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The quadratic Jacobi algebra with three generators is the dynamical symmetry algebra of exactly 
solvable potentials, for which the Schrodinger equation reduces to the hypergeometric equation. 
The commutation relations provide information on the most important physical properties such 
as the energy spectrum and coefficients of the scattering matrix. 

1. INTRODUCTION 

As is well known, all exactly solvable problems in quan- 
tum mechanics admit a treatment in the language of Lie al- 
gebras or groups. 

It was shown in Ref. 1 that the 0 ( 2 , 1 )  algebra gives rise 
to those potentials for which the Schrodinger equation re- 
duces to the confluent hypergeometric equation (the har- 
monic oscillator, Coulomb, and Morse potentials). Further, 
the algebra serves as a dynamical symmetry algebra in the 
sense of Ref. 2, i.e., one of the generators of the algebra serves 
as the Hamiltonian of the corresponding quantum system. 
However such an interpretation is impossible in those cases 
when the Schrodinger equation reduces to the full hypergeo- 
metric equation (potentials of the Poschl-Teller or Eckart 
type). Indeed, the spectra of these potentials are quadratic 
(or reduce to quadratic), while in a Lie algebra the discrete 
spectrum of any generator can only be linear. 

A somewhat artificial way out of this situation has been 
proposed: take as the Hamiltonian not a generator of the Lie 
algebra but the corresponding Casimir operator. This meth- 
od suffers from the deficiency that the properties of dynami- 
cal symmetry are lost: since the Casimir operator cannot be 
changed by the action of the generators of the given repre- 
sentation the dynamical connection between representations 
disappears. We may list as another deficiency of this ap- 
proach the circumstance that some of the parameters of the 
corresponding potentials are restricted to integer values. 

Nevertheless this method was used to classify the exact- 
ly solvable problems in the cases where the starting algebras 
were taken to be SU( 1 , l )  or  S U ( 2 )  (Refs. 3, 4) .  The alge- 
braic method was applied in Refs. 5 and 6 to find the transi- 
tion coefficients in the scattering problem (see also Ref. 7) .  

Naturally this question presents itself: could all the ex- 
actly solvable problems be stated in the framework of an 
algebra so as to preserve the idea of the dynamical symmetry 
method, i.e., so that one of the generators of the algebra 
would serve as the Hamiltonian? 

The answer to this question turns out to be affirmative; 
the present work is devoted to the corresponding construc- 
tion. The principal idea consists of giving up on Lie algebras. 
In their place we propose to make use of so-called quadratic 
algebras. 

We  recall that quadratic algebras were first introduced 
in two pioneering papers by S k l ~ a n i n . ~  In contrast to Lie 
algebras the commutation relations for the generators Ki of 
these algebras contain quadratic combinations of these gen- 
erators. In other words the general form of the commutation 
relations of a quadratic algebra is as follows: 

The quantities a ,,,,,, , b,,, , and c,, enter in the role of struc- 
ture constants of the algebra. If a,,,,, = 0 holds we return to 
ordinary Lie algebras. 

The generators of a quadratic algebra, in contrast to a 
Lie algebra, do  not form a linear space. This shortcoming is, 
however, compensated by the possibility of constructing 
representations of these algebras in analogy to the Lie alge- 
bras. For this reason it turns out to be possible to use qua- 
dratic algebras to clarify the situation for various exactly 
solvable many-particle problems. 

Until now, however, quadratic algebras, as well as the 
related so-called quantum algebras, have found applications 
only in rather complicated and exotic problems of math- 
ematical physics (see, for example, Ref. 9) .  In Ref. 10 it was 
shown that a quadratic algebra of a simple structure-the 
so-called Wilson-Racah algebra-can be successfully used 
to analyze "hidden" symmetries of the 6j- and 3j-symbols. 

In the present work we investigate a quadratic algebra 
with three generators and simplest choice of nonlinearity, 
which we shall call the Jacobi algebra. Within its framework 
we find a natural interpretation of all exactly solvable prob- 
lems with a quadratic (discrete or continuous) spectrum in 
the spirit of the dynamical symmetry idea. The Lie case, 
corresponding to a potential with a linear spectrum, is ob- 
tained by a simple degeneracy (contraction) of the Jacobi 
algebra. 

This paper is organized as follows: we first give the de- 
finition of the Jacobi algebra and construct its ladder repre- 
sentation, which encompasses both the discrete and the con- 
tinuous spectrum. We then show that the Jacobi algebra is 
the symmetry algebra of the hypergeometric equation. This 
fact allows a choice of a realization of the Jacobi algebra in 
which one of its generators has the structure of a nonrelativ- 
istic one-dimensional Hamiltonian. This realization permits 
the construction of the spectrum and the wave functions on 
the basis of the commutation relations of the algebra. Lastly 
we show how in the case of the continuous spectrum the 
Jacobi algebra permits the determination of the coefficients 
of the scattering matrix. The present work extends the re- 
sults obtained previously and communicated in the preprint, 
Ref. 11. 

2. THE JACOB1 ALGEBRA AND ITS LADDER 
REPRESENTATION 

Let the three operators K O ,  K, ,  K, generate the qua- 
dratic algebra, in which linearity is broken "minimally": 
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where 

The structure constants a,  6,  d, c,, c, are assumed to be 
real. It is not hard to show that the Jacobi identity holds and 
that the operators K,  and K ,  can be simultaneously Hermi- 
tian. 

The Casimir operator Q, which commutes with all the 
three generators, has the form 

Q=KZ2+ (a2+d) K I Z + a { K o ,  K 1 2 )  
+b { K O ,  K l )  + (2c,+ab) K,+2coKo. (2.2) 

We shall call the algebra defined by the commutation 
relations (2.1 ) the Jacobi algebra-it is a special case of the 
more general Wilson-Racah quadratic algebra with three 
generators, studied in Refs. 10 and 11. 

An important property of the Jacobi algebra is the lad- 
der property, which means the following. Let IA ) be an ei- 
genstate of the operator K,  to the eigenvalue A: 

It is possible to form a linear combination of the genera- 
tors of the algebra such that the state 

I X ) = ( E ( ~ ) K O + ~  ( h )  ~ , + % ( h )  K , )  1 1 )  (2.4) 

is again an eigenstate of K,  but with a different eigenvalueX. 
In (2.4) the coefficients in the linear combination depend on 
the spectral parameter A. Only in the case of a Lie algebra 
( a  = 0) are the coefficients independent of A. 

This ladder property makes it possible to construct a 
representation of the Jacobi algebra in which the operator 
K,  is diagonal: 

and the operators K ,  and K ,  are tridiagonal in this basis: 

where 

Making use of the commutation relations (2.1 ) and Eq. 
(2.2) for the Casimir operator (in each given representation 
Q is a constant), we obtain explicit expressions for the ma- 
trix elements in the ladder representation (2.5) : 

a d 
h, = - - ( s -a)  ( s -a+l ) , -  - , 

2 2a 

where u is an arbitrary parameter. 
The reality requirement for the spectrum A, imposes 

constraints on the parameters. Two versions are possible: 
either we have s = n, an integer, and u is an arbitrary real 
parameter, or the following relation holds 

where k is an arbitrary real parameter. 
In the first case the spectrum is discrete and quadratic 

in n: 

while in the second case the spectrum is continuous and qua- 
dratic in k: 

In this manner, in contrast to Lie algebras, the spec- 
trum of the generator K,, for fixed parameters of the algebra 
(by parameters we mean values of the structure constants 
and the Casimir operator) can be both discrete and contin- 
uous-one representation contains both spectra. Properly 
speaking, this is how the basic idea of dynamical symmetry 
for all states of the system is realized. 

In the case of the discrete spectrum the equation for the 
eigenvaiues of the operator K ,  

under the condition A,, = 0 (the spectrum is bounded from 
below) gives rise to a system of orthogonal polynomials 

$n ( x )  P,, ( x )  = - 
$o(x) ' 

for which A,,  and B,, are the coefficients in a three-term re- 
cursion relation that determines their properties.'2 It fol- 
lows from the explicit form of these coefficients, Eqs. ( 2 . 6 . ~ )  
and (2.6.d), that we can conclude that the P,, ( x )  are the 
classical Jacobi polynomials. It is for this reason that we 
have named the algebra the Jacobi algebra. 

We note that on the basis of the more general Wilson- 
Racah quadratic algebra one can give an algebraic interpre- 
tation to all classical orthogonal polynomials (see Ref. 11 ). 

3. REALIZATION OFTHE JACOB1 ALGEBRA BY 
DIFFERENTIAL OPERATORS: THE HYPERGEOMETRIC 
EQUATION 

In the preceding Sec. we have constructed the ladder 
representation in some abstract basis $I,. We now equip the 
functions in this basis with an argument x and find a realiza- 
tion of the Jacobi algebra in the form of differential operators 
acting on the functions +, (x ) .  

For the operator K ,  we take the operation of multipli- 
cation by x 

while we choose the operator K ,  in the form of a second- 
order differential operator 

where q ( x )  and v(x) are functions to be determined. 
In accordance with (2.1.a) the operator K ,  takes the 

form 
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Making use of the commutation relations (2.1 ) and the Ca- 
simir operator Q we find 

29 ( x )  =- (ax2+bx+ co)  , (3.4) 

2 v ( x )  = 4 " ( x ) / q ( x ) .  (3.5) 

Here q ( x )  is a polynomial in x of second degree: 

2g" ( x )  =- (Hx2+8x+Z), (3.6) 

where 

E=-d, 6=-2cl ,  c"=ac,+Q. 

The eigenvalue equation for K, 

KO$($)  =h$(x)  

can be written in the form 
v ( x )  -h 

q"(x)+  - q ( x )  =o. 
4 ( x )  

Equation (3.7) is the hypergeometric equation1* in the form 
without a first derivative. Thus the basis functions $, (x)  are 
expressible in terms of the hypergeometric function 
2Fl (a, B, y, x) .  In particular for a discrete spectrum 
(a = - n )  we obtain the Jacobi polynomials, once again 
justifying the naming of this algebra. 

In two particular cases Eq. (3.7) reduces to the conflu- 
ent hypergeometric equation. In the first case a  = 0 and we 
have a Lie algebra. In the second case q(x ) is a perfect square 

q (2) = ~ ( X - X ~ ) ~ .  

It is not hard to show that in this case too the Jacobi algebra 
can be reduced to a Lie algebra. 

In this way the Jacobi algebra is the dynamical symme- 
try algebra of the hypergeometric equation. In particular, all 
the properties of hypergeometric functions can be obtained 
directly from the properties of the Jacobi algebra. We do not 
stop to discuss this question (which could be the subject of a 
separate investigation) but go on to an application of the 
Jacobi algebra-the determination of exactly solvable po- 
tentials. 

4. THE JACOB1 ALGEBRA AND EXACTLY SOLVABLE 
POTENTIALS: DISCRETE SPECTRUM 

In the preceding section we have constructed a realiza- 
tion of the Jacobi algebra by differential operators, with the 
eigenfunctions of the operator KO in this realization being 
the hypergeometric functions. It follows that the Jacobi al- 
gebra is the dynamical symmetry algebra for potentials 
which permit the reduction of the Schrodinger equation to 
the hypergeometric form by a change of variable (in short- 
hypergeometric potentials). As in the case of Lie dynamical 
symmetry,',2 the "quadratic" symmetry makes it possible to 
determine the spectrum, the wave functions and other prop- 
erties of the system by purely algebraic means. 

Let the Hamiltonian H = p2 + U(x) of a quantum sys- 
tem in the potential U(x) be taken as the operator K,  of the 
Jacobi algebra. For K, we take the operation of multiplica- 
tion by a certain function p (x )  : 

We proceed to the analysis of the realization (4.1 ). 
Making use of the commutation relations (2.1 ) and the Ca- 
simir operator Q we obtain 

where 

In the following, unless explicitly stated to the contrary, we 
assume a f ;O. By shifting the operator K ,  by a constant we 
can achieve b = 0. The absolute values of the parameters a 
and c, affect only the scale factors of the function p ( x )  and 
its argument and therefore they can be fixed by taking, for 
example, la1 = Ic, 1 = 2. 

Depending on the combinations of signs three versions 
are possible. 

1. a = c ,  =2.  

In this case we have 

q ( x )  =sh x ,  (4.4.a) 

( I - d )  sh2 x-Zc, sll x+Q+2 
U ( x )  = (4.4.b) 

4 ch2 x 

(the so-called "cosh" soliton potential). 

2. a  = - c, = 2. 

In this case we obtain 

rp ( x )  =ch x ,  (4.5.a) 

(1 -d )ch2x-2c ,  cli x+Q-2 
U ( x ) =  

4 sh2 x 
(4.5.b) 

3. a =  - c ,  = -2. 

In this case the potential is of trigonometric form 

cp ( x )  =sin x ,  (4.6.a) 

( I - d )  sin2x-2cl sin x+Q-2 u ( 2 )  = 
4 cos" 

Lastly one must consider separately the case c, = 0 (keep- 
ing as before a = 2). Here we have the Morse potential 

We note that the potentials (4.4)-(4.6) are modified 
Poschl-Teller potentials. The fact that the wave functions 
for these potentials are expressible in terms of the hypergeo- 
metric functions follows directly from the Jacobi dynamical 
symmetry. 
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In previous treatmentsL4 of these potentials the Hamil- 
tonian H was interpreted as the square of the angular mo- 
mentum in certain special realizations of the SU(2) and 
SU( 1,l)  algebras. Such an approach suffers from two essen- 
tial shortcomings: first, it is necessary for each potential to 
begin by specifying the form of the corresponding Lie alge- 
bra and its specific realization; second, the parameters of 
these potentials must satisfy certain integer requirements, 
characteristic of irreducible representations of Lie algebras. 

In our approach these difficulties are absent as a direct 
consequence of the construction of the Jacobi algebra. In 
addition the Jacobi algebra makes it easy to determine var- 
ious characteristics of these potentials, which are "not seen" 
in other algebraic approaches. In particular, starting from 
just the one basis representation (2.5) we can find both the 
discrete spectrum and the scattering matrix in the contin- 
uous spectrum. We illustrate the effectiveness of the method 
using the potential (4.4) as an example, confining ourselves 
in this section to the case of the discrete spectrum. To ensure 
the standard asymptotic limits U( + co ) = 0 we set d = 1 
and reparametrize the potential in the form 

p2-a2+'/,-Zap sh x u (x)  = 
chZ x , (4.8) 

where a and f l  are parameters connected with Q and c ,  by 
the relations 

It follows from (2.6) that the energy spectrum has the form 

E,,=- (n-o) (n-o+l)-I/; .  (4.9) 

The value of the parameter a will be found from the require- 
ment that in the ground state the relation A,, = 0 should 
hold. From the explicit form of A,, [see (2.6.d) ] 

it follows that A,, = 0 for 

Thus the spectrum has the form 

with the index n ranging from 0 up to the maximum value 
[a - 1/21 (here the square brackets denote the integer part 
of the number). For a = N + 1/2 the last level of the dis- 
crete spectrum coincides with the boundary of the contin- 
uous spectrum ( E N  = 0). We note that the spectrum does 
not depend on the parameter P. 

5. CONTINUOUS SPECTRUM: SCATTERING MATRIX 

The Jacobi algebra can also be used with success to ana- 
lyze the states in the continuum. 

By itself the algebraic approach to scattering is not new. 
Thus, as early as 1967 Zwanziger applied the 0(3,1) algebra 
(the dynamical symmetry algebra of the hydrogen atom in 
the case of the continuum) to calculate the scattering ampli- 
tude in the Coulomb potential.7 A similar method was ap- 
plied in Ref. 6 to the determination of the coefficients of the 
scattering matrix in the case of a one-dimensional "soliton" 

potential. In these approaches the Lie algebra acts on the 
space of states with fixed energy. Therefore the class of ad- 
missible one-dimensional potentials is restricted by the re- 
quirement that one of the parameters of the potential be an 
integer. 

In our approach recursion relations are obtained for 
elements of the scattering matrix in potentials of a general 
form that satisfy the Jacobi algebra. Here the shifts in the 
recursion relations are in energy. As far as we know this 
approach has not been tried previously. 

We show how the method works for the "cosh soliton 
potential" (4.4). We look for the wave function with the 
asymptotic limits 

where E = k 2. 

Let us act on this wave function with the operator K, 
[in the ladder representation (2.5 ) we replace the shift of the 
parameter s by 1 with a shift of the parameter k by i] : 

where 

On the other hand, for the potential (4.4) the relation 

holds. Therefore for x - - co we have 

similarly, for x+ + cu we have 

We introduce the reflection and transmission amplitudes 

From (5.6) we obtain the following recurrence equations for 
the determination of these amplitudes: 

Equation (5.8) is an extremely simple difference equa- 
tion, whose solution can be written in the form of gamma 
functions. Exploiting analyticity properties of the amplitude 
t,, as well as the fact that all its poles lie in the upper half- 
plane and are connected with the states in the discrete spec- 
trum, we obtain the explicit expression for the transmission 
amplitude: 

r ('/'-a-ik) r ('lZ+a-ik) r ('/2+i$-ik) r ('I2-i$-ik) 
tk = rz ('I2-ik) r (-ik) r (I-ik) 

(5.9) 
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In determining the normalization factor in front of t ,  
we made use of the asymptotic property: t,  + 1 for k+ m. 

We note that for = 0 we obtain the familiar expression6 
for the transmission amplitude in the case of a "simple" soli- 
ton potential. 

The expression for the reflection amplitude r, has a 
more complicated structure: it consists of two terms, which 
contain "redundant" poles in comparison with the transmis- 
sion amplitude, with, evidently, each term satisfying the re- 
cursion relation (5.8). To determine the coefficients of these 
terms it is necessary to make use of the normalization condi- 
tion and the asymptotic behavior of r,  as k - 0. Taking these 
considerations into account we obtain 

r,, = 
x n  (ik) 17(ik) 

r('/:+u) r (i/2-u) r ('/2+ip) r ('I2-ifi) F2 ('l2-ik) r (-ik) 

where 

6. CONCLUSION 

We have shown in this paper that the quadratic Jacobi 
algebra is the dynamical symmetry algebra of exactly solv- 
able (hypergeometric) potentials. 

Starting from the commutation relations of the algebra 
one can obtain both the spectrum of the bound states and the 
scattering matrix for states in the continuum. We have dis- 
cussed the case in which the Hamiltonian in the Schrodinger 
equation is directly a generator of the Jacobi algebra. The 
corresponding potentials are found to be generalized Poschl- 
Teller type potentials (Morse potentials in the confluent 

case) and have a quadratic spectrum. If instead the operator 
KO is chosen to be the Hamiltonian multiplied from the left 
by some function (i.e., we consider the spectral problem not 
for the energy but for one of the potential parameters), then 
we obtain potentials of the Eckart type (Coulomb type in the 
confluent case). We did not dwell here on the latter case 
since its analysis is no different from the one we studied. 

Consequently all possible cases of dynamical symmetry 
of the Schrodinger equation can be described by one algebra. 
The nontrivial point is that that algebra is quadratic. To our 
knowledge quadratic algebras have not been used previously 
to analyze exactly solvable potentials. 

We note that the Jacobi algebra clarifies the mysterious 
connection between exactly solvable classical and quantum 
problems, and also provides a geometric interpretation of all 
exactly solvable potentials (see Ref. 11 ). 
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