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A theory of the Hall effect under hopping conduction conditions is developed. General 
expressions are obtained and these are used to derive the Hall mobility pH in specific cases such as 
variable-range-hopping and E,  conduction. An allowance is made of the effects of the electron- 
electron Coulomb correlations, leading to the appearance of a Coulomb gap. It is shown that 
under hopping conduction conditions the Hall effect has a correlation radius L, $ L, when L is 
the correlation radius of an infinite cluster governing the conductivity. In practice, the value of 
L,  can exceed the dimensions of a sample, which gives rise to size effects. These effects include a 
possible activated temperaturedependence of the mobility pH ( T). The results are used to analyze 
the experimental data on the Hall effect in amorphous semiconductors. 

1. INTRODUCTION 

Many experimental and theoretical investigations have 
been made of hopping conduction in disordered systems. 
This conduction is characterized by an activated tempera- 
ture dependence 

where gC ( T) % 1 is governed by the hopping conduction 
mechanism. For example, when the Mott law is obeyed it is 
found that lC (T) = ( To/T) 'I4 or {, (T)  = ( To/T) 'I2, if 
there is a Coulomb gap. At higher temperatures the corre- 
sponding relationship is = E,  /T  (Refs. 1 and 2).  

One of the important and still unsolved problems is the 
mechanism of the Hall effect under hopping conduction con- 
ditions. This problem is tackled below. We shall be interest- 
ed mainly in the activation energy of the Hall effect (Hall 
field& ),and its sign. We shall also obtain a rough estimate 
of the absolute value of the Hall effect and compare it with 
experimental data. 

The data obtained in experiments on the Hall effect un- 
der hopping conditions are largely contradictory. A general 
observation is that the Hall effect is much less than under the 
usual band conduction conditions. In the hopping case the 
Hall effect in doped crystalline semiconductors is so small 
(because of the low resistivity of the samples) that the mea- 
surements themselves become very difficult. Nevertheless, 
some authors (see, for example, Refs. 3-5 ) report an obser- 
vation of the Hall effect in doped semiconductors in the hop- 
ping conduction range. The Hall effect in amorphous semi- 
conductors exhibits what is known as the double sign 
an~maly."~ This is manifested as follows: when a sample has 
n-type conduction (deduced from measurements of the ther- 
moelectric power) the Hall effect is positive, whereas in the 
case ofp-type conduction it is negative. 

Moreover, there is no agreement about the theory of the 
Hall effect under hopping conduction conditions. The first 
theoretical investigation of this case was made by Hol- 
stein.'' He considered the ac hopping Hall effect. The prob- 
lem then simplifies because the main contribution to the Hall 
emf comes from spatially isolated configurations of centers 
for which the population relaxation time is of the order of the 

reciprocal of the frequency of the current ( w r z  1 ), similar 
to that encountered in the familiar Pollak-Geballe ac hop- 
ping conduction mechanism. These configurations are the 
sources of an alternating Hall emf and, moreover, in the ac 
case there is no need to solve the nontrivial problem of how 
these hole emf sources are connected to the Hall contacts. 
We shall see later that in the dc case this problem can be 
solved using percolation theory. Some variants of this ap- 
proach had been proposed earlier by Bottger and Bryksin," 
Butcher and Kumar,I2 and by Friedman and Pollak.I3 Ne- 
meth and Muhl~chlegel'~ proposed a heuristic approach to 
calculations of the Hall effect based on the formal similarity 
of the expressions for the transverse (a,, ) and longitudinal 
(a,, ) conductivities. Following the optimization procedure 
employed by Mott to derive Eq. ( 1 ), the authors of Ref. 14 
demonstrated that the activation energy of the Hall effect in 
the variable-range hopping (VRH) case is of the order of 
0.35T( To/T) 'I4, i.e., it is considerably less than the activa- 
tion energy of conduction. One should mention here that the 
optimization procedure used by Mott to obtain Eq. (1)  is 
essentially based on the requirement of connectivity of a 
hopping path. This requirement is not necessary in optimiz- 
ation of the Hall emf. The results reported in Refs. 11-14 do 
however differ even in respect of the argument of the expo- 
nential function describing the Hall effect. 

Our aim will be to derive a general expression which can 
be used to consider the various limiting cases representing 
amorphous and doped crystalline semiconductors. We shall 
consider hopping conduction in an impurity band with con- 
stant and variable length of the jumps, as well as the role of 
the Coulomb correlation of the occupancy numbers of the 
site electron states. We shall ignore the contribution of the 
band carriers to the Hall effect. 

The present paper is organized as follows. We shall first 
determine the elementary sources of the Hall emf, starting 
from microscopic parameters (Sec. 2).  We shall then discuss 
the averaging of the emfs contributed by the elementary 
Hall emf sources in a disordered system of centers (Sec. 3). 
Next, we shall consider special cases representing various 
temperature ranges (Sec. 4).  We shall conclude with some 
final comments and a comparison ofthe theory with selected 
experimental data (Sec. 5 ) . 
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FIG. 1 .  Configuration of levels corresponding to electron (a, b) ,  hole (c, 
d) ,  and mixed (e, f )  triads. The Fermi level is labeled p and the thermal 
energy scale T is shown. 

2. ELEMENTARY SOURCESOFTHE HALL emf 

A self-consistent analysis of hopping conduction is 
based on the concept of a random network of resistances put 
forward by Abrahams and Miller.2 Each resistance connects 
two sites and is selected to be equal to the coefficient of pro- 
portionality between the difference between the electro- 
chemical potentials at this pair of sites, on the one hand, and 
the hopping current, on the other. However, this approach is 
insufficient for the description of the Hall effect because a 
magnetic field H, considered in the linear approximation, 
does not influence the probability of a transition between 
sites. The minimum number of sites needed for the appear- 
ance of a linear (in H )  change in the probabilities of intersite 
transitions is three. We shall consider configurations of 
three sites with random energies E,, E,, and ck (measured 
from the Fermi level p )  and random intersite distances rii, 
rjk , and rki. We shall call these site triads and we shall show 
that they are elementary sources of the Hall emf. We shall 
obtain an expression for the Hall emf developed by such a 
triad. 

We shall base our analysis on the balance equation for 
transitions from one of the sites in a triad ( i )  under steady- 
state conditions: 

(2) 
Here, ni is the occupancy number ofthe ith site and P is the 
total probability of transitions between the sites i and j. In 
writing down Eq. (2)  we shall assume that the currents flow- 
ing into and out of a triad are not affected by the application 
of a magnetic field. This formulation of the problem corre- 
sponds physically to finding the Hall emf under constant- 
current conditions. It allows us to consider only the transi- 
tions within a triad in the balance equation (2).  

It must be stressed that the quantities Pi in Eq. (2)  
represent the probabilities of single-particle transitions. This 
does not require any special comment if we are dealing with a 
pair of sites, so that a transition occurs when just one particle 
is present at one of the two centers. In the case of a triad the 
situation is fundamentally different. The transitions in a tri- 
ad are possible in the presence of one or two particles at the 
sites. Both cases are relevant, because we are speaking of 
states close to the Fermi level (this is true in any case in the 
VRH range). Single-particle states can be used if right from 
the beginning we can distinguish the electron and hole tri- 
ads. We shall identify as the electron triads those for which 
the probability of occupancy by more than one electron is 

negligible. In the case of the hole triads the probability of 
occupancy by fewer than two electrons is negligible. The 
corresponding configurations of the energy levels are shown 
in Fig. 1. This figure includes also the examples of mixed 
cases when triads with comparable probabilities can be pop- 
ulated by any number of electrons from zero to three. We 
shall show later that the contribution of mixed triads to the 
Hall effect is exponentially small. 

This classification of triads makes it possible to use Eq. 
( 2 )  with single-particle probabilities for which explicit and 
relatively simple expressions are available. At the end of the 
present section we shall consider the specific case of an elec- 
tron triad. 

We shall be interested in the Hall emf which is a linear 
function of the magnetic field H. According to Ref. 10, only 
real transitions involving states of the third site are then pos- 
sible, so that the effects of correlation of the site occupancy 
numbers are manifested. The contribution of these effects 
depends on the intrasite correlation energy U of the parti- 
cles. We shall assume that this energy is sufficiently high, 
i.e., that US TS,, which is usually true in real situations. 
Hence, it follows that the presence of the third site affects the 
probability of a transition between the other two sites only 
when the third site is unoccupied. 

Bearing all these points in mind, we can write down 

where Po is the probability of a transition from a site i to a 
site j in the absence of a magnetic field and P f is the change 
in this probability due to the application of a magnetic field. 
Using a factor ( 1 - n, ), we shall allow for the intrasite cor- 
relation at an intermediate site. 

Our task is to determine the influence of an external 
magnetic field on the difference between the electrochemical 
potentials at two sites. We shall do this by substituting in Eq. 
(2)  the expression 

where&, is the change in the population due to the external 
magnetic field and np is the population of the ith level when 
H = 0 (in the presence of an electric field). We can write 
down 

The quasi-Fermi level p, differs from the Fermi level p be- 
cause of the presence of an electric field. The quantity Sn, 
may be related to SUi -a(&, - p i ) ,  i.e., it may be re!ated to 
the change in the electrochemical potentials of the sites in a 
magnetic field: 

Substituting in Eq. (2)  the relationships (3),  ( S ) ,  and ( 6 )  
and retaining only the corrections linear in PH and SU, we 
can describe the quantities S Ui, S 5, S U, in terms of changes 
of the probabilities of the intersite transitions on application 
of an external magnetic field. In the process of obtaining 
these expressions it is useful to apply the symmetry consider- 
ations and represent the probabilities in Eqs. (2)  and (3)  in 
the form" 
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Pu=Lu exp (edT), P,t=Ljt exp (ej/T), Lu==L1t, 

PijH=Bjhr: exp (e,/T), P,P=e7i~ exp (etlT), 

p t A ~ = ~ b i t  exp (edT) , PkiH4?ijr exp (er/T) 9 (7) 

(explicit expressions for P,. and P f are given above). More. 
over, simplifications can be made using familiar expres- 
sions* for intersite currents and resistances, which in the 
notation adopted here become 

(the expression for a hole triad differs by the substitutions 
e+  - e, nje'-.njh), eH+ - eH) and 

Subject to these simplifications, Eq. (2) can be transformed 
to 

6 u!;' 6 u,:"' - - =  e (I-at0) I;:' 8;;' , 
Rij Rki 

where 
6Uij=6Ui-6Uj. 

The quantity fYjk is defined by the relationship 
PjkH 9 , i j  iTjk=-=-, 
Pjh Lib (11) 

which shows that it is proportional to the magnetic field H. 
We shall be interested in the difference pik between 

electrical potentials at the sites in a triad. We can go over 
from the difference between the energies Uik to the differ- 
ence between the electrical potentials pik if we divide Uik by 
the absolute value of the electron charge e. We then obtain 

from Eq. ( 10) 

---- '9' "hi - ~ ~ - ~ ~ o ~ ~ j ~ ) & ~ ~ ) .  
Rij Rni 

The physical meaning of Eq. ( 12) requires some com- 
ments. At first sight, the left-hand side of this expression 
represents the difference between the magnetically induced 
currents in a triad: those flowing into a site i and flowing out 
of this site. Under the conditions of constancy of all the other 
(external to a triad) currents, such an interpretation implies 
that the left-hand side of Eq. (12) vanishes, which contra- 
dicts the fact that the right-hand side is nonzero. This con- 
tradiction is removed if we assume that the application of an 
external magnetic field gives rise to effective sources of the 
voltage in the branches of the triad. Physically the appear- 
ance of such sources is responsible for the Hall emf devel- 
oped by a triad. 

We can use Eq. (12) to write down the expression for 
the Hall emf by an appropriate selection of the algorithm to 
be used. We shall assume that in general we are dealing with 
an object ("black box") through which an external current 
passes in the presence of a magnetic field. What should be the 
procedure in finding the Hall emf? The generally accepted 
answer to this question is that the Hall emf is the distance 
between the potentials at two points which in the absence of 
a magnetic field are equipotential. 

The application of this algorithm to a triad will be made 
by replacing it with a star configuration (Fig. 2). We shall 
consider only those triads which are connected to an exter- 

nal current-carrying circuit mainly by two sites (i and k in 
Fig. 2 ) ,  i.e., the external current flowing through the third 
site i is relatively small. This connection of a triad to a cur- 
rent-carrying circuit is most typical. The probability that all 
three sites of a triad are connected equally to an external 
current-carrying circuit is relatively low. In the final analy- 
sis, this follows from the low probability of encountering 
triads which are effective sources of the Hall emf in a system 
of random centers (this will be demonstrated in greater de- 
tail in Sec. 4).  

Transformation from a triangle to a star gives the vol- 
tage of an effective Hall source (see Fig. 2): 

Using EQ. ( 101, we obtain 

and similar expressions for g, and 2? k .  
Although in this section we shall not consider directly 

the procedure for averaging the Hall emf s in triads, we must 
mention here one circumstance which allows us to limit 
greatly the class of triads under investigation. It is clear from 
Fig. 2 that the currents Iki and Iu are the same. On the other 
hand, it follows from the symmetry of the problem in a mag- 
netic field and directly from Eqs. ( 11 ) and ( 7 )  that the signs 
of the quantities gki and gu are opposite. This means that 
the signs of g j  and g, are also opposite and after averaging 
their sum vanishes. Consequently, we shall consider only an 
emf gi at a "dead" (i.e., not connected to a current-carrying 
circuit) site in a triad. Expressing the current I,, in terms of 
the external current I, we finally obtain 

It should be noted that in the absence of a magnetic field 
the potential at the central point of the star is equal to the 
potential at the site i. Therefore, the value of $, given by Eq. 
( 15) satisfies the adopted algorithm for the determination of 
the Hall emf and will be regarded as this emf in future. 

It remains to give our expressions for the quantities Ru,  
R,, , R,,, g,, occurring in Eq. ( 15). In the case of resistances 
we shall use the expressions2 known from an analysis of hop- 
ping conduction: 

2rij 
Ei j  )e R, exp (Efj), R~,=R. exp ( - - - - 

a T 
(16) 

The expression ( 16a) must be refined if an allowance is 
made for the Coulomb correlations. In the case when E~E, < 0 
this expression acquires an additional term - e2/xru (Ref. 
2). However, we shall show that triads characterized by 
E ~ E ,  < 0 are unimportant in the problem under discussion 
[see the comments after Eq. (28) 1. The explicit form of the 
preexponential factor in Eq. (16) will not be used and we 
shall not give it here. The expression ( 11 ) for gjk contains 
the change in the probability of an intercenter transition due 
to the application of a magnetic field. This change was ob- 
tained by Holstein'' and is given by 
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FIG. 2. Triad ijk ( a )  and its equivalent circuit in the form of a star (b).  
Here, I is the external current flowing through the triad. 

where S is the vector area of the triangle ijk. It is convenient 
to represent the energy integral representing hopping be- 
tween the sites in the form 

Wiks VIA exp (-rikla), (18 )  

where the spatial dependence of the amplitude Vik can be 
ignored. The probability of an intercenter transition Pi, can 
be described in the usual way: 

The frequency factor v,, may also exhibit a relatively weak 
(obeying a power law) dependence on the transition energy 
- E,  I (see, for example, Refs. 2 and 15 ). 

In view of the presence of exponentially strong energy 
dependences in Eqs. ( 16) and ( 17 ), we shall ignore the 
much weaker power-law dependences. This means that the 
preexponential factors in the subsequent expressions will be 
inaccurate, but it will simplify greatly our analysis. In this 
approximation Eqs. ( 17)-( 19) allow us to derive an ap- 
proximate expression for $,, in the form 

sfivphv exp (e i /T)  + exp (ek/T) gik = - 
Ej: exp (e i /T )  S exp (ck/T) 4- exp (e j /T)  

where s = sign( VU V,, Vki ) and Vis the characteristic value 
of the moduli of the quantities V,/ ,  V,,, and Vki.  

Equation (20) ignores the Coulomb correlation, which 

is not important in the situations of interest to us. The solu- 
tion of the problem of the Hall emf developed by an electron 
triad is given approximately (apart from numerical factors) 
by Eqs. (15), (16), and (20). 

We shall conclude this section with a discussion of the 
sign of the Hall effect. The above analysis deals specifically 
with electron triads. Hole triads can be analyzed in exactly 
the same way. Once again we obtain Eq. (20). In particular, 
the signs of $,, are the same for electron and hole triads with 
given values of V,, , ck, and V,, . In turn, the signs of the 
amplitudes V of a transition are governed by the nature of 
the localization centers, namely by the signs of the potentials 
acting on an electron. In the case of doped semiconductors 
these potentials are negative for donors and positive for ac- 
ceptors. In amorphous semiconductors, where the localiza- 
tion of states is due to the structural disorder, the sign of V,, 
is negative for the states which split off from the conduction 
band and positive for those that split off from the valence 
band. 

3. AVERAGING. MACROSCOPIC HALL EFFECT 

In this section we shall consider a macroscopic sample 
exhibiting hopping conduction and we shall find its effective 
Hall parameters: the Hall coefficient 

where EH is the Hall field and j is the current density, and 
also the Hall mobility 

Our analysis will be based on percolation theory ideas,2 
according to which hopping transport of charge occurs be- 
tween sites forming an infinite cluster, which penetrates the 
whole sample (Fig. 3). This infinite cluster has a correlation 
radius 

where Y ~ 0 . 9  in the three-dimensional case and v z  1.3 in the 
two-dimensional case.2 Each cell (of size L )  of this infinite 

FIG. 3. Infinite cluster in a macroscopic sample. The directions of the 
magnetic field H and of the average values of the Hall field E, and of the 
current j are shown; L is the correlation radius of the infinite cluster and 
L, is the correlation radius of the Hall effect (representing a typical dis- 
tance between Hall emf sources). 

196 Sov. Phys. JETP 72 ( I ) ,  January 1991 Gal'perin etal. 196 



cluster represents a connected set of random resistances 
R = R,exp{, where the random quantity 6 is bounded from 
above by 

The order of magnitude of the resistance of each infinite- 
cluster cell is given by R, = R0exp&. Topologically, an infi- 
nite cluster is a network of twisted macrobonds. A typical 
distance between the sites connected by such macrobonds is 
of the order of L. 

Since the voltages across triads considered in the pre- 
ceding section are proportional to the current, it is clear that 
these triads should be "incorporated" in an infinite cluster 
where practically the whole current is concentrated. The re- 
sistance of each triad to the current flowing through it does 
not exceed R,. Such triads can be located at nodes of an 
infinite cluster or, more likely, at its macrobonds (Fig. 3).  A 
voltage developed by a triad located far from an infinite clus- 
ter node (i.e., located at its macrobond) is transferred to the 
Hall contacts through a circuit containing resistances R 
much higher than R,. Therefore, this circuit is shunted by 
resistances R, of the infinite cluster macrobonds, so that the 
transferred voltage is exponentially small, since it is 
R,/R 4 1 times less than the initial value. Therefore, triads 
located far from the infinite cluster nodes make only a small 
contribution to the net Hall emf. We shall therefore consider 
only the triads located at nodes of an infinite cluster where 
the shunting is unimportant. 

We shall consider again Hall sources of the same type, 
for example, electron sources. First of all, we note that in 
spite of the random signs of the vector areas S in Eq. (20), 
the net Hall emf does not vanish as a result of averaging. This 
is because there is a preferred direction along which the 
source emfs are summed. Consequently, the Hall emf 
sources with opposite values of S are not canceled out but 
their absolute values are added. This is demonstrated in Fig. 
A 
't. 

Another factor which could give rise to mutual balanc- 
ing out of the emf s developed by elementary Hall sources is 
the twisted nature of the macrobonds in an infinite cluster. 
For this reason the current in some parts of an infinite cluster 
can flow opposite to the direction of the average current 
(Fig. 5a). Moreover, a random connection of elementary 
Hall emf s with'one or another Hall electrode is possible 
(Fig. 5b). However, effects of this kind can only give rise to a 
comparatively weak (partial) compensation of the Hall ef- 

FIG. 4. Addition of emf s from two Hall sources with opposite signs of the 
vector areas. 

FIG. 5. Partial compensation of the emfs developed by Hall sources due 
to the twisted nature of the infinite cluster macrobonds: a)  change in the 
direction of the current; b)  change in the direction of connection of a 
source. 

fect. In fact, we can regard a macrobond as a path of a ran- 
dom walk consisting of N = N +  + N- steps forward 
( N +  ) and backward (N-  ). The distance between the ini- 
tial and final points of such a random walk is 
1 = N + b - N- b > 0 (Fig. 5) .  Hence, it follows that the 
number of steps in the "correct" direction ( N ,  ) is greater, 
i.e., there is no compensation. Similar effects for two-phase 
systems were considered by Straley.16 

These conclusions about unimportance (with an expo- 
nential precision) of fluctuations of the signs of the vector 
areas S and of the twistedness of the infinite cluster macro- 
bonds allow us to ignore the signs of g i  and carry out aver- 
aging of the absolute values alone. We shall carry out such 
averaging in two stages. First of all, we shall determine the 
optimal exponentially significant triads and the Hall emf s 
created by them. We shall then estimate the probability of 
formation of an optimal triad. 

The existence of a factor (1 - np) in the expression 
( 15) for g i  allows us to consider only the case when ,ci > 0. 
Moreover, it follows from Eq. (15) that the value of gi is 
not small only if R,, <R,, + Rv. If we drop R,, from Eq. 
(15), we find that iTi is governed by the smaller of the two 
remaining resistances and, therefore, it follows that the max- 
imum value of g i  is reached when R, z R U .  Therefore, 
apart from a term of the order of unity, the optimal triad 
should satisfy the condition 

Using the last relationship, we find from Eqs. ( 15) and (20) 
that 

shvphV eHS 
8< wIRo ------- exp ( e j / T )  + exp ( E J T )  

Ej; hc exp ( e i / T )  + exp ( E ~ / T )  4- exp ( e j / T )  

Equation (25) can be optimized in respect of the site 
energies. We can do this using the definitions given in Eq. 
( 16) for Eu and Eki and consider the cases of different rela- 
tionships between the level positions. It is necessary to allow 
also for the fact that gi  > 0 and that only one of the other two 
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levels may be negative (because we are considering an elec- 
tron triad). Such an analysis shows that in all cases Eq. (25) 
can be represented in the form 

sfivPhV eHS 
%'i=IR',T - 

E,, tic 2T 

where E, is the energy of that of the levels ei, E,, and E,, 
which is between the other two. It follows from the inequali- 
ty (24) that the maximum value of the quantities in the argu- 
ment of the exponential function in Eq. (26) is 
(g,, ) max = Cc. Therefore, the maximum emf developed by a 
Hall source is 

where 
e,. ,=max((ei(,  (ej(, ( ~ ~ 0 .  
The above analysis demonstrates, in fact, that the maxi- 

mum voltage is obtained for triads with the same resistances 
close to the critical value, i.e., when 

Moreover, it must be stressed that the maximum value of { c  

in the argument of the exponential function (27) is obtained 
when all three levels E ~ ,  E,, and E~ are on one side of the 
Fermi level and two of them are in a strip of width of the 
order of T near the maximum energy E,,, . The expression 
for E,,, is governed by the hopping conduction mechanism 
and will be made more specific below. It also follows from 
Eq. (27) that the main contribution comes from triads with 
the minimum geometric dimensions (rU z rjk z rki = rmin ), 

which correspond to the maximum energy E,,, . These re- 
quirements in respect of the energies and intersite distances 
determine completely the parameters of the optimal triad 
which develops an emf described by Eq. (27). 

Since our analysis allows only for the exponentially sig- 
nificant dependences, the conditions of Eq. (28) are ap- 
proximate. This means that in the optimal triad case the 
arguments fU ,  fj,, gki of the exponential functions may dif- 
fer from 6, by about unity. This allows us to estimate the 
probability of finding an optimal triad. 

If this probability is P3,  then a typical distance between 
such triads is 

This distance corresponds to the Hall field 

Using the expressions for the current density and the 
conductivity given by 

and also the definition (22) of the Hall mobility, we obtain 

c%' svphver2,, 
p,=P- " P  

IHR, T2 
(32) 

Equation (32) is the main result of the present section. 
We shall apply this result specifically to different hopping 
conduction cases. 

4. HALL EFFECT IN VARIOUS LIMITING CASES 

We shall begin with an analysis of doped crystalline 
semiconductors. In this case the process of hopping conduc- 
tion takes place in an impurity energy band of donor or ac- 
ceptor levels. The following types of hopping conduction can 
be distinguished. 

a )  The high-temperature hopping conduction charac- 
terized by a variable jump length, i.e., variable-range hop- 
ping (VRH), is described by the familiar Mott law 

where go is the density of states at the Fermi level and P is a 
numerical coefficient.' The main contribution to the con- 
ductivity then comes from carrier jumps between centers 
separated by a distance r-alc with single-site energies in a 
band of the order of Tg, wide and located near the Fermi 
level. Typical values are lC ~20-30 .  The VRH conditions 
are retained on increase in the temperature Tuntil the char- 
acteristic energy T{, exceeds a typical width of the impurity 
energy band. 

b)  The low-temperature conduction characterized by a 
variable jump length is described by Eq. ( 1 ), but the param- 
eters are now 

where x is the permittivity and P ,  is a numerical coefficient2 
(this is known as the ~hklovskii-~fros law). The nature of 
the dependence cc ( T) of Eq. (34) is governed by the influ- 
ence of electron-electron Coulomb correlations. They give 
rise to an energy dependence of the density of states g a  E~ in 
the region of what is known as the Coulomb gap near the 
Fermi level, which is typically A = e3gA'2x 3'2 wide. The 
dependence (34) applies until the characteristic jump ener- 
gy Tf, exceeds the width of the Coulomb gap A. 

C )  The E, conduction case is observed at such high tem- 
peratures that the energy T{, exceeds the width of the impu- 
rity energy band. Then, thermal activation has relatively lit- 
tle effect on the jump probabilities and the jump lengths are 
of the order of the average intercenter distance. In this case 
the activation energy of hopping is close to the energy gap p 
between a relatively narrow density-of-states peak and the 
Fermi level. This level lies within a density-of-states tail: 
above the peak in the case of weak compensation and below 
the peak if the compensation is strong. Therefore, in the E, 

conduction case we have 

where N is the total concentration of sites in the impurity 
energy band and a is a numerical coefficient.' The finite 
width of the density-of-states peak and the profiles of its tails 
are practically of no importance in the determination of 6,. 

We shall find for these three cases the probabilities Pof 
encountering resistances forming optimal triads of interest 
to us. In this procedure it is convenient to introduce a proba- 
bility density p(f,  r; gc) and to find in an infinite cluster a 
pair of states separated by the distance r, such that 
ln(R / R ,  ) = 5. The required probability is then described 
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By definition, we have 

where the normalization coefficient Z is described by 

In the three cases described above our calculations follow 
exactly the same procedure and are based on the relevant 
distribution functions:" 

a)  g (E) =go=const, 
b)  g ( ~ )  cce2. 

c )  ~ ( E ) Q ~ ( E - - P ) .  (39) 

The results for the cases a) ,  b), and c)  are, respectively: 

Substitution of these expressions into Eq. (36) allows us to 
determine the probability P for each of these cases and this 
probability occurs in Eq. (32) for the Hall mobility. 

In writing down the final expressions we must bear in 
mind that in cases a )  and b),  which represent VRH, the 
minimum distance r,,, is bounded from below by the condi- 
tion of smallness of quantum repulsion between the levels 
V exp( - r/a) compared with the maximum jump energy 
Tic. Therefore, in cases a )  and b), we have 

rmin=a In (V/TE,) gag,, (41 

~,.,lT=E~-2r~~~la=E~-2 In( VlTE,). 

(It  should be noted that the condition V> Tg, is satisfied 
always for VRH.) In the case c )  which represents the E, 

conduction the scatter of the site energies is relatively small 
and in the first approximation we can assume that 

Consequently, the expression for the Hall mobility in the 
cases a )  and b) becomes 

whereas in the case c),  we have 

The expression (43 ) is identical, with exponential pre- 
cision, with the results of Refs. 1 1 and 13, obtained ignoring 
the Coulomb correlation of the occupancy numbers. For ex- 
ample, it is shown that this correlation does not affect the 
Hall coefficient within the limits of the experimental preci- 

sion. The expression (43a) agrees with the results of Ref. 11 
(again with exponential precision) but not with the results 
of Refs. 12 and 13. 

The corresponding expressions for a typical distance 
between the optical triads in the cases a )  and b) are 

whereas in the case c),  we have 

We considered above the case of doped semiconductors. 
The concept ofan impurity energy band is meaningless in the 
case of amorphous semiconductors and localized states in 
such semiconductors fill almost completely the whole of the 
mobility gap, so that hopping conduction can occur only in 
the VRH case. Using the above expressions to describe 
VRH, we have to allow for the presence of two types of local- 
ized states: those split off from the valence band and those 
split off from the conduction band. ' These states correspond 
to opposite signs of the matrix elements Vi,. and, consequent- 
ly, to opposite signs ofs in the expressions for pH. Therefore, 
the resultant Hall mobility 

can be positive or negative, depending on the nature of carri- 
ers (electrons or holes) that dominate the conduction pro- 
cess. 

5. CONCLUDING COMMENTS 

We shall estimate the Hall mobility in the cases dis- 
cussed above. Such estimates are quite rough, in view of in- 
determinacy of the numerical coefficients in Eqs. (43) and 
(43a). 

We shall consider amorphous materials and assume 
that <c =: 10, a=: 10 A, 4ivP,/TzO.1, ln(V/Tlc) ~ 2 .  Then, 
the estimate represented by Eq. (43) yields pH z 
cm2-V - ' as- I. Experiments on amorphous semiconductors 
usually give values [pH 1 z 10 -2-10- ' cm2.V- ' . s-  ' at 
T=200-500K (Ref. 1). 

We must bear in mind that Eqs. (43) and (43a) are 
based on the assumption that the size q of a sample is much 
greater than a typical distance LH between Hall emf sources. 
The distance LH can be called the correlation radius of the 
Hall effect. If q < L,, a sample as a rule does not contain 
optimal Hall sources of the emf described by Eq. (27). In 

Density of states 

FIG. 6.  Schematic representation of the behavior of the density of states in 
an amorphous semiconductor. I s  
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this case the most effective (and not optimal) sources are 
active. The emf's developed by them are exponentially 
smaller than the emf of an optimal triad given by Eq. (27).  
The parameters of such Hall sources are random and self- 
averaging does not occur in the dimensions of a sample. We 
can therefore expect significant fluctuations of the Hall coef- 
ficient from sample to sample. It follows from Eqs. (26) and 
(27) that the Hall mobility has a random activation energy 
[ z (E,,, - TC,,, )/2 for a given sample]. The size effects 
become more pronounced at low temperatures because, in 
accordance with Eqs. (44) and (44a), the value of L ,  rises 
steeply on increase in cc. This allows us to interpret the ap- 
pearance of the activated temperature dependence of the 
Hall mobility at low temperatures.' It is possible that this 
applies also to the activated temperature dependence of pH 
of crystalline Si:P (Ref. 5) .  It should be pointed out that the 
correlation radius L ,  may be quite large. Estimates based on 
Eqs. (44) and (44a) give for this quantity a fraction of a 
millimeter at low temperatures, which is comparable with 
the distances between the Hall contacts in the case of real 
samples. 

Hopping conduction can explain also what is known as 
the double anomaly of the sign of the Hall effect exhibited by 
amorphous semiconductors. In fact, in accordance with the 
Cutler-Mott expression,' the thermoelectric power is gov- 
erned by the energy derivative of the density of states at the 
Fermi level. In the case of the density of states usually as- 
sumed for amorphous semiconductors (Fig. 6) the signs of 
the Hall coefficient and thermoelectric power may be oppo- 
site, as can easily be demonstrated. 

From our point of view, it therefore follows that the 
available experimental data are not in conflict with our hy- 
pothesis about the hopping mechanism of the Hall effect in 
amorphous semiconductors. Further progress in the identi- 
fication of this mechanism should follow from investigations 
of fluctuations of the Hall coefficient from sample to sample 
and of the size effects (dependences of this coefficient on the 
dimensions of a sample, on the thickness of an amorphous 
film, etc. ). 

The authors are grateful to G. E. Pikus for discussing 
the work and to V. L. Gurevich for discussions and reading 
the manuscript. 
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