux J of the absorbing 
particles: 

where D is the diffusion coefficient of the absorbing parti- 
cles. The quantity uLID in Eq. (2.9)  is the LID velocity of the 
absorbing particles 

~LID=T."<U~P,,(V) )+to1<u1P, (v)> 
co 

where 

The expression for 7.6 is also obtained from the expression 
for 7:: by transposing the indices n F! I. Equation (2.10)  con- 
tains pi ( x  - x i  ), which is an odd function of x - x ,  : 

w (I$) =[ 1 + $j exp f2 d t ]  exp (-ziz), 
0 (2.12)  

In a bounded medium under steady-state conditions 
there is no absorbing particle flux ( J  = 0 )  and the spatial 
variation in the particle concentration is described by 

The drift velocity of Eq. (2.10)  is expressed in terms of 
local values of the spectral intensity and of the fraction of 
particles in the levels n and I. These characteristics depend 
on the coordinate z and we have to find this dependence. We 
assume that the gaseous medium of interest is optically thin 
at right-angles to the z axis. Then, in the case of propagation 
along the z axis the spectral intensity of the radiation varies 
in accordance with the law 

senting the absorption of the radiation due to the m-i transi- 
tion at a frequency w = x k i ;  J; ( x  - x ,  ) is an even function 
of the argument x - xi. 

We shall find the velocity-integrated populations of the 
HFS levels N,, and N, .  We first consider the case of active 
collisional exchange between the levels n and 1 ( v,, - v ,  ) . In 
the case of alkali metal atoms such a situation occurs, for 
example, when they collide with buffer particles that have a 
partly filled electron sheIl.l4 It follows from simple physical 
considerations that the populations N,, and N/ are close to 
equilibrium if in addition to the condition ( 2 . 2 )  the rates of 
the forced transitions are low compared v;ith the frequencies 
of collisional exchange between the levels n and I :  

We then have 

We now find the populations N,, and N, in the absence 
of collisional exchange between the hyperfine components 
(v,,, = v,,, = 0 ) .  In the case of alkali metal atoms this situa- 
tion appears in an atmosphere of inert gases, because the 
cross sections of the collisional transitions n zl are then 
many orders of magnitude less than the gaskinetic cross sec- 
t i o n ~ . ' ~  We integrate, with respect to the velocity E, the last 
three equations in the system (2.1 ) and assume that in the 
case of elastic collisions we have ( S ,  (v)  ) = 0 ( i  = n,  1, m ) .  
We then obtain 

The terms with the spatial derivative in the system (2.17)  
can be ignored if u,,, <ii, which is always satisfied in the 
case of a low radiation intensity (under consideration here) 
and then, under steady-state conditions, it follows from Eq. 
(2.17)  that 

This important relationship shows that the ratio of the total 
probabilities of absorption of radiation as a result of the m-n 
and m-1 transitions is independent of the radiation intensity 
and frequency. This relationship represents the process of 
optical pumping of the ground-state levels and is a conse- 
quence of the absence of collisional exchange between the 
hyperfine components n and 1. 

Applying the normalization condition N,, + N, -- N 
[under the conditions of Eq. ( 2 . 2 ) ,  we have N,,, < N 1 ,  we 

I find from Eqs. ( 2 . 3 )  and (2.18)  that 

- c. 
fi(x-xi)=Re[w(zi)], (i=n, l ) ,  

We assume that, for example, narrow-band radiation is in 
where& ( x )  is the spectral intensity of the radiation input to resonance with the m-n transition and not with the m-1 tran- 
the medium ( z  = 0); ai ( x  - x i  ) is the cross section repre- sition, so that Y,  .g Y , .  It then follows from Eq. ( 2 . 19 )  that 
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N,, 4 N ,  .=N, i.e., almost all the particles are transferred to 
the level 1, as expected in this case. 

The relationships given by Eqs. (2. lo) ,  (2.13), (2.14), 
and (2.16) [or Eq. (2.19) 1 represent a closed system of 
equations which can be used to find the drift velocity at each 
point and to determine the spatial distribution of the particle 
concentration. We shall consider later the solutions of these 
equations under specific conditions. 

3. WHITE-LIGHT-INDUCED DRIFT 

We now discuss a situation in which a medium with an 
absorbing gas is illuminated with white light, i.e., when the 
radiation incident on the medium is characterized by a con- 
stant spectral intensity: s,, ( x )  = S,, = const. Then, Eq. 
(2.10) for the drift velocity can be transformed conveniently 
by means of the relationship'" 

to the following form (later we shall give the explicit depen- 
dence of the various quantities on the dimensionless coordi- 
nate 6) : 

where 

LY, (t,' 
d ,  ( 5 ,  = j ( $ ) B ,  (;) d;==n X, ( z )  d z .  f i t  ( 5 )  = 3~cGs.. 

I) 

Here, n (6) is the dimensionless concentration of the absorb- 
ing particles. The quantity Z(x, [) represents the profile of 
the radiation spectrum. At the entry to the medium the 
white light is characterized by I ( x ,  0 )  = 1. The parameter u 
is the absorption cross section of monochromatic radiation 
at the center of a Doppler-broadened line when the spacing 
between the HFS components is zero. The quantity d,  (6) 
represents the optical thickness of the medium when the ra- 
diation is absorbed as a result of the m-i transition. The sum 

is the total optical thickness of the medium. 
In the absence of optical pumping of the HFS levels the 

fraction of the particles at these levels is R i  (6 )  = w, = const 
[see Eq. (2.16) 1. In the opposite case (i.e., in the absence of 
collisional exchange between the HFS levels), it follows 
from Eq. (2.19) that 

Now consider Eq. (3.2).  The integral in Eq. (3.2) re- 
sembles the integral of the velocity of drift of two-compo- 
nent absorbing particles under the influence of white light." 
At the entry to the medium in the case of white light we have 
I ( x ,  0 )  = 1 and the drift velocity deduced from Eq. (3.2) is 
u ,-,, (0 )  = 0 because the integrand p,, (x  - x,, ) is an odd 
function. The radiation becomes spectrally inhomogeneous 
in the course of propagation. The integral in Eq. (3.2) then 
vanishes only if Z(x, f ) ,  regarded as a function of x ,  is sym- 
metric relative to the point x = x,, , which is possible only if 
the spacing between the HFS components is zero (x,, = x ,  ). 

We now consider the factor in square brackets in front 
of the integral in Eq. (3.2).  In the absence of optical pump- 
ing we have R,({) = w,, so that this factor is 
w,, (+,, - +,)/q. Consequently, if there is no optical pump- 
ing, the white-light-induced drift appears only when the 
transport collision frequencies at the HFS levels are differ- 
ent, i.e., if +,, f +, (which is equivalent to the condition 
7:: z 71,). 

Under optical pumping conditions the LID appears 
when any pair of the frequencies C,,, C,, and v,,, is different. 
This is due to the fact that the relative population of the HFS 
levels then varies along the coordinate 6 
[R,, ([)/R, (1) fconst ]  and the factor in front of the inte- 
gral in Eq. (3.2) vanishes for all values of [ only if 
7:: = TI, = 0. Optical pumping appears in the course of prop- 
agation of white light through our medium because of the 
difference between the strengths of the lines representing the 
m-n and m-1 transitions. On entering the medium, before 
spectral inhomogeneity sets in, the spectral intensity of the 
radiation in the vicinity of both lines is the same and there is 
no optical pumping [see Eq. (2.19) 1 .  As the radiation prop- 
agates, a deeper dip appears near the stronger line (for exam- 
ple, that due to the m-1 transition-see Fig. 3 below) than in 
the vicinity of the weaker line. Consequently, the spectral 
intensity of the radiation in the vicinity of the weak line is 
higher, which results in the transfer from the level n to the 
level I. This transfer enhances the asymmetry of the defor- 
mation of the radiation spectrum. The optical pumping ef- 
fect reaches its maximum at some value of the optical thick- 
ness d([) and then falls to zero as d ( { )  increases, so that if 
d([) is large, the depleted spectral interval broadens so 
much that the absorption occurs in the wings of the spectral 
lines and then the optical pumping effect does not occur. 
This is readily demonstrated on the basis of Eq. (2.19). 

4. WHITE-LIGHT-INDUCED DRIFT IN THE ABSENCE OF 
OPTICAL PUMPING 

We now consider in greater detail the LID in the ab- 
sence of optical pumping of the HFS levels, i.e., subject to the 
condition (2.15). In this case we have R i  (6)  = wi [see Eq. 
(2.16) 1,  so that Eqs. (3.2) and (3.3) yield the drift velocity 
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where the parameter with the dimensions of the velocity is 

and the dimensionless velocity is described by 

For simplicity, we assume that the homogeneous half- 
widths of the absorption lines r, and r2 due to the m-n and 
m-1 transitions are equal ( y ,  = y,  r y ) .  The drift velocity 
can be described by simple analytic expressions in the limit- 
ing cases of the homogeneous and Doppler broadening when 
the optical thickness is small. In the homogeneous broaden- 
ing case, we have 

where S  is the spacing between the HFS components ex- 
pressed in units of kK In the Doppler broadening case, we 

have 

wld(E)G exp ( -6 ' / 2 ) ,  ( y e l ,  d ( 8 ) e I ) .  ( 4 . 5 )  

It follows from Eqs. (4 .4 )  and (4 .5 )  that during the initial 
stage the drift velocity increases linearly as a function of the 
optical thickness d ( 0 .  

Figure 2  shows a numerically calculated dependence of 
the drift velocity on the optical thickness. We can see that if 
S  = 2, y  = l o 2 ,  and w, = 3/8, the maximum of the drift 
velocity is reached when d ( 5 ) - 4 . 5  and amounts to 
( u ( l ) l , , ,  ~ 0 . 1 5 .  We now estimate the absolute velocity 
maximum luLID (5 )  I in the specific case of sodium atoms. 
These atoms are characterized by r, = 0.61 X 10' s -  and 
B  = 1.6. 10I7g,,/(g,, + g , )  cm2-W- ' ~ s - ~ ;  the statistical 

FIG. 2. Dependence of the drift velocity on the optical thickness d ( 5 )  in 
the absence of optical pumping of the HFS levels. The calculations were 
carried out for w,, = 3/8,6 = 2, and y = 10 - *. 

weight of an excited state should be g,, = 24 [which corre- 
sponds to g,, / (g , ,  + g, ) = 3  1 ,  because the white-light ab- 
sorption occurs at the Dl  and D, lines. Under typical labora- 
tory conditions the velocity of sodium atoms is i7- 5  X lo4 
cm/s and we have S z 2 ,  and the value of y  = l o - ,  then 
corresponds to a collision frequency v, - 3  X lo6 s - ( i  = n ,  
1, m ) .  We assume that the spectral intensity of the radiation 
input to the medium is So = 2  x 10 - 3  W . C ~ - ~ . G H Z  I. 
Then, the probability of absorption input to the medium is 
P, + PI = BS,, = 1.5. lo5 s I ,  so that the conditions of Eqs. 
(2 .2 )  and (2 .15)  are satisfied (in the case of active colli- 
sional exchange between the HFS components we have 
v,, - v,,, -vi-see Ref. 14) .  Consequently, if 
IC,, - C ,  I/+,, - 10 - ', the maximum absolute drift velocity is 
lu,,, ( 6 )  I , , ,  -0.3 cm/s. 

5. WHITE-LIGHT-INDUCED DRIFT IN THE PRESENCE OF 
OPTICAL PUMPING 

In an analysis of the LID in the presence of optical 
pumping (v,,, = v,,, = 0 )  we assume, for simplicity, that the 
homogeneous half-widths of the absorption lines due to the 
m-i transitions are equal (y , ,  = y,  = y )  and the transport fre- 
quencies of collisions with the HFS levels are the same 
(v,, = Y , ) .  The drift velocity ofEq. (3 .2 )  can then be written 
conveniently in the form 

where we introduce the dimensionless velocity 

The relative fractions Ri ( l )  of the particles in the HFS levels 
are given by Eq. ( 3 . 5 ) .  Since we are assuming that y,, = y , ,  it 
follows that for identical values of the arguments we have 
pn = p, and fn =f,, and the indices of these functions can be 
omitted. The parameter u, in Eq. (5 .1 )  is approximately 
equal to the maximum attainable drift velocity of atoms 
when the spacing between the HFS components is zero and 
the radiation spectrum has a specific profile. More rigorous- 
ly, u, /2  is the velocity of drift of two-level atoms when the 
absorption line is Doppler-broadened and the radiation has a 
spectrum in the form of a semiinfinite step that begins at the 
atomic transition frequency. 

Equation (2 .13)  for the concentration of the absorbing 
particles can also be rewritten conveniently in the dimen- 
sionless form 

where 

The system ofequations (5.1 ) - (5 .3 )  with the boundary 
condition n ( 0 )  = 1 is closed and it describes the changes in 
the spectral intensity of the radiation, in the drift velocity, 
and in the concentration of the absorbing particles. 

The drift velocity and the fractions of the particles at 
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the HFS levels can be described by simple analytic expres- 
sions in the limiting cases of the Doppler or homogeneous 
broadening provided the optical thickness is small. This can 
be done by expanding the exponential function in Eq. ( 5 . 2 )  
in a series and noting that near input to the medium we have 
n ( 6 )  z 1  and d ( f )  z f .  In the Doppler-broadening case, we 
obtain 

In the homogeneous-broadening case, we have similarly 

It follows from the systems ofequations ( 5 . 5 )  and ( 5 . 6 )  
that the fraction of particles in an HFS level with the lowest 
statistical weight decreases as a function of the distance 6 
from the entry to the medium [or the optical thickness 
d(6)  1. During the initial stage the drift velocity rises qua- 
dratically with f .  If the statistical weights are equal 
(w, = W, ), there is no LID and no optical pumping. 

Equations ( 5 . 5 )  and ( 5 . 6 )  may be useful in forecasting 
the degree of manifestation of the LID: a steeper rise of u  (6) 
during the initial stage generally corresponds to a higher 
value of u ( f )  at the maximum (see Figs. 5-7 below). 

6. RESULTS OF NUMERICAL CALCULATIONS; DISCUSSION 

Figures 3-10 give the results of numerical calculations 
carried out using Eqs. (5 .1  ) - ( 5 . 3 ) .  Figure 3  demonstrates 
the evolution of the radiation spectrum as the optical thick- 
ness d ( c )  increases. Figure 4 illustrates the effect of optical 
pumping on the HFS levels. As expected, optical pumping 
becomes stronger when the spacing S between the HFS com- 
ponents increases. However, for S k 3, the rise of S hardly 
changes the maximum magnitude of the effect. We note that 
Eq. ( 5 . 5 )  predicts the same optical pumping behavior when 

FIG. 3. Evolution of the radiation spectrum on increase in the optical 
thickness d ( 4 )  under optical pumping conditions; the calculations were 
carried out for w,, = 3 / 8 ,6  = 2,  and y  = 10 '; the positions of the HFS 
levels are shown schematically on the abscissa. 

the parameter 6 is varied. The influence of the parameter y 
on the optical pumping is different: the smaller the param- 
etery the stronger the pumping (Fig. 4) .  The behavior of the 
populations of the HFS levels considered as a function of the 
optical thickness d ( S )  was discussed above in connection 
with an analysis of Eq. (3.2) and it is confirmed by the plot 
of R,, (6) in Fig. 4. 

Figures 5-7 give the dependence of the drift velocity on 
the optical thickness d ( 6 )  for different values of the param- 
eters y and S. The lower the value of y, the higher the maxi- 
mum velocity and the wider the range of optical densities in 
which the drift velocity is significant compared with its max- 
imum value (Fig. 5 ) .  For y = 10 2,  the maximum drift ve- 
locity is reached when the spacing between the HFS compo- 
nents is S ~ 2  (see Figs. 5  and 6 ) ;  it should be noted that S z  2 
is typical of sodium atoms under the usual experimental con- 
ditions when the temperature is T- 300-500 K. In the range 
of large optical thicknesses the drift velocity changes its sign 
and the amplitudeof the maximum of this "reverse" velocity 

I 10 
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FIG. 4. Dependence of the fraction R,, (5 )  of particles at an HFS 
level n on the optical thickness d ( 4 ) ;  the initial conditions are 
R, , (O)  = w,, = 3/8: 1 )  S =  2, y =  10 '; 2 )  6 =  1 ,  y = 10 '; 3 )  
S = 2 , y =  I0 2 ; 4 ) S = 3 , y =  10 1 ; 5 ) d = 5 , y =  10 * ; 6 ) 6 = 2 ,  
y  = 10 '. 
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FIG. 5. Dependences of the drift velocity on the optical thickness d ( 6 ) ;  
calculations are carried out for w,, = 3 / 8  and 6 = 2: 1 )  y = 10 - '; 2 )  
y =  10 >; 3 )  y = 10 '. 

increases with the parameter S. For y = 10 - 2 ,  the maxima 
of the positive and negative drift velocities become compara- 
ble for S =: 4, whereas in the range S > 4 the negative velocity 
becomes higher (Fig. 7 1. Analysis shows that this reversal of 
the sign of the velocity is due to reversal of the sign of the 
factor in front of the integral in Eq. (5.2). 

If y = 10 - and 6 = 2, the maximum drift velocity oc- 
curs when the optical thickness is d({)=7 
[lu(6)lm,, =2.65.10-2], whereas for y=O.l and S = 2  
the maximum of u(6) corresponds to d(6)  = 6.4 
[ lu (6) I ,,, = 1.71 - 10- '-see Fig. 51. We estimate the max- 
imum values of the absolute drift velocity from Eq. (5.1) 
using the Na-Ar system as an example. In the case of this 
mixture the relative difference between the transport colli- 
sion frequencies of the sodium atoms is 
(Y, - Y, )/Y, = 0.29 (Ref. 17). The value of S = 2 for the 
sodium atoms means that the temperature of the mixture is 
T = 376 K. The parameter y = 10 - corresponds to the ar- 

FIG. 6 .  Dependence of the drift velocity on the optical thickness d ( 6 )  
calculated for different spacings 6 between the HFS components; calcula- 
tions carried out for w, = 3 / 8 ,  y = lo-': 1 )  6 = 1; 2 )  6 = 3; 3 )  6 = 0.5. 

FIG. 7. Same as Fig. 6,  but calculations for w, = 3 / 8  and y  = 10 - 2: I )  
6 = 4; 2 )  6 = 5 .  

gon pressure PA, = 0.5 torr (at this pressure we can use the 
diffusion coefficient of sodium atoms to find v, = 3 X lo6 
s - I), whereas the parameter y = 0.1 corresponds to 
PA, = 10.4 torr (Y, = 6X 10' s -  I). We assume that the 
spectral intensity of the radiation at the entry to the medium 
is So = 2 x 10 - Wacm - 2.GHz - I .  Consequently, the max- 
imum drift velocity of sodium atoms in an argon atmosphere 
is lu,,, (6) I ,,, = 0.5 cm/s at an argon pressure PA, = 0.5 
torr and lu,,, (6) l m a x  = 0.2 cm/s at PA, = 10.4 torr. 

Figures 8 and 9 show how the dimensionless particle 
concentration n (6) depends on the dimensionless coordi- 
nate 6 in the case of negative values of the parameter a (i.e., 
when Y, < Y, ). We now estimate numerically the parameter 
a for the Na-Ar mixture. We assume that the constant con- 
centration of the absorbing particles No = 10' cm - ' is main- 
tained under experimental conditions at the entry to the me- 
dium. Then, if So = 2X 10 - W-cm - 2 - G ~ z  -', it follows 
from Eq. (5.4) that we have a = - 270 at an argon pressure 
PA, = 10.4 torr and a = - 30 at PA, = 0.5 torr. 

It is clear from Fig. 8 that for a < 0 and Doppler broad- 
ening (y < 1 ) the maximum change in the particle concentra- 
tion corresponds to the spacing S -- 2 between the HFS com- 
ponents. For 6 = 3, the change in n(6)  is greater than for 
6 = 1, although the maximum drift velocity is less in the first 
case than in the second (a  similar result also follows from a 
comparison of the cases when 6 = 4 and S = 0.5). This is 
because an increase in 6 increases also the size of the region 
A6 [or the optical thickness Ad({) ] in which the drift veloc- 
ity does not show a reversal of the sign (Figs. 6 and 7). If the 
coordinate 6 is sufficiently large, the particle concentration 
falls and it may approach zero because of a change in the 
initial sign of the drift velocity. 

It is clear from Fig. 9 that for given values of S and a the 
concentration maximum n(6)  increases with reduction in 
the parameter y. However, if the maximum drift velocity 
changes by a factor of just 1.05 (Fig. 5) as we go over from 
y = l o p 2  toy = 10W3 (for S = 2), we find that the particle 
concentration maximum increases by a factor of 2 (if S = 2, 
then a = - 100). This is because the smaller the parameter 
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y, the greater the width of the region Ad(f) characterized by 
a constant sign of the drift velocity. 

It is also clear from Fig. 9 that for the same values of 6 
and y the maximum concentration is approximately propor- 
tional to the value of the parameter a. The parameter a in 
turn is inversely proportional to the particle concentration 
No entering the medium and, consequently, the lower the 
value of No the greater the change in the concentration. This 
dependence is due to the fact that at low values of No the 
optical thickness d ( f )  at which the drift velocity changes its 
sign is reached at higher values of z. In other words, if N,, is 
low, then the size of the region where the effects of the LID 
accumulate is large. 

FIG. 8. Dependenceof the particleco~ice~itration rr on thecoordinate{ 
for different spacings 6 between the HFS components; calculations 
carried out for fir,, = 3/8, y = 10 ', and o = - 100: 1 )  6 = 2: 2) 
6 = 1; 3 )  S = 3; 4) S = 0.5; 5 )  S = 4: 6) 6 = 5 [the scale is lineilr for 
I I ( ~  < 11. 

Figure 10 illustrates the dependence of the particle con- 
centration on the coordinate S in the case when a > 0 (pro- 
vided v,, > v,,, ). If the value ofthe parameter a is sufficiently 
large, the particle concentration decreases right down to 
zero on increase in 6. However, when the parameter a de- 
creases, the behavior of n(%) becomes qualitatively differ- 
ent: during the initial stage the concentration no longer falls 
to zero and then it rises by a large factor, reaching a constant 
value at high f. If the parameters 6 and y are constant, the 
change in the nature of the behavior of n (6) is threshold-like 
in respect of a. The dependence of the behavior of n ( f )  on 
the parameter a is easily understood from the dependence of 
the drift velocity on the optical thickness (see, for example, 

FIG. 9. Dependence ofthe particle concentration n on the coordinate 
calculated for different values of the parameters y and o, assuming that 
w,, = 3/8 and 8=2: 1 )  y =  10 ', a =  - 10'. , 2 )  Y =  10 ', 
o =  --100;3) y = 1 0  ', 4 =  - 1 0 0 ;  4) y = 1 0  ' , a =  -100; 5) 
y = 10 ' ,a  = - 10 [the scale is linear for n ( { )  < I I .  
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FIG. 10. Dependences of the particle concentration n on the coordinate { 
for positive values of the parameter a ,  calculations carried out assuming 
that w,, = 3/8: 1) 6 = 2 , y =  10 ' , a  = 100; 2)  6 = 2, y =  10 ' , a  = 10; 
3)  6 = 2 ,  y = 1 0  ', o = 1 0 ;  4 )  6 = 4 ,  y = 1 0  ', a = 1 0 ;  5)  S = 5 ,  
y =  10 ' , a = 7 0 ; 6 ) 6 = 4 , y =  10 ' , a = 6 ; 7 ) 6 = 5 , y =  10 ' , a = 5 0  
[the scale is linear for n ( 6 )  < I ] .  

Fig. 7).  In fact, at high values of a the particle concentration 
falls rapidly to zero at a function of 6 so that the optical 
thickness d ( ( )  does not reach that "threshold value at 
which there is a change in the sign of the drift velocity. How- 
ever, at low values of a the fall of the concentration is slight 
and as ( increases the optical thickness d ( ( )  reaches its 
threshold and then the drift velocity changes its sign and the 
rise of the concentration begins. 
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